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Herringbone Buckling Patterns
of Compressed Thin Films
on Compliant Substrates
A thin metal film vapor deposited on thick elastomer substrate develops an equi-b
compressive stress state when the system is cooled due to the large thermal exp
mismatch between the elastomer and the metal. At a critical stress, the film unde
buckling into a family of modes with short wavelengths characteristic of a thin plate
compliant elastic foundation. As the system is further cooled, a highly ordered her
bone pattern has been observed to develop. Here it is shown that the herringbone
constitutes a minimum energy configuration among a limited set of comp
modes.@DOI: 10.1115/1.1756141#
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1 Introduction
Recent studies~Bowden et al.@1#, Huck et al. @2#, and Yoo

et al. @3#! have explored the feasibility of manipulating buckle
films on compliant substrates to achieve highly ordered patte
with distinctive features. A metal film with a thickness measur
in tens of nanometers can be vapor deposited at an elevated
perature on a thick elastomer substrate. When the film/subs
system is cooled, the large mismatch between the thermal ex
sion of the metal and elastomer produces a state of equi-bia
compression in the film. At a critical temperature the film beg
to buckle into modes with wavelengths typically measured in
crons. As the temperature is further lowered the amplitude of
buckles grow and distinctive patterns emerge. Buckle patterns
be manipulated either by creating nonplanar substrate topogr
prior to deposition,@1,2#, or by forcing a film on a smooth plana
substrate to buckle into a nonplanar mold that is subseque
removed,@3#. If the surface of the substrate is nonplanar at
start of deposition, the buckle pattern is influenced by the un
lying topography. On the right-hand side of Fig. 1, one sees
buckle pattern that arises when the substrate surface has a
of flat depressions running linearly in the vertical direction. D
to local deformation of the substrate, the in-plane film stres
relaxed in the direction perpendicular to the edges of the dep
sions resulting in the buckle alignment shown,@1,2#. This align-
ment persists well beyond the left-most depression edge in F
where the substrate is perfectly smooth and flat prior to buckl
The parallel undulations in the left-center of Fig. 1 transition
the herringbone pattern. The herringbone buckle pattern app
to be the preferred mode whenever there exists a sufficiently l
patch of smooth substrate and when the system has been c
well below the onset of buckling. There are irregularities to t
herringbone pattern, including local distortion most likely due
imperfections in either the film or substrate. Another example
shown in Fig. 2 where the substrate is pre-patterned with a si
circular depression of several millimeters diameter at its cen
The depression edge determines the orientation of the buckle
its vicinity, but away from the edge the herringbone patte
emerges. The example in Fig. 3, which is taken from@3#, shows
the highly ordered mode that forms when a mold with a squ

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 14, 200
final revision October 30, 2003. Editor: R. M. McMeeking. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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pattern is held against the film as the buckles form and is t
removed when the buckles are fully developed. In this case
film is aluminum and the substrate has two layers, a relatively t
compliant polymer layer~polystyrene! bonded to a thick silicon
layer.

All the films considered in this paper remain bonded to t
substrate in the buckled state. They undergo little, or no, pla
deformation. Selected tests revealed that the buckles almos
tirely disappeared when the temperature was reversed,@1,2#. The
fact that the film locks into modes that are very different fro
what would be expected from a linear buckling analysis is due
the highly nonlinear character of buckling of an elastic film on
compliant substrate as the temperature drops well below criti
Nonlinearity also accounts for the unusual, highly ordered h
ringbone mode of buckling in Figs. 1 and 2 that is observed wh
the system is not manipulated in any way. In Figs. 1 and 2,
substrate is the elastomer, polydimethylsiloxane,~or PDMS, for
short! and the film is 50 nm of gold. The crest-to-crest separat
of the buckle undulations or ‘‘waves’’ is about 30mm and the
distance between jogs in the herringbone mode is about 100mm.
The change in direction of the waves at each jog is approxima
90 deg. The amplitude of the waves is on the order of a micron
smaller. Thus, although the amplitude is large compared to
film thickness, the mode is shallow in the sense that the slope
the pattern are small. The strains associated with the buck
mode are also small, and both the film and the substrate mate
are within their respective linear elastic ranges.

The herringbone pattern is very different from any mode o
might suspect based on a linear stability analysis, as will be s
later. A clue to its existence is its ability to alleviate equally in a
directions the biaxial in-plane stress driving buckling. A mo
with undulations extending in only one direction such as that s
on the right in Fig. 1, which will be referred to hereafter as
one-dimensional mode, relieves in-plane stress only in the dire
tion perpendicular to the undulations. The in-plane stress com
nent parallel to the undulations is only slightly altered by buc
ling. On the other hand, the alternating directions of the lo
one-dimensional undulations in the herringbone mode reduce
overall in-plane stress in the film in all directions. The herrin
bone mode allows for an isotropic average in-plane expansio
the film, but otherwise has zero Gaussian curvature apart from
vicinity of the jogs. In addition to bending, some nonunifor
stretching of the film necessarily occurs locally at the jogs. N
ertheless, the near-inextensionality~apart from the average uni
form expansion! of the herringbone mode and its ability to allev
ate the in-plane stress equally in all directions are the two feat
underlying its preferred existence. An origami pattern similar to
can be created from a series of folds of a piece of paper.

3;
per
lied
sity
pted
004 by ASME SEPTEMBER 2004, Vol. 71 Õ 597



598 Õ Vol. 71, SEPTE
Fig. 1 Buckling of a 50 nm gold film on a thick elastomer „PDMS… substrate.
On the right, the substrate has been patterned with alternating flat depres-
sions, †2‡. The substrate on the left two-thirds of the figure is flat and not
patterned. The herringbone pattern is on the left. The wavelength of the pattern
across the crests is approximately 30 mm while the distance between jogs of
the herringbone mode is approximately 100 mm.
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It will be shown that the herringbone mode of buckling is th
minimum energy configuration among several competing mod
We confine attention to modes that are periodic, and we begin
presenting the result of the classical buckling analysis for the fa
ily of modes associated with the critical stress. Then, a clos
form analysis is presented of one-dimension undulations of fin
amplitude at temperatures arbitrarily below the critical stress. N
merical analyses of the herringbone mode and a square che
board mode follow. The film is represented as an elastic thin p
satisfying the nonlinear von Karman plate equations. These eq
tions are accurate for the shallow modes observed. In the ana
cal work, the elastomer substrate is represented by linear, s
strain elasticity theory. This is an accurate representation bec
the strains in the substrate remain small. Moreover, a linear str
displacement characterization of the substrate is justified bec

Fig. 2 Gold film on a substrate which has been patterned with
a circular flat depression of several millimeters in diameter, †1‡.
The herringbone pattern emerges in the center of the spot and
outside the edges of the spot.
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the substrate experiences no pre-stress—buckling is driven by
pre-stress in the film not the substrate. In the numerical analys
the two other modes, nonlinear kinematics holds throughout
system~with linear stress-strain behavior!, but nonlinearity in the
substrate is negligible. It will be seen that the energy associa
with the herringbone mode is distinctly below that of the oth
two modes. The energy minimum of the herringbone pattern
relatively flat in the sense that there is little change in the ene
for a fairly wide range of the parameters characterizing the ge
etry of the pattern, especially the spacing between jogs. The p
ends with speculation on how the mode forms and a discussio
the limitations of approaches based on energy minimization.

The Young’s modulus, Poisson’s ratio and coefficient of therm
expansion of the film are denoted byE, n, anda. The correspond-
ing quantities for the substrate are denoted byEs , ns , andas .
The film thickness ist. The substrate is assumed to be infinite
thick and, thus, it imposes its in-plane strains on the film. Assu
ing the film is deposited on the substrate when both are at t
peratureTD and the temperature of the system is then reduced
DT, and assuming the film is elastic and unbuckled, the comp
sive equi-biaxial pre-stress stress,s0 , in the film is

s115s2252s052@E/~12n!#E
TD2DT

TD

DadT (1)

whereDa5as2a. For the systems under consideration,Da.0
ands0.0.

The von Karman plate equations,@4#, governing the deflection
of the film are

D¹4w2~N11w,111N22w,2212N12w,12!52p (2)

1

Et
¹4F5w,12

2 2w,11w,22. (3)

Here,¹4 is the bi-harmonic operator,D5Et3/@12(12n2)# is the
bending stiffness of the plate,w is its displacement perpendicula
to the plane, (x1 ,x2), p is the stress component acting perpendic
lar to the plate that is exerted by the substrate, ( ),a[]( )/]xa ,
Nab5*sabdx3 is the stress resultant in the plane of the plate a
F is the Airy stress function with (N115F ,22, N225F ,11, N12
52F ,12). Equation~2! is the moment equilibrium equation, an
~3! is the compatibility equation ensuring the existence of in-pla
displacement gradients,ua,b . Tangential components of the trac
tion exerted by the substrate on the plate are ignored. This
standard approximation in the analysis of wrinkling of a thin fil
on compliant substrate,@5#, whose accuracy can be validated by
Transactions of the ASME



Journal of Appl
Fig. 3 An example from †3‡ of a highly organized buckling pattern for a film Õsubstrate system.
As depicted, the film is forced to buckle into a mold with a square pattern, after which the mold
is removed.
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more detailed analysis for one-dimensional modes~see below!.
Middle surface strains are related to displacements byEab

51/2(ua,b1ub,a)11/2w,aw,b ; Nab5@E/(12n2)#((12n)Eab
1nEggdab); andMab5D((12n)w,ab1nw,ggdab) are the con-
stitutive relations withMab as the bending moment tensor.

2 Classical Buckling Based on Linearized Stability
Analysis

The film is imagined to be infinite in extent. The unbuckled fil
has a uniform stress state given byN115N2252s0t, N1250. The
classical buckling analysis, based on linearization of~2! and ~3!
about the pre-buckling state, leads to

D¹4w1s0t¹2w52p (4)

along with ¹4DF50 where F521/2(x1
21x2

2)s0t1DF. The
system of equations admits periodic solutions of the form

w5ŵ cos~k1x1!cos~k2x2!, p5 p̂ cos~k1x1!cos~k2x2!,

DF50 (5)

with ~4! giving (Dk42s0tk2)ŵ52 p̂ wherek5Ak1
21k2

2.
The exact solution for the normal deflection of the surface,d, of

the infinitely deep substrate under the normal loadingp in ~5! with
zero tangential tractions at the surface isd5 d̂ cos(k1x1)cos(k2x2)
where d̂52p̂/(Ēsk) with Ēs5Es /(12ns

2).1 Combining (Dk4

2s0tk
2)ŵ52p̂ andd̂52p̂/(Ēsk) subject toŵ5 d̂ gives the eigen-

value equations0t5Dk21Ēs/2k. The critical buckling stress
s0

C , is the minimum eigenvalue with respect tok, which is at-
tained forkCt5(3Ēs /Ē)1/3 giving

s0
C

Ē
5

1

4 S 3
Ēs

Ē
D 2/3

(6)

with Ē5E/(12n2). This is the result for the one-dimensiona
plane-strain wrinkling stress, which is widely known,@5#. Note,

1The effect of the boundary conditions tangential to the surface of the substra
minor. For example, if the tangential displacements are constrained to be zero

finds d̂52p̂l/Ēsk wherel5(324ns)/@4(12ns)
2#. For ns51/3, l515/16; forns

51/2, l51.
ied Mechanics
l,

however, for an equi-biaxial pre-stress, the critical stress app
not only to the one-dimensional mode withk15kC andk250 but
to any mode whose wave numbers satisfy

Ak1
21k2

2t5kCt5~3Ēs /Ē!1/3. (7)

The compressed film in the equi-biaxial state has multiple mo
associated the critical buckling stress. In what follows, both
one-dimensional mode and the square checkerboard mode
k15k25kC/A2 will be investigated.

3 Nonlinear Analysis of the One-Dimensional Mode
An exact closed-form solution for the nonlinear von Karm

plate coupled to the linearly elastic foundation is possible for
one-dimensional mode with nonzerok1 and k250. The eigen-
value ~i.e., the stress at the onset of buckling! associated with
arbitraryk1 is now denoted bys0

Et5Dk1
21Ēs/2k1 to distinguish

it from the stress in the unbuckled state,s0 . Results will be pre-
sented for variousk1 including the critical case withk15kC and
s0

E5s0
C . The solution is produced for temperatures such t

s0.s0
E .

The normal displacement in the finite amplitude state contin
to be w5ŵ cos(k1x1), and ~3! implies that the resultant stress i
the buckled film,N11, is independent ofx1 . It follows, then, from
~2! that the relationN1152s0

Et remains in effect in the nonlinea
regime. An additional constraint must be imposed to ensure
u1 is consistent with the overall substrate deformation, i
*0

2p/k1Du1dx150 whereDu15u12u1
0 with u1

0 as the displace-
ment in the unbuckled film ats0 . ~Equation~3! ensures the exis-
tence ofdu1 /dx1 ; this condition provides the underdetermine
constant, ensuring the overall film displacement matches tha
the substrate.! This constraint condition can be expressed us
the strain-displacement relation and the stress-strain relation

1

Ēt
~s0t1N11!5

k1

4p E
0

2p/k1S dw

dx1
D 2

dx15
k1

2

4
ŵ2. (8)

Thus, the amplitude of the buckling mode is obtained by comb
ing ~8! with N1152s0

Et:

te is
, one
SEPTEMBER 2004, Vol. 71 Õ 599
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k1t
A~s02s0

E!

Ē
. (9)

In the unbuckled state when the film stress iss0 , the substrate
is unstressed and the energy per unit area in the film/subs
system is

U05
12n

E
s0

2t. (10)

The average energy per unit area in the buckled state ca
expressed as

U5
1

2E
~N11~N112nN22!1N22~N222nN11!!

1
k1

4p E
0

2p/k1

DS d2w

d2x1
D 2

dx11
k1

4p E
0

2p/k1

pwdx1 . (11)

In ~11!, the first contribution is from the uniform resultant in
plane stresses in the film, the second is the bending contribu
from the film, and the third is the elastic energy in the substr
EnforcingDE2250, as measured from the unbuckled state ats0 ,
one readily finds thatN2252(12n)s0t2ns0

Et. Each of the con-
tributions in~11! can be evaluated explicitly. In the same order
in ~11!, the ratios of the energy contributions in the buckled st
to the energy in the unbuckled state are

U

U0
5

11n

2 F S s0
E

s0
D 2

1
~12n!2

~12n2!
G1

~11n!~k1t !4

48 S Ē

s0
D 2S ŵ

t D 2

1
~11n!k1t

8 S Ēs

Ē
D S Ē

s0
D 2S ŵ

t D 2

. (12)

With n and Ēs /Ē specified ands0 /Ē determined from~1!,
U/U0 can be computed from~12! for any k1t becauses0

E/Ē
5(k1t)2/121(Ēs /Ē)/(2k1t) and ŵ/t is given by ~9!. For the
critical mode withk1t[kCt5(3Ēs /Ē)1/3 and s0

E5s0
C given by

~6!, one findsŵ/t5As0 /s0
C21 and

U

U0
5

11n

2 F S s0
C

s0
D 2

1
~12n!2

~12n2!
G1~12n!

s0
C

s0
S 12

s0
C

s0
D .

(13)

Plots of U/U0 as a function ofs0 /s0
C are given in Fig. 4 for

n51/3, ns50.48, andĒs /Ē54100, representative of a gold film
on a PDMS substrate. Results for the normalized energy are
sented for five values of the wavelength ratio,L/LC5kC/k1 ,
whereL52p/k1 is the wavelength andLC[2p/kC is the wave-
length of the critical mode. The wavelength predicted for the g
film/PDMS substrate system is 3mm which is significantly below
the observed wavelength of roughly 20 to 30mm seen in Figs. 1
and 2. The discrepancy, discussed in@1,2#, is believed to be due to
a layer of PDMS just below the film whose Young’s modulus
much higher than the bulk elastomer due the high film deposi
temperature. In effect, it is argued that there is a two-layer fi
whose thickness is substantially greater than the gold film. O
possibilities for the wavelength discrepancy include the possib
that the modulus used for PDMS in the range of very small stra
applicable to this problem may not be correct. The experime
agreement with the theoretical wavelength prediction is consi
ably better in@3#.

The results of Fig. 4 forU/U0 for the one-dimensional mod
show that the lowest energy state is associated with the cri
mode (L/LC51) even at finite amplitude buckling deflection
The lowest energy state at values ofs0 /s0

C just above unity must
be associated with the critical mode, but, in general, there is n
priori reason why lowest energy configuration should remain
600 Õ Vol. 71, SEPTEMBER 2004
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sociated with the critical mode. Thus, the results of Fig. 4 emp
size the strong preference for the wavelength associated with
critical wavelength LC[2p/kC when the mode is one
dimensional. The limit of the energy ratio ass0 /s0

C becomes
large isU/U05(12n)/2. In this limit the in-plane compressive
stress perpendicular to the buckles is completely relieved but
compressive stress parallel to the buckles is changed only by
Poisson effect.

4 Numerical Analysis of the Checkerboard and Her-
ringbone Modes

An exact analytic solution such as that given for the on
dimensional mode cannot be obtained for either the checkerb
or the herringbone mode. The finite element code, ABAQUS,
been used to obtain a three-dimensional analysis of the peri
cell of these two modes. Within the cell, the plate is represen
by 1000 three-dimensional eight-node, quadratic thin shell e
ments ~with five degrees-of-freedom at each node and with
duced integration! that account for finite rotations of the middl
surface. The stresses and strains within the plate are linearly
lated. The substrate is meshed with 20-node quadratic block
ments with reduced integration. The constitutive relation of
substrate is also taken to be linear isotropic elasticity, but
geometry is updated. As mentioned earlier, nonlinear stra
displacement behavior of the substrate has essentially no influ
on the results of interest. The substrate is taken to be very d
~depthd! compared to mode wavelength, and the boundary c
ditions along its bottom surface are zero normal displacement
zero tangential tractions. The film is assigned a temperat
independent thermal expansion mismatch,Da, and a temperature
dropDT is imposed starting from the unstressed state. The bia
compressive stress in the unbuckled film is therefores0
5EDaDT/(12n) if the substrate is infinitely deep. For eac
mode, a unit periodic cell is identified and meshed with period
ity conditions imposed on the edges of cell, both for the film a
the underlying substrate.

4.1 The Square Checkerboard Mode. Consider a square
checkerboard mode such that the wavelengthL in the x1 and

Fig. 4 Ratio of average elastic energy per unit area in the film Õ
substrate system in the buckled state to that in the unbuckled
state, UÕU0 , as a function of s0 Õs0

C for the one-dimensional
mode. Results are shown for several wavelengths. Note that
the wavelength that is critical at the onset of buckling „k 1

Äk 1
C
… produces the minimum energy in the buckled state even

when s0 is well above s0
C .
Transactions of the ASME



a

v

t
n
o
a

h

l

ell
e

ill
for

-

ed

si-
gs.
aries
er.
y of
x2-directions is set by the critical condition in~7!, i.e., 2p/k1

52p/k25L5A2LC where as defined beforeLC[2p/kC. The
unit cell in this case is a rectangular parallelepiped of dimens
L3L3d. A very small initial imperfection is prescribed such th
the plate in the unstressed system atDT50 has a slight middle
surface deflection,w5ŵI cos(k1x1)cos(k2x2), where ŵI /t50.02.
Periodicity conditions are applied to the cell by enforcing all fi
nodal degrees-of-freedom to be the same on the two edges o
cell parallel to thex1-coordinate, and similarly for thex2-axis. In
addition, at one of the corners of the cell the conditions]w/]x1
50 and]w/]x250 are enforced such that the mode crests a
valleys align with the cell sides.

A square checkerboard mode is indeed determined with nor
deflection that is roughly of the formw5ŵ cos(k1x1)cos(k2x2).
The computed relation between the mode amplitude,ŵ/t, defined
as one half the difference between the maximum and minim
deflections, ands0 /s0

C is plotted in Fig. 5. Included in this figure
are the corresponding results for the one-dimensional mode
the herringbone mode, which is obtained in the next subsec
The results for the computed average strain energy per area i
film/substrate system are presented in Fig. 6 in normalized f
as U/U0 versus s0 /s0

C . The results for the one-dimension
mode withk15kC (k250) are also plotted, as is the correspon
ing result for the critical herringbone mode obtained next. T
energy per area of the critical checkerboard mode lies betw
that for the one-dimensional mode and the herringbone mode

4.2 The Herringbone Mode. The unit top surface of the
periodic cell for the herringbone mode is shown in Fig. 7. T
parallelepiped is characterized by its width,a, breadth,L, and
inclination angle,a. Periodicity conditions are applied to the to
and bottom edges of the cell, and symmetry is imposed on the
and right edges. A small initial deflection (ŵI /t50.02) satisfying
these edge conditions is introduced to initiate the mode.

Contours of the normal deflection of the filmw within the cell
are displayed in Fig. 8 for three values ofL/LC, at s0 /s0

C526
~Figs. 8~a!, 8~b!! or s0 /s0

C54 ~Fig. 8~c!! with a/L52 and
a545°. It will be seen below that the minimum energy config
ration hasL/LC>1, and for this value it can be seen that t
deflection shape displays the features of the herringbone m
seen in Figs. 1 and 2. The mode has a curving ridge running a
the center of the cell that aligns itself to merge smoothly at the

Fig. 5 Buckling amplitude of the film, ŵ Õt , as a function of
s0 Õs0

C for the three modes considered. The wavelengths „and
inclination in the case of the herringbone mode … correspond to
the critical at the onset of buckling.
Journal of Applied Mechanics
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with the ridge in the next cell. The excess breadth of the c
havingL/LC52.4 results in two ridges in the interior sector of th
cell. The shape of the mode with narrow breadth,L/LC50.55, is
similar to that of the experimental herringbone pattern, but it w
be seen that the energy for the narrow cell is well above that
L/LC51.

The dependence ofU/U0 on the parameters of the cell geom
etry (L/LC,a/L,a) is presented in Fig. 9. Figure 9~a!, displays the
clear trend whereby minimum energy is associated withL/LC

>1. The energy of modes withL/LC51.6 andL/LC50.7 is dis-
tinctly above the minimum. In Fig. 9~b! it is seen that the energy
in the buckled state is surprisingly insensitive to the normaliz
length of the cell,a/L. Only for very short cells,a/L50.5, is the
energy noticeably above the minimum. Evidence for this insen
tivity is reflected in the experimental herringbone patterns in Fi
1 and 2, where it can be seen that the distance between jogs v
by at least a factor of two from one section of the film to anoth
Similarly, there is not a very strong dependence of the energ
the buckled system on the inclination of the cell,a, although the

Fig. 6 Ratio of average elastic energy per unit area in the film Õ
substrate system in the buckled state to that in the unbuckled
state, UÕU0 , as a function of s0 Õs0

C for the three modes con-
sidered. The wavelengths „and inclination in the case of the
herringbone mode … correspond to the critical at the onset of
buckling. At s0 Õs0

C well above unity, the herringbone mode
lowers the energy more than the other two modes.

Fig. 7 Periodic cell of the herringbone mode
SEPTEMBER 2004, Vol. 71 Õ 601



Fig. 8 Contour plots of the normal deflection of the film in the
herringbone mode at s0 Õs0

CÄ26 „a,b… and s0 Õs0
CÄ4 „c… for

several values of the breadth of the periodic cell, all with aÕL
Ä2 and aÄ45 deg
602 Õ Vol. 71, SEPTEMBER 2004
Fig. 9 Variation of UÕU0 as a function of s0 Õs0
C for the herring-

bone mode. „a… Dependence on L ÕL C with aÕLÄ2 and aÄ45
deg. „b… Dependence on aÕL with L ÕL CÄ1 and aÄ45 deg. „c…
Dependence on a with L ÕL CÄ1 and aÕLÄ2.
Transactions of the ASME
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minimum is attained fora>45 deg~Fig. 9~c!!. A feature seen in
each of the plots in Fig. 9, as well as for the one-dimensio
mode in Fig. 4, is the invariance of the ordering of the relat
energy trends with respect to changes ins0 /s0

C . Put another way,
the parameters governing the geometry of the minimum ene
mode do not change in a significant way ass0 /s0

C increases. In
both Figs. 5 and 9 the results for the herringbone mode are
plotted for values ofs0 /s0

C sufficiently large compared to unity
The herringbone mode is not a bifurcation mode, and it only
comes a preferred mode in the sense of having minimum energ
s0 /s0

C somewhat above unity. Ats0 /s0
C'1, the amplitude and

normalized energy of the herringbone mode is dominated by
initial imperfection.

5 Conclusions
Among the three buckling modes considered, the herringb

mode produces the lowest average elastic energy of the
substrate system for films stressed well above critical, as see
Fig. 6. The herringbone mode is able to relax the biaxial pre-st
stress,s0 , in the film in all directions while inducing relatively
little concurrent stretch energy. The stretch energy associated
buckling that does occur is localized in the jog regions. By co
trast, the one-dimensional mode requires essentially no str
energy ~it continues to exhibit zero Gaussian curvature!, but it
relaxes the biaxial pre-stress only in one direction. The chec
board mode relaxes the pre-stress in all directions, but it deve
non-zero Gaussian curvature and induces much more concu
stretch energy than the herringbone mode. The minimum en
state of the herringbone mode has undulation width,L, which is
very close to that of the one-dimensional mode,LC

52pt(Ē/3Ēs)
1/3, and jog anglea>45 deg. The minimum energy

state is weakly dependent on the spacing between jogs, w
stretch is localized. The experimental herringbone patterns
Figs. 1 and 2 show a spread in the jog spacing, and they
displays jog angles in reasonable agreement with the theore
minimum energy state.

A question not addressed in this paper is how the herringb
mode emerges ass0 increases above critical. For a small range
s0 above critical, combinations of the classical modes of Sec
2 necessarily have the lowest system energy; but ass0 increases,
Journal of Applied Mechanics
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the herringbone mode emerges as the minimum energy m
Does the herringbone mode spread across the film starting f
some region of imperfection or from an edge? Or does it som
how emerge spontaneously over the entire film as a transi
from a combination of classical modes? Bowden et al.@1,2# were
not able to observe the evolution of the buckling patterns as t
specimens were cooled from the film deposition temperature,
thus at this time it is not possible to give an experimental desc
tion of how the herringbone mode evolves.

A word of caution is in order about predicting mode patter
based on minimum energy states. The means by which defor
tions evolve to the minimum energy state is by no means obvio
Mechanics is replete with problems whose minimum energy st
are not easily assessable. The pattern formed by forcing a film
buckle into a mold in Fig. 3 is just such an example. Once
finite amplitude mode has formed and the mold removed, it
pears that the mode is locked in place and does not und
changes towards a lower energy state unless further disturbed
our knowledge, the nonlinear mechanics governing such beha
in buckled films has not been studied. In the case of the minim
energy herringbone mode, experimental observation confirms
existence, even though it has not been established how it evo
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A Coupled Zig-Zag Third-Order
Theory for Piezoelectric Hybrid
Cross-Ply Plates
A new zig-zag coupled theory is developed for hybrid cross-ply plates with some p
electric layers using third-order zig-zag approximation for the inplane displacements
sublayer wise piecewise linear approximation for the electric potential. The theory
siders all electric field components and can model open and closed-circuit boun
conditions. The deflection field accounts for the transverse normal strain due to
piezoelectric d33 coefficient. The displacement field is expressed in terms of five disp
ment variables (which are the same as in FSDT) and electric potential variable
satisfying exactly the conditions of zero shear stresses at the top and bottom, and
continuity at layer interfaces. The governing equations are derived from the princip
virtual work. Comparison of the Navier solutions for the simply-supported plates with
analytical three-dimensional piezoelasticity solutions establishes that the present ef
zig-zag theory is quite accurate for moderately thick plates.@DOI: 10.1115/1.1767170#
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1 Introduction
Smart composite laminates having piezoelectric sensors an

tuators to achieve desired control, form part of a new genera
of adaptive structures. The sensors and actuators can be in
form of distributed layers or patches, which are surface moun
or embedded. There have been many reviews~e.g., Chopra@1#! on
the state of art of smart structures and integrated systems. Se
reviews,@2–5#, of three-dimensional continuum-based approac
and two-dimensional theories for laminated hybrid plates, h
been presented. Analytical three-dimensional solutions are a
able only for some specific shapes and boundary condition
plates,@6–8#. The three-dimensional finite element analysis,@9#,
of laminated plates results in large problem size which may
come computationally costly for practical dynamics and con
problems. Hence, efficient accurate electromechanical cou
two-dimensional plate models are required without too much l
of accuracy compared to the three-dimensional models. S
works have used various elastic laminated plate models,@10–13#,
with effective forces and moments due to induced strain of ac
tors. Classical laminate theory~CLT!, @14–17#, first-order shear
deformation theory~FSDT!, @18–19#, and the refined third-orde
theory ~TOT!, @20#, have been applied without electromechanic
coupling to hybrid plates and shells. Coupled CLT, FSDT,@21–
26#, and TOT,@27,28#, solutions for hybrid plates including th
charge equation of electrostatics and electromechanical coup
have been reported. These equivalent single layer theories are
computationally involved and are straight forward to impleme
But these theories do not account for the zig-zag distribution
the inplane displacements and do not satisfy the interlaminar s
stress continuity conditions, yielding inaccurate results for m
erately thick laminates and even thinner laminates with str
inhomogeneities across the thickness. A discrete layer the
~DLT! with layerwise approximation of displacements was dev
oped by Robbins and Reddy@29# for elastic laminated beams wit
induced actuation strain in the piezoelectric layers. Heyliger e

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, February
2003; final revision, October 17, 2003. Associate Editor: R. C. Benson. Discus
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jo
of Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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@30# have presented coupled DLT, using layerwise approximat
for displacement and potential, which yields accurate results
thin and thick plates. But it is computationally expensive for pra
tical dynamics and control problems since the number of displa
ment unknowns depends on the number of sublayers. Carrera@31#
has presented a coupled DLT for plates with layerwise linear z
zag approximation across the thickness for inplane displacem
and quadratic one for transverse shear stresses and potentia
the axial electric field is neglected and the constitutive equa
for shear stresses is only approximately satisfied. Bisegna e
@32# have presented a layerwise coupled first-order shear defo
tion model for each layer of piezoelectric sandwich plate w
linear variation of electric potential along the thickness of t
actuator. Kim et al.@33# have developed a coupled DLT for hybri
shell laminates with first order global variation and layerwise h
perbolic variation across the thickness for the inplane displa
ments and across-the-thickness uniform variation for the tra
verse displacement, which satisfy the shear traction f
conditions at the top and bottom surfaces and transverse s
stress continuity conditions at the layer interfaces for zero inpl
electric fields. Except for the coupled DLT,@30#, in which the
transverse displacement is also taken as piecewise linear, no
two-dimensional theory discussed above considers the piezo
tric transverse normal strain induced due to piezoelectric
throughd33 coefficient, which has been observed to have cons
erable effect on the response, especially for electrical load,@4#.
The efficient zig-zag third order theory of laminated elastic plat
@34,35#, has been extended by Kapuria et al.@36–38# for static
and dynamic analysis of hybrid composite and sandwich bea
In this coupled efficient DLT, a third-order zig-zag approximatio
across the thickness for the axial displacement is used wit
sublayerwise piecewise linear approximation for the potentialf.
The conditions of zero transverse shear stresstzx at the top and
bottom surfaces and the conditions of continuity oftzx at layer
interfaces are enforced to formulate the theory in terms of th
primary displacement variables, which are the same as in FS
The model considers both the axial and transverse electric fi
and includes the transverse piezoelectric strain fromd33 coeffi-
cient. Very accurate results have been reported by them for m
erately thick beams using this theory.

This work presents an efficient coupled third-order zig-z
theory for cross-ply hybrid plates using combination of third-ord
variation across the thickness and a layerwise linear zig-zag
proximation across the thickness for the inplane displaceme
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Fig. 1 Geometry of a hybrid plate
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The electric potentialf is sublayerwise approximated as piec
wise linear. The transverse displacement is approximated to
into account the piezoelectric strain in the thickness direction
to piezoelectric coefficientd33. The shear traction free condition
at the top and bottom of the plate and shear continuity conditi
at the layer interfaces are exactly satisfied to formulate the the
in terms of only five primary displacement variables and the
tential variables. These primary displacement variables are
same as for the FSDT. The coupled stress and charge equilib
equations, and boundary conditions are derived using the princ
of virtual work. The theory includes the effect of in-plane elect
field components which may be applied by actuation or indu
by the piezoelectric effect. The theory can model open and clo
circuit boundary conditions. This theory is assessed by comp
son of an analytical Navier solution for simply-supported rect
gular plate, with the analytical three-dimensional piezoela
solution and coupled FSDT solution. For this purpose highly
homogeneous layups of a test case of six-layer hybrid plate, a
five-layer hybrid plate with composite elastic substrate are con
ered. The accuracy of the theory is checked for mechanical
electrical loads for different electrical conditions for thin and thi
plates. The theory is computationally as efficient as the equiva
smeared plate coupled FSDT and yet yields quite accu
through-the-thickness variations of displacements, stresses
potential for moderately thick plates.

2 Approximation of Potential and Displacement Fields
Consider a hybrid cross-ply plate~Fig. 1! made ofL orthotropic

plys of total thicknessh with the midplane chosen as thexy-plane
z50. The plate is loaded transversely on the bottom atz5z05
2h/2 and on the top atz5zL5h/2. Some of the layers can b
orthorhombic piezoelectric materials of class mm2 symmetry, with
poling alongz. Thekth ply from the bottom has bottom surface
z5zk21 . The reference planez50 either passes through or is th
bottom surface of thek0th layer. Letux , uy ; w be the in-plane
and transverse displacements. Letf be the electric potential and
Ex52f ,x , Ey52f ,y , Ez52f ,z , be the electric field. Denot
ing differentiation by a subscript comma, the strain-displacem
relations are

«x5ux,x , «y5uy,y , «z5w,z , gxy5ux,y1uy,x ,

gyz5uy,z1w,y , gzx5ux,z1w,x . (1)
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Unlike most other studies,Ex , Ey are not considered as zero
since these may be applied by actuation or may be induced by
piezoelectric coupling. The linear constitutive equations for
stressess, t and electric displacementsDx , Dy , Dz are ex-
pressed, using the assumption ofsz.0, as

s5Q̄«2ē3
TEz , t5Q̂g2êE,

D5êTg1ĥE, Dz5ē3«1h̄33Ez , (2)

where, for cross-ply laminates,

s5F sx

sy

txy

G , t5Ftzx

tyz
G , D5FDx

Dy
G , «5F «x

«y

gxy

G ,

g5Fgzx

gyz
G , E5FEx

Ey
G ,

(3)

Q̄5F Q̄11 Q̄12 0

Q̄12 Q̄22 0

0 0 Q̄66

G , Q̂5F Q̄55 0

0 Q̄44
G ,

ê5F ē15 0

0 ē24
G , ĥ5F h̄11 0

0 h̄22
G , ē35@ ē31 ē32 0#,

whereQ̄i j , ēi j , h̄ i j are the reduced elastic stiffnesses, piezoel
tric stress constants and electric permittivities.

The potentialf is approximated as piecewise linear across
thickness, in terms of its values atnf points at zf

j , j
51,2, . . . ,nf :

f~x,y,z!5Cf
j ~z!f j~x,y! (4)

wheref j (x,y)5f(x,y,zf
j ). Cf

j (z) are linear interpolation func-
tions and summation convention is used for indicesj, j 8. A piezo-
electric layer is divided into sublayers for discretisation off
whose number is determined by the required accuracy.

Three-dimensional solutions,@6#, reveal that for moderately
thick plates under electric potential load,w has significant varia-
tion across the thickness due to much greater electrical contr
tion to «z compared to that ofsx , sy . Hence, hereinw is ap-
SEPTEMBER 2004, Vol. 71 Õ 605



Fig. 2 The distributions of ū , w̄ , s̄x , t̄zx for test plate „a… under pressure load
r
d

so-
proximated by integrating the constitutive equation for«z by
neglecting elastic compliancesS13, S23, i.e., «z5w,z5S13s1
1S23s21d33Ez.2d33f ,z⇒

w~x,y,z!5w0~x,y!2C̄f
j ~z!f j~x,y! (5)

whereC̄f
j (z)5*0

zd33Cf,z
j (z)dz is a piecewise linear function. Fo

the kth layer,ux , uy are approximated as a combination of thir
order variation inz across the thickness and layerwise piecew
linear variation:

u~x,y,z!5uk~x,y!2zw0d
~x,y!1zck~x,y!1z2j~x,y!

1z3h~x,y!, (6)

where

u5Fux

uy
G , w0d

5Fw0,x

w0,y
G , uk5Fukx

uky

G , ck5Fckx

cky

G ,

j5Fjx

jy
G , h5Fhx

hy
G , (7)

uk is the translation andck is related to the shear rotation of th
kth layer.

Substitutingux , uy , w from Eqs.~6! and ~5!, andf from Eq.
~4! into Eqs.~1! and using Eq.~2! yields t as

t5Q̂k@ck12zj13z2h#1@ êkCf
j ~z!2Q̂kC̄f

j ~z!#fd
j , (8)

where fd
j 5@f ,x

j f ,y
j #T. For the k0th layer, denoteu0(x,y)

5uk0
(x,y)5u(x,y,0), c0(x,y)5ck0

(x,y). The functions uk ,
ck , j, h are expressed in terms ofu0 and c0 using the (L21)
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-
ise

e

conditions each for the continuity oft andu at the layer interfaces
and the two-shear traction-free conditionst50 at z5z0 , zL . The
continuity condition oft at interfacez5zi 21 between layersi and
i 21 is expressed in the following recursive form so that the
lution of c i , j, h is easily tractable:

Q̂i@c i12zij13zi
2h#1@ êiCf

j ~zi !2Q̂iC̄f
j ~zi !#fd

j

5Q̂i 21@c i 2112zi 21j13zi 21
2 h#1@ êi 21Cf

j ~zi 21!

2Q̂i 21C̄f
j ~zi 21!#fd

j 12Q̂i~zi2zi 21!j13Q̂i~zi
22zi 21

2 !h

1@ êi$Cf
j ~zi !2Cf

j ~zi 21!%2Q̂i$C̄f
j ~zi !2C̄f

j ~zi 21!%#fd
j .

(9)

Using Eq.~8!, the shear traction free conditiont(x,y,z0)50, can
also be written in the above pattern as

Q̂1@c112z1j13z1
2h#1@ ê1Cf

j ~z1!2Q̂1C̄f
j ~z1!#fd

j

52Q̂1~z12z0!j13Q̂1~z1
22z0

2!h1@ ê1$Cf
j ~z1!2Cf

j ~z0!%

2Q̂1$C̄f
j ~z1!2C̄f

j ~z0!%#fd
j . (10)

Adding Eq.~10! and Eqs.~9! for i 52,3, . . . ,k yields

Q̂k~ck12zkj13zk
2h!1@ êkCf

j ~zk!2Q̂kC̄f
j ~zk!#fd

j

52C1
kj16C2

kh1C3 j
k fd

j , k52, . . . ,L, (11)
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Fig. 3 The distributions of ṽ , w̃ , s̃x , t̃zx for test plate „a… under potential load
where C1
k5( i 51

k Q̂i(zi2zi 21), C3 j
k 5( i 51

k @ êi$Cf
j (zi)

2Cf
j (zi 21)%2Q̂i$C̄f

j (zi)2C̄f
j (zi 21)%#, C2

k5( i 51
k Q̂i(zi

2

2zi 21
2 )/2. Using Eq.~8!, the conditiontzx(x,zL)50, can be writ-

ten as

Q̂L@cL12zLj13zL
2h#1@ êLCf

j ~zL!2Q̂LC̄f
j ~zL!#fd

j 50.
(12)

Eliminating cL from Eq. ~12! and Eq.~11! for k5L, and rewrit-
ing Eq. ~10! yields

2C1
Lj16C2

Lh52C3 j
L fd

j , 2z0j13z0
2h5C5

j fd
j 2c1 ,

(13)

whereC5
j 5C̄f

j (z0)I 22(Q̂1)21ê1Cf
j (z0) andI 2 is a 232 identity

matrix. The solution of Eq.~13! for j, h is

j5R3c11R5
j fd

j , h5R4c11R6
j fd

j , (14)

where D54z0
2C1

L28z0C2
L , R354D21C2

L , R4524D21C1
L/3,

R5
j 52D21(2z0

2C3 j
L 14C2

LC5
j ), R6

j 5D21(4z0C3 j
L 14C1

LC5
j )/3.

Substitutingj, h from Eq. ~14! into Eq. ~11! yields

ck5R2
kc11Rj 1

k fd
j (15)

where R2
k5a1

kR31a2
kR4 , Rj 1

k 5a1
kR5

j 1a2
kR6

j 1(Q̂k)21@C3 j
k

2êkCf
j (zk)] 1C̄f

j (zk)I 2 , a1
k52@(Q̂k)21C1

k2zkI 2#, a2
k

53@2(Q̂k)21C2
k2zk

2I 2#. Using Eq.~6!, continuity of u between
layers i and i 21⇒ui1zi 21c i5ui 211zi 21c i 21 and using Eq.
~15!:
Journal of Applied Mechanics
ui5ui 211zi 21@~R2
i 212R2

i !c11~Rj 1
i 21

2Rj 1
i !fd

j #, i 52, . . . ,L. (16)

Adding Eqs.~16! for i 52 to k yields uk in terms ofu1 :

uk5u11R̄2
kc11R̄j 1

k fd
j (17)

where R̄2
k5( i 52

k zi 21(R2
i 212R2

i ), R̄j 1
k 5( i 52

k zi 21(Rj 1
i 212Rj 1

i ).
Equations~17! and ~15! yield for thek0th layer:

u0~x,y!5uk0
~x,y!5u11R̄2

k0c11R̄j 1
k0fd

j ,

c0~x,y!5ck0
~x,y!5R2

k0c11Rj 1
k0fd

j . (18)

Substitutingj, h from Eq.~14!, uk from Eq.~17! with u1 from Eq.
~18! andck from Eq. ~15! in Eq. ~6! yields

u~x,y,z!5u0~x,y!2zw0d
~x,y!1Rk~z!c1~x,y!

1Rkf
j ~z!fd

j ~x,y!, (19)

where Rk(z)5R1
k1zR2

k1z2R31z3R4 , Rkf
j (z)5R1

k j1zRj 1
k

1z2R5
j 1z3R6

j , with R1
k5R̄2

k2R̄2
k0, R1

k j5R̄j 1
k 2R̄j 1

k0. Substituting
c1 in terms ofc0 from Eq. ~18! into Eq. ~19! yields the expres-
sion of u as

u~x,y,z!5u0~x,y!2zw0d
~x,y!1Rk~z!c0~x,y!

1Rk j~z!fd
j ~x,y!, (20)

where
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Fig. 4 The distributions of ū , w̄ , s̄x , t̄zx for hybrid composite plate „b… under pressure load
t
h

o

e

nd
Rk~z!5Rk~z!~R2
k0!215R̂1

k1zR̂2
k1z2R̂31z3R̂4 ,

Rk j~z!5Rkf
j ~z!2Rk~z!Rj 1

k05R̂1
k j1zR̂j 1

k 1z2R̂5
j 1z3R̂6

j

~R̂1
k ,R̂2

k ,R̂3 ,R̂4!5~R1
k ,R2

k ,R3 ,R4!~R2
k0!21,

R̂1
k j5R1

k j2R̂1
kRj 1

k0, R̂j 1
k 5Rj 1

k 2R̂2
kRj 1

k0,

R̂5
j 5R5

j 2R̂3Rj 1
k0, R̂6

j 5R6
j 2R̂4Rj 1

k0. (21)

Rk, Rk j are diagonal matrices. Thusf, w, u are related to the
primary variablesu0 , w0 , c0 , f j by Eqs.~4!, ~5!, ~20!.

3 Field Equations and Boundary Conditions
Let A be the surface area of the plate and at the interfacz

5zf
j i , f j i be prescribed withqj i

being the extraneous surfac
charge density on it. The total number of such prescribed po
tials is n̄f . Let pz

1, pz
2 be the forces per unit area applied on t

bottom and top surfaces of the plate in directionz. The principle
of virtual work, @33#, can be expressed, using the notati

^ . . . &5(k51
L *

z
k21
1

zk
2

( . . . )dz, as

E
A
@^sxd«x1syd«y1txydgxy1tyzdgyz1tzxdgzx1Dxdf ,x

1Dydf ,y1Dzdf ,z!2pz
1dw~x,y,z0!2pz

2dw~x,y,zL!

1Dz~x,y,z0!df12Dz~x,y,zL!dfnf2qj i
df j i#dA
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e
e
en-
e

n

2E
GL

^sndun1tnsdus1tnzdw1Dndf&ds

50 (22)

;du0 , dw0 , dc0 , df j . GL is the boundary curve of the midplan
of the plate with normaln and tangents. This variational equation
is expressed in terms ofdu0 , dw0 , dc0 , df j and stress and
electric displacement resultants to yield field equations a
boundary conditions. The resultantsN5@Nx Ny Nxy#

T, M
5@Mx M y Mxy#

T, P5@Px Pyx Pxy Py#
T, S5@Sx

j Syx
j Sxy

j Sy
j #T, Q

5@Qx Qy#
T, Q̄j5@Q̄x

j Q̄y
j #T, V5@Vx Vy#

T, Vf
j 5@Vfx

j Vfy

j #T, H j

5@Hx
j Hy

j #T, Gj are defined by

F15@NT MT PT Sj T
#T5@^ f 3

Ts&#,

F25@Qx Qy Q̄x
j Q̄y

j #T5@^ f 4
Tt&# (23a)

V5^t&, Vf
j 5^C̄f

j t&, H j5^Cf
j ~z!D&, Gj5^Cf,z

j ~z!Dz&.

(23b)

where f 35@ I 3 zI3 Fk Fk j#, f 45@R,z
k R,z

k j2C̄f
j (z)I 2#, I 3 is a 333

identity matrix and

Fk5F R11
k 0 0 0

0 0 0 R22
k

0 R11
k R22

k 0
G ,
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Fig. 5 The distributions of ũ , w̃ , s̃x , t̃zx for hybrid composite plate „b… under potential load
Rk j 0 0 0 du Rk Rk dc Rk j Rk j
Fk j5F 11

0 0 0 R22
k j

0 R11
k j R22

k j 0
G . (24)

It can be shown that elements ofRk, Rk j, N, M, P, Sj transform as
second-order tensors and elements ofV, Vf

j , Q, Q̄j , H j transform
as vectors for the coplanar axesx, y andn, s.

Using expressions off, w, u from Eqs.~4!, ~5!, ~20! and using
Eq. ~23!, the area integral in Eq.~22! becomes

E
A
@d«̄1

TF11d«̄2
TF21dfd

j T
H j1df jGj2F3dw02F6

j df j #dA

(25)

where

«̄15@u0x ,x u0y ,y u0x ,y1u0y ,x 2w0,xx
2w0,yy

22w0,xy
c0x ,x c0x ,y c0y ,x c0y ,y f ,xx

j f ,xy
j f ,yx

j f ,yy
j #T

«̄25@c0x
c0y

f ,x
j f ,y

j #T,

F35pz
11pz

2,

F6
j 52pz

1C̄f
j ~z0!2pz

2C̄f
j ~zL!1Dz~x,y,zL!d jnf

2Dz~x,y,z0!d j 11qj i
d j j i

. (26)

d i j is Kronecker’s delta. Using Eq.~20!, the relation for compo-
nentsn, s can be expressed as
Journal of Applied Mechanics
Fdun

dus
G5F 0n

du0s

G2zFdw0,n

dw0,s
G1F nn ns

Rsn
k Rss

k GF 0n

dc0s

G1F nn ns

Rsn
k j Rss

k j G
3Fdf ,n

j

df ,s
j G . (27)

Using expressions off, w, u from Eqs.~4!, ~5!, ~20! and resultant
components for axesn, s defined analogous to Eq.~23!, the line
integral in Eq.~22! can be expressed using Eq.~27! as

Fig. 6 Closed-circuit and open-circuit potential across the pi-
ezoelectric layer of plate „b… under pressure load
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Table 1 Three-dimensional results and percentage error for present theory „Pres. … and FSDT for nÄ1

610 Õ
-

s

u

o

E
GL

@Nndu0n
1Nnsdu0s

2Mndw0,n1~Vn1Mns,s!dw01Pndc0n

1Pnsdc0s
1Sn

j df ,n
j 1~Hn

j 2Vfn

j 2Sns,s
j !df j #ds

1(
i

@DMns~si !dw0~si !2DSns
j ~si !df j~si !#50, (28)

where the lateral surface has corners ats5si .
The area integral in Eq.~25! is expressed in terms ofdu0x

,

du0y
, dw0 , dc0x

, dc0y
, df j , by using Green’s theorem if re

quired, and the terms involvingdu0x
, du0y

, dc0x
, dc0y

, dw0,x ,

dw0,y , df ,x
j , df ,y

j , in the integrand ofGL are expressed in term
of componentsn, s. The details are omitted. Thus Eq.~22! yields
coupled field equations consisting of five equations of equilibri
andnf equations for electric potentials:

2Nx,x2Nxy,y50, 2Nxy,x2Ny,y50,

2Mx,xx22Mxy,xy2M y,yy2F350,

2Px,x2Pyx,y1Qx50, 2Pxy,x2Py,y1Qy50,

2Q̄x,x
j 2Q̄y,y

j 1Sx,xx
j 1Sxy,xy

j 1Syx,xy
j 1Sy,yy

j 2Hx,x
j 2Hy,y

j 1Gj

2F6
j 50, (29)

with j 51,2, . . . ,nf . The boundary conditions onGL are the pre-
scribed values of one of the factors of each of the following pr
ucts:
Vol. 71, SEPTEMBER 2004
m

d-

u0n
Nn , u0s

Nns , w0~Vn1Mns,s!,

w0,nMn , c0n
Pn , c0s

Pns , f ,n
j Sn

j ,

f j@H̄ j2V̄fn

j 2S̄ns,s
j 2$Q̄x

j nx1Q̄y
j ny1Hx

j nx1Hy
j ny

2~Sx,x
j 1Syx,y

j !nx2~Sy,y
j 1Sxy,x

j !ny2Sns,s
j %# (30)

and at cornerssi :

w0~si !DMns~si !, f j~si !DSns
j ~si !.

The relations between the resultantsF1 , F2 , H j , Gj with «̄1 ,
«̄2 , fd

j , f j are obtained by substituting the expressions ofs, t,
D, Dz into Eqs.~23!:

F15A«̄11b j 8f j 8, F25Ā«̄21b̄ j 8fd
j 8 ,

H j5b̄ j T
«̄22Ēj j 8fd

j 8 , Gj5b j T
«̄12Ej j 8f j 8 (31)

where
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Table 2 Three-dimensional results and percentage error for present theory and FSDT
for plate „b… for nÄ3
A5^ f 3
T~z!Q̄f 3~z!&, Ā5^ f 4

T~z!Q̂f 4~z!&, b j 85^ f 3
T~z!ē3

TCf,z
j 8 ~z!&,

b̄ j 85^ f 4
T~z!êCf

j 8~z!&, Ej j 85^h̄33Cf,z
j ~z!Cf,z

j 8 ~z!&, Ēj j 85^ĥCf
j ~z!Cf

j 8~z!&, (32)

A53
A11 A12 ¯ A1,10 A1,11

j 8 A1,12
j 8 A1,13

j 8 A1,14
j 8

A21 A22 ¯ A2,10 A2,11
j 8 A2,12

j 8 A2,13
j 8 A2,14

j 8

] ] ] ] ] ] ] ]

A10,1 A10,2 ¯ A10,10 A10,11
j 8 A10,12

j 8 A10,13
j 8 A10,14

j 8

A11,1
j A11,2

j
¯ A11,10

j A11,11
j j 8 A11,12

j j 8 A11,13
j j 8 A11,14

j j 8

A12,1
j A12,2

j
¯ A12,10

j A12,11
j j 8 A12,12

j j 8 A12,13
j j 8 A12,14

j j 8

A13,1
j A13,2

j
¯ A13,10

j A13,11
j j 8 A13,12

j j 8 A13,13
j j 8 A13,14

j j 8

A14,1
j A14,2

j
¯ A14,10

j A14,11
j j 8 A14,12

j j 8 A14,13
j j 8 A14,14

j j 8

4 5AT, b j 853
b1

j 8

b2
j 8

]

b10
j 8

b11
j j 8

b12
j j 8

b13
j j 8

b14
j j 8

4 ,

Ā5F Ā11 Ā12 Ā13
j 8 Ā14

j 8

Ā21 Ā22 Ā23
j 8 Ā24

j 8

Ā31
j Ā32

j Ā33
j j 8 Ā34

j j 8

Ā41
j Ā42

j Ā43
j j 8 Ā44

j j 8

G5ĀT, b̄ j 85F b̄11
j 8 b̄12

j 8

b̄21
j 8 b̄22

j 8

b̄31
j j 8 b̄32

j j 8

b̄41
j j 8 b̄42

j j 8

G , Ēj j 85F Ē11
j j 8 Ē12

j j 8

Ē21
j j 8 Ē22

j j 8G . (33)
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Substitution of the expressions of the resultants from Eqs.~31!
into Eqs.~29!, yields following coupled equilibrium equations i
terms of Ū5@u0x

u0y
w0 c0x

c0y
c0x

c0y
f1 f2 . . . fnf#T, taking

into account the zero elements ofA, Ā, b, b̄, Ē for cross-ply
laminates:

LŪ5 P̄ (34)

whereP̄5@P1 P2 P3 P4 P5 P6
1 P6

2 . . . P6
nf#T. L is differential op-

erator matrix withLip5Lpi and

L1152A11~ ! ,xx2A33~ ! ,yy , L1252~A121A33!~ ! ,xy ,

L135A14~ ! ,xxx1~A1512A36!~ ! ,xyy ,

L1452A17~ ! ,xx2A38~ ! ,yy , L1552~A1,101A39!~ ! ,xy ,

L2252A22~ ! ,yy2A33~ ! ,xx ,

L1,51 j 852A1,11
j 8 ~ ! ,xxx2~A3,12

j 8 1A3,13
j 8 1A1,14

j 8 !~ ! ,xyy2b1
j 8~ ! ,x ,

L235~A2412A36!~ ! ,xxy1A25~ ! ,yyy ,

L2452~A271A38!~ ! ,xy ,

L2,51 j 852~A2,11
j 8 1A3,12

j 8 1A3,13
j 8 !~ ! ,xxy2A2,14

j 8 ~ ! ,yyy2b2
j 8~ ! ,y

L2552A39~ ! ,xx2A2,10~ ! ,yy , L3352A44~ ! ,xxxx2~A451A54

14A66!~ ! ,xxyy2A55~ ! ,yyyy,

L345A47~ ! ,xxx1~A5712A68!~ ! ,xyy ,

L355~A4,1012A69!~ ! ,xxy1A5,10~ ! ,yyy ,

L3,51 j 85A4,11
j 8 ~ ! ,xxxx1~A4,14

j 8 12A6,12
j 8 12A6,13

j 8 1A5,11
j 8 !~ ! ,xxyy

1A5,14
j 8 ~ ! ,yyyy1b4

j 8~ ! ,xx1b5
j 8~ ! ,yy ,

L445Ā112A77~ ! ,xx2A88~ ! ,yy , L4552~A7,101A89!~ ! ,xy ,

L4,51 j 852A7,11
j 8 ~ ! ,xxx2~A7,14

j 8 1A8,12
j 8 1A8,13

j 8 !~ ! ,xyy

1~Ā13
j 81b̄11

j 82b7
j 8!~ ! ,x ,

L555Ā222A10,10~ ! ,yy ,

L5,51 j 852~A9,12
j 8 1A9,13

j 8 1A10,11
j 8 !~ ! ,xxy2A10,14

j 8 ~ ! ,yyy1~Ā24
j 8

1b̄22
j 82b10

j 8 !~ ! ,y

L51 j ,51 j 852A11,11
j j 8 ~ ! ,xxxx2~A11,14

j j 8 1A12,12
j j 8 1A12,13

j j 8 1A13,12
j j 8

1A13,13
j j 8 1A14,11

j j 8 !~ ! ,xxyy2A14,14
j j 8 ~ ! ,yyyy1@Ā33

j j 82b11
j j 8

2b11
j 8 j1b̄31

j j 81b̄31
j 8 j2Ē11

j j 8#~ ! ,xx1@Ā44
j j 82b14

j j 82b14
j 8 j

1b̄42
j j 81b̄42

j 8 j2Ē22
j j 8#~ ! ,yy1Ej j 8;

P15P25P45P550, P352F3 , P6
j 52F6

j (35)

wherej, j 851, . . . ,nf .
To assess the theory developed herein, by comparison with

analytical three-dimensional piezoelasticity solution, analyti
Navier solution is obtained for simply-supported rectangu
plates of sidesa, b along the axesx, y for the boundary conditions

at x50,a: Nx ,u0y
,w0 ,Mx ,Px ,C0y

,f j ,Sx
j 50;

at y50,b: Ny ,u0x
,w0 ,M y ,Py ,C0x

,f j ,Sy
j 50; (36)

for j 51, . . . ,nf . The solution is expanded as
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the
al

lar

F w0 f j

u0x
c0x

u0y
c0y

G
5(

n51

`

(
m51

` F @w0 f j #nm sin~npx/a!sin~mpy/b!

@u0x
c0x

#nm cos~npx/a!sin~mpy/b!

@u0y
c0y

#nm sin~npx/a!cos~mpy/b!
G .

Equations~34! yield algebraic equations forn, mth Fourier com-
ponent. These are not listed for brevity.t can be obtained using
Eq. ~2!2 or more accurately by integrating the three-dimensio
equations of equilibrium.

4 Numerical Results and Discussion
The accuracy of present theory is assessed against the anal

three-dimensional piezoelasticity solution,@6#. The three-
dimensional solution is obtained by analytically solving the thre
dimensional piezoelasticity constitutive relations, stra
displacement and electric field-potential relations, and the st
equilibrium and charge equilibrium equations subject to the ex
satisfaction of the boundary and interface continuity conditio
for simply supported plates withuy50, w50, sx50, f50 at x
50, a andux50, w50, sy50, f50 aty50, b. Since the number
of displacement unknowns in the present theory is the same a
FSDT, results are also compared with the coupled FSDT,@25#,
with shear correction factors~SCFs! according to Whitney@39#.
Two inhomogeneous hybrid simply-supported plates~a! and ~b!
consisting of an elastic substrate with a layer of PZT-5A,@40#, of
thickness 0.1h bonded to its top are analyzed. The top and t
bottom of the substrate are grounded. The stacking order is m
tioned from the bottom. The substrate of plate~a! has five plies of
thickness 0.09h/0.225h/0.135h/0.18h/0.27h of materials 1/2/3/3/3
with orientation uk as @0°/0°/0°/90°/0°#. The plies have highly
inhomogeneous stiffness in tension and shear and is a good
case,@41#. The substrate of plate~b! is a graphite-epoxy compos
ite ~material 4,@40#! laminate with 4 layers of equal thicknes
.225h with symmetric layup@0°/90°/90°/0°#. The PZT-5A layer
has poling in1z direction. Plate~a! is a square plate and plate~b!
is a rectangular plate withb/a53. Convergence studies have r
vealed that converged results are obtained for plates~a! and~b! by
dividing the PZT layer into four equal sublayers for discretizi
f. The material properties are:

@(Y1 ,Y2 ,Y3 ,G12,G23,G31),n12,n13,n23#5
Material 1: @~6.9,6.9,6.9,1.38,1.38,1.38! GPa, 0.25, 0.25, 0.25#
Material 2: @~224.25,6.9,6.9,56.58,1.38,56.58! GPa, 0.25, 0.25,

0.25#
Material 3: @~172.5,6.9,6.9,3.45,1.38,3.45! GPa, 0.25, 0.25,

0.25#
Material 4: @~181,10.3,10.3,7.17,2.87,7.17! GPa, 0.25, 0.25,

0.33#
PZT-5A: @~61.0,61.0,53.2,22.6,21.1,21.1! GPa, 0.35, 0.38,

0.38#, and
@(d31,d32,d33,d15,d24),(h11,h22,h33)#5@(2171,2171,374,

584,584)310212 m/V,(1.53,1.53,1.5)31028 F/m#.
Two load cases considered are:

1. pressurepz
252p0 sin(npx/a)sin(py/b) on the top surface

with closed circuit conditionfnf
50 on it.

2. applied actuation potentialfnf5f0 sin(npx/a)sin(py/b) on
the top surface with zero pressure (pz

15pz
250).

The results for these cases are nondimensionalized withS5a/h,
dT5374310212 CN21, YT56.9 GPa for plate~a! and 10.3 GPa
for plate ~b!:

1. (ū,v̄,w̄)5100(u,v,w/S)YT /hS3p0 , (s̄x ,s̄y ,t̄zx)5(sx ,
sy ,Stzx)/S

2p0 , f̄5104fYTdT /hS2p0 ,
Transactions of the ASME
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2. (ũ,ṽ,w̃)5100(u,v,w/S)SdTf0 , (s̃x ,s̃y ,t̃zx)5(sx ,sy ,
Stzx)h/YTdTf0 , f̃5f/f0, D̃z5Dzh/100YTdT

2f0 .

The dimensionless entities are chosen in such a way that
values are almost independent ofS for thin plates having large
value ofS. Hence the dimensionless parameterSappears in some
of them. These dimensionless entities are meaningful since
have constant values in a coupled CLT.

The present results are compared with the three-dimensi
results obtained as per Ref.@6# and the coupled FSDT result
obtained as per Ref.@25# with Whitney’s SCFs,@39#. The thick-
ness distributions ofu or v, w, sx , tzx are compared in Figs. 2
and 3 for plate~a! and in Figs. 4 and 5 for plate~b!. The highly
zig-zag in-plane displacementsu andv are well predicted by the
present theory except for the lower-half of test plate~a! and upper-
half of hybrid composite plate~b! under potential load for the
thick caseS55. The smeared laminate theories like FSDT can
predict zig-zag variation. The thickness variation ofw for load
case 2~Figs. 3 and 5! is very well captured by the present theor
even for thick plates in case of hybrid plate~b!, since it includes
the effect of strain«z induced byf throughd33. The thickness
distributions ofsx , tzx in the present theory are in good agre
ment with the three-dimensional solution. The thickness distri
tions of electric potentialf for plate~b! with the top surface of the
piezoelectric layer in closed circuit (fnf

50) and open circuit
(qnf

50) conditions are compared in Fig. 6. The present the
yields good prediction of the potential fieldf for both closed and
open-circuit conditions, used in actuation and sensory modes
spectively.

The three-dimensional results and the error percentages
respect to the three-dimensional solution in the response pred
by the present theory and the coupled FSDT for plates~a! and~b!
for the two load cases with the Fourier termn51 are given in
Table 1.wc is the deflectionw at the center. For plate~a!, the
stressse is sx in the elastic substrate atz52.41h1 for case 1 and
at z5.265h for case 2.sp is the maximum stresssx in the piezo-
electric layer occurring at its top and bottom faces for cases 1
2, respectively. For plate~b!, se is the maximumsx in the elastic
substrate occurring at its bottom surface for case 1 and top su
(z5.4h2) for case 2.sp is the maximumsx in the piezoelectric
layer occurring at its top and bottom faces for cases 1 and
respectively.tzx is the maximum stress atz50 for load case 1 and
at the PZT interface for case 2.txy is the maximum stress at th
top surface.f and Dz are the maximum values, respectively,
midsurface and top of PZT layer for load cases 1 and 2. T
present central deflection agrees well with the three-dimensi
solution for all cases, except for a relatively large error of 9.4
obtained in case of thick test plate~a! with S55 under potential
load.

For the thick test plate a withS55, the error of the presen
theory with respect to the three-dimensional results forw, se and
tzx is within 1.5% for case 1 withn51, whereas there is muc
larger error in FSDT of 15.4% for deflectionw and upto 50.3% for
the in-plane stresses. For a moderately thick plate~a! with S
510, the error in FSDT is 4.7% forw and upto 19.6% for the
inplane stresses for case 1. For the moderately thick plate u
load case 2 withS510, the error in the present theory is 3.1% f
w and within 4.2% all stresses, whereas the error in FSDT is la
being 8.0% forw and upto 8.0% for stresses. The transverse e
tric displacementDz induced at the actuated PZT surface is ac
rately predicted by both the theories.

For the thick hybrid composite plate~b! with S55, the error of
the present theory is within 3.6% for all entities exceptsp(7.6%)
for load 1 andse(7.0%) for load 2, whereas there is very larg
error in FSDT of 29.1% forw for load case 2 and upto 31.0% an
12.1% for the stresses for load cases 1 and 2, respectively. Fo
moderately thick plate~a! with S510, the error of the presen
theory is within 1.3% for all entities exceptsp(3.0%) and
Journal of Applied Mechanics
heir

hey

nal

ot

y,

e-
u-

ry

, re-

with
cted

and

face

2,

at
he
nal
%

der
r
ger
ec-
u-

e
d
r the
t

se(2.0%), whereas the error in FSDT is large, being 9.5% fow
for load case 2 and upto 10.9% and 10.1% for the stresses
loads 1 and 2, respectively.

The three-dimensional results and the error percentages in
present theory and FSDT for the response of plate~b! for the two
load cases withn53 are given in Table 2. The error in both th
two-dimensional theories increases with highern, since it effec-
tively decreases the span-to-thickness ratio. The error of
present theory forw is 0.7% and 4.6% for loads 1 and 2, respe
tively, as against 28.5% and 103.9% in FSDT. In stresses too
present theory shows remarkable improvement over FSDT in
cases.

The above results reveal that the present theory yields gene
accurate results which are consistently superior to FSDT for b
mechanical and electrical loads. Though FSDT yields relativ
good prediction of the central deflection for the pressure lo
case, it gives highly erroneous results for the inplane stresse
the elastic as well as piezoelectric layers. This inferior perf
mance of FSDT is essentially due to the globally linear appro
mation of the in-plane displacements across the laminate thick
in this model, which cannot account for the zigzag variation
these displacements across the thickness as obtained from
three-dimensional solution, shown in Figs. 2–5. Moreover, t
theory does not satisfy the transverse shear stress continuity
ditions at the layer interfaces. In contrast, the approximations
the displacement field across the thickness in the present th
are much closer to the three-dimensional solution. It also satis
the shear stress continuity conditions at the layers interfa
However, the transverse normal stress induced due to the pi
electric stress constante33 for the same deflection appears to ha
a greater value in the potential load case 2 than in the pres
load case 1. Therefore, the neglect ofsz in the constitutive equa-
tion causes greater error in the deflectionw in load case 2 than in
load case 1 in the present model. It is important to note that
performance of FSDT strongly depends on the choice of the s
correction factors, which again depend on the boundary and lo
ing conditions of the plate,@42#. The Whitney’s SCFs used in th
present study, which are calculated for cylindrical bending
plates, may not be valid for plates with more complex geometr
boundary and loading conditions of the plate. The much lar
error in FSDT for deflection in load case 2 compared to load c
1 appears to be partly due to this reason. The present theory
not suffer from this drawback.

5 Conclusions
The zig-zag coupled theory presented herein, for hybrid pla

with surface bonded or embedded piezo-electric layers, is the
coupled theory in which the shear stress continuity conditions
shear traction free conditions are satisfied exactly, even for
case of nonzero in-plane potential field and the effect of pie
electric transverse normal strain is accounted for in the transv
displacement field. Its accuracy is established by comparison
the analytical three-dimensional piezoelasticity solution by c
sidering two thick, moderately thick and thin plates with high
heterogeneous layups. The present accurate theory is also
nomical since the number of primary mechanical variables is
same as that of FSDT which yields poor results for modera
thick heterogeneous plates. The theory can accurately m
closed and open-circuit electric boundary conditions in the sen
and actuator layers. The theory can readily be extended to
general anisotropic laminate configuration without any additio
approximations. This work is in progress.

Nomenclature

a, b, h, L 5 sides along axesx, y, thickness,
number of plys

A, Ā 5 beam stiffness matrices
di j , ēi j 5 piezoelectric strain and stress con

stants
SEPTEMBER 2004, Vol. 71 Õ 613
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Dx , Dy , Dz ; Ex , Ey , Ez 5 electric displacements, electric
field

F6
j , Gj ; H j 5 electric load, resultants ofDz ,

Dx , Dy

Gi j , Yi , n i j , Q̄i j 5 elastic modulii, Poisson’s ratios,
reduced stiffnesses

k0 , u0 , c0 5 midsurface layer and its displace
ment matrices

L 5 matrix of differential operators
N, M, P, Sj 5 stress resultants of inplane stress

matrix s
P̄, Ū 5 load vector, vector of primary

variables
qj i 5 extraneous charge density on the

actuated surface atzf
j i

Rk, Rk j 5 matrices of cubic layerwise func-
tions

S 5 thickness ratioa/h
u; ux , uy , w; f 5 in-plane displacement matrix, dis

placements, potential
uk , ck 5 displacement matrices for layerk

V, Q, Q̄j , Vf
j 5 stress resultants of transverse

shear stress matrixt
zk21 5 z-coordinate of bottom ofkth

layer
b j , b̄ j 5 beam electromechanical coupling

matrices
sx , sy , txy ; «x , «y , gxy 5 in-plane stresses and strains

tyz , tzx ; gyz , gzx 5 transverse shear stresses and
strains

Ej j 8, Ēj j 8 5 plate dielectric matrices
h̄ i j 5 electric permittivities

Cf
j , C̄f

j 5 interpolation function and related
integral function
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Mechanical Systems With
Nonideal Constraints: Explicit
Equations Without the Use of
Generalized Inverses
In this paper we obtain the explicit equations of motion for mechanical systems u
nonideal constraints without the use of generalized inverses. The new set of equat
shown to be equivalent to that obtained using generalized inverses. Examples demo
ing the use of the general equations are provided.@DOI: 10.1115/1.1767844#
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1 Introduction
When constraints are applied to mechanical systems, additi

forces of constraint are produced that guarantee their satisfac
The development of the equations of motion for constrained
chanical systems has been pursued by numerous scientists
mathematicians, like Appell@1#, Beghin @2#, Chetaev@3#, Dirac
@4#, Gauss@5#, Gibbs @6#, and Hamel@7#. All these investigators
have used as their starting point the D’Alembert-Lagrange P
ciple. This principle, which was enunciated first by Lagrange
his Mechanique Analytique, @8#, can be presumed as being, at t
present time, at the core of classical analytical dynamics.

D’Alembert’s principle makes an assumption regarding the
ture of constraint forces in mechanical systems, and this assu
tion seems to work well in many practical situations. It states t
the total work done by the forces of constraint under virtual d
placements is always zero. In 1992 Udwadia and Kalaba@9# ob-
tained a simple,explicit set of equations of motion, suited fo
general mechanical systems, with holonomic and/or nonh
nomic constraints. Though their equations encompass time de
dent constraints that are~1! not necessarily independent, and~2!
nonlinear in the generalized velocities, their equations are v
only when D’Alembert’s principle is observed by the constra
forces.

However, in many situations in nature, the forces of constra
in mechanical systems do not satisfy D’Alembert’s principle.
stated in Pars’sA Treatise on Analytical Dynamics@10#, ‘‘There
are in fact systems for which the principle enunciat
@D’Alembert’s principle# . . . does not hold. But such systems w
not be considered in this book.’’ Such systems have been con
ered to lie beyond the scope of Lagrangian mechanics. Rece
Udwadia and Kalaba@11,12# have developed general, explic
equations of motion for constrained mechanical systems that
or may not satisfy D’Alembert’s principle. The statement of th

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 14, 20
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Mechanics, Department of Mechanical and Environmental Engineering, Unive
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result involves the use of generalized inverses of various ma
quantities, and they derive their results by using the special p
erties of these generalized inverses.

In this paper we give a new, alternative set ofexplicit equations
that describes the motion of constrained mechanical systems
may or may not satisfy D’Alembert’s principle. Thus these equ
tions are valid when the forces of constraint may do work un
virtual displacements. We show here that there is no need to
any concepts related to generalized inverses in the developme
these general equations. The explicit equations developed he
can handle time dependent constraints that are nonlinear in
generalized velocities, as do the equations obtained using ge
alized inverses. Instead of relying on the properties of general
inverses, our explicit equations rely on a deeper understandin
virtual displacements as provided in Refs.@13,14#.

After obtaining the new equations, we show that they are
deed equivalent to those given earlier by Udwadia and Kal
@11,12# which make extensive use of generalized inverses. Th
illustrative examples are provided showing the use of the n
equations. The last example deals with sliding friction.

2 Explicit Equations of Motion for Mechanical Sys-
tems With Nonideal Constraints

For an unconstrained system ofN particles, Lagrange’s equa
tion of motion for the system at timet can be written, using
generalized coordinates, as

M ~q,t !q̈5F~q,q̇,t !; q~0!5q0 ,q̇~0!5q̇0 , (1)

where, q is the generalized coordinaten-vector q
5@q1 ,q2 , . . . ,qn#T; M is an n by n symmetric positive definite
matrix; and,F(q,q̇,t) is then-vector of the ‘‘given’’ force which
is a known function ofq, q̇, and time,t. The number of degrees
of-freedom of the system is equal to the number of generali
coordinates,n, characterizing the configuration of the system
any time, t. The acceleration,a(t), of the unconstrained system
described by Eq.~1! is then given bya(t)5M (q,t)21F(q,q̇,t).

Let the system described by Eq.~1! be nowfurther constrained
by them constraint equations

w i~q,q̇,t !50, i 51,2, . . . ,m, (2)
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in which k,m of these constraint equations are independent.
shall assume that the constraint equations satisfy the initial co
tions given in Eq.~1!. Equation set~2! includes both holonomic
and nonholonomic constraints. Assuming sufficient smoothn
we can differentiate equation set~2! with respect to timet to
obtain

A~q,q̇,t !q̈5b~q,q̇,t !, (3)

where the elements ofA andb are known functions ofq, q̇, andt
and the matrixA is anm by n matrix that has rankk.

The presence of the constraints causes additional const
forces to arise at each instant of time to assure that the constr
are satisfied. The equation of motion for the constrained sys
can be then expressed as

Mq̈5F~q,q̇,t !1Fc~q,q̇,t !, (4)

where,F is the given force, andFc is the additional force engen
dered by the presence of the constraints.

Premultiplying Eq.~4! by M 21/2, we have

M1/2q̈5M 21/2F~q,q̇,t !1M 21/2Fc~q,q̇,t !, (5)

which can be written as

q̈s~ t !2Fs
c5as~ t !. (6)

Here we have denoted the ‘‘scaled’’ acceleration of the c
strained system,M1/2q̈, by q̈s(t), the ‘‘scaled’’ force of constraint,
M 21/2Fc, by Fs

c , and the ‘‘scaled’’ acceleration of the uncon
strained system,M 21/2F, by as(t). In the same manner, the con
straint Eq.~3! at time t can be expressed as (AM21/2)(M1/2q̈)
5b. DenotingAM21/2 by them by n matrix B, we obtain

Bq̈s5b. (7)

A virtual displacement~see Refs.@13,14#! is any nonzero vector
w, that satisfies the equation

A~q,q̇,t !w50. (8)

When the constraints are nonideal, the work done,W(t), by the
constraint force,Fc, under virtual displacements,w, needs to be
specified through knowledge of then-vectorC, so that,@11#

W~ t !5wTFc~q,q̇,t !5wTC~q,q̇,t !, (9)

whereC(q,q̇,t) is a knownn-vector, and characterizes thenature
of the nonideal constraint force,Fc. This is an extension of
D’Alembert’s principle.

Equation~8! can be rewritten as

~AM21/2!~M1/2w!50. (10)

Similarly, Eq. ~9! can be rewritten as

~wTM1/2!~M 21/2Fc!5~wTM1/2!~M 21/2C!. (11)

Denotingv5M1/2w, Eq. ~10! becomes

Bv50. (12)

SinceM1/2 is nonsingular,y is then any nonzero vector such th
relation ~12! is satisfied. Furthermore, after denotingCs

5M 21/2C, Eq. ~11! can be written as

vTFs
c5vTCs . (13)

SinceB has rankk, there aren2k linearly independent vectors,v,
such thatBv50. Assembling then such vectorsv1 . . . vn2k in the
matrix V, we obtain

VTFs
c5VTCs . (14)

The matrix V can be constructed by a judicious use of the Gra
Schmidt procedure.

Consider the linear Eqs.~6!, ~7!, and~14!. These equations ca
be expressed as
616 Õ Vol. 71, SEPTEMBER 2004
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Lr 5F @ I #nxn 2@ I #nxn

@B#mxn @0#mxn

@0#~n2k!xn @VT#~n2k!xn

G F q̈s

Fs
cG5F as

b
VTCs

G5s,

(15)

whereL is a (2n1m2k) by 2n matrix, r is a 2n-vector, ands is
a (2n1m2k)-vector.

The equation set~15! constitutes the fundamental linear set
equations that needs to be solved to obtain both the scaled a
eration,q̈s , of the constrained system as well as the scaled c
straint force,Fs

c . In what follows, we shall show that a solution t
this linear system of equations exists and is unique.

We premultiply both sides of Eq.~15! by LT to obtain the
equation

LTLr 5F I BT 0

2I 0 V
GF I 2I

B 0

0 VT
G r 5F I BT 0

2I 0 V
GF as

b
VTCs

G .

(16)

Let us denote

D5BTB, (17)

and

E5VVT. (18)

Equation~16! can be written as

Gr5F @ I 1D#nxn 2@ I #nxn

2@ I #nxn @ I 1E#nxn
G r 5F as1BTb

2as1ECs
G , (19)

whereG is the 2n by 2n symmetric matrixLTL. We next show
that the inverse of the matrixG exists, and we determine it ex
plicitly.

LEMMA 1.
Result 1: The inverse of the matrixG given in Eq.~19! exists and
is

G215FP J

J S
G , (20)

where

J5~D1E!215~BTB1VVT!21, (21)

P5J~ I 1E!, (22)

and

S5J~ I 1D !. (23)

Result 2.

SE5I 2JD, (24)

which is a property that we shall use for the determination of
‘‘scaled’’ force of constraint,Fs

c .
Proof.
Result 1. For simplicity, let us writeG21 as

G215FP J

J S
G . (25)

Beginning with the conditionG21G5I , we obtain

FP J

J S
GF I 1D 2I

2I I 1E
G5F I 0

0 I
G ,

which can be written as

FP~ I 1D !2J 2P1J~ I 1E!

J~ I 1D !2S 2J1S~ I 1E!
G5F I 0

0 I
G . (26)

A comparison of the corresponding members on either side of
equality in Eq.~26! shows that
Transactions of the ASME
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P~ I 1D !2J5I , (27)

S5J~ I 1D !, (28)

P5J~ I 1E!, (29)

and

2J1S~ I 1E!5I . (30)

Then replacing the matrixP obtained from Eq.~29! in Eq. ~27!
and simplifying that, we have

J~ I 1E!~ I 1D !2J5J~D1E1ED!5I . (31)

Since E5VVT, D5BTB, and BV50, we haveED5VVTBTB
5V(BV)TB50.

Thus Eq.~31! can be simplified to

J~D1E!5I . (32)

From Eqs.~17! and ~18!, it can be seen that then by n matrix
D1E5BTB1VVT5@BT V#@VT

B
#. Since the matrix@BT V# has

full rank, the rank of@BT V#@VT
B

# is n. Hence,D1E has an inverse
and from Eq.~32! the matrixJ is given by

J5~D1E!215~BTB1VVT!21. (33)

By Eqs.~25!, ~28!, and~29!, the inverse of the matrixG can be
then written as

G215FP J

J S
G5FJ~ I 1E! J

J J~ I 1D !
G , (34)

whereJ is given by Eq.~33!. h
Result 2: By substituting Eq.~28! in Eq. ~30!, we obtain2J
1S(I 1E)52J1S1SE52J1J(I 1D)1SE5I , which can be
simplified to

SE5I 2JD. (35)h

From Eqs.~19! and ~20!, the vectorr 5@
Fc

q̈s #, can be uniquely
found as

F q̈s

Fs
cG5FP J

J S
G F as1BTb

2as1ECs
G . (36)

Using Eq. ~36!, the ‘‘scaled’’ force of constraint can be ex
panded as

Fs
c5Jas1JBTb2Sas1SECs . (37)

From Eqs.~23! and ~24!, Eq. ~37! can be expressed as

Fs
c5Jas1JBTb2Jas2JDas1~ I 2JD!Cs

5JBTb2JDas1~ I 2JD!Cs .

Noting thatD5BTB, the last equation gives a simple form fo
the constraint force

Fs
c5JBT~b2Bas!1~ I 2JBTB!Cs . (38)

Since the acceleration of the unconstrained system is define
a5M 21F, we have Bas5(AM21/2)(M 21/2F)5A(M 21F)
5Aa. Using this equality, and substitutingCs by M 21/2C in Eq.
~38!, we get

Fc5M1/2Fs
c5M1/2JBT~b2Aa!1M1/2~ I 2JBTB!M 21/2C

ªFi
c1Fni

c , (39)

which gives the force of constraintFc explicitly for the con-
strained system. The subscripti is used to describe the force o
constraint were all the constraints to be ideal (C[0); the sub-
scriptni is used to describe the contribution to the total constra
Journal of Applied Mechanics
-

r

d as
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force because of the nonideal nature of the constraints. The
plicit equation of motion with nonideal constraints can then
written as

Mq̈5F1Fc5F1M1/2JBT~b2Aa!1M1/2~ I 2JBTB!M 21/2C.
(40)

We emphasize that Eq.~40!, which givesexplicitly the motion of
nonholonomic systems with nonideal constraint forces, doesnot
involve any generalized inverses, or any Lagrange multipliers

Previous investigators, so far as we know, have not obtai
explicit equations of motion for non-ideal constraints. The on
other general equation of motion for constrained mechanical
tems with nonideal constraints available in the literature to d
appears to be the one obtained in Refs.@11,12# and@15,16#. How-
ever, the results that have been obtained so far use the conce
the generalized inverse of a matrix, and the derivations are hea
dependent on the properties of generalized inverses. The equ
obtained herein is:~1! explicit; ~2! applicable to nonideal con
straints; and~3! does not use generalized inverses. In the n
section we shall compare our result with those obtained in R
@11,12#.

There are, however, a number of formulations of the equati
of motion for constrained mechanical systems under the assu
tion that the constraints are all ideal, i.e., whenC in Eq. ~40! in
identically zero for all time. It is then perhaps worthwhile com
paring Eq.~40! for C[0, thereby restricting it to only ideal con
straints, with formulations that have been obtained by previ
investigators. So, to elucidate our equation further, we comp
the form of the equation obtained by us with those obtained p
viously. Though Eq.~40! is also valid for nonideal constraints, i
the next paragraph we restrict ourselves, for purposes of comp
son with other formulations of the equations of motion obtain
by other researchersonly to when all the constraints are ideal.

Unlike the results obtained in Beghin@2#, Chataev@3#, Hamel
@7#, and Lagrange@8#, Eq. ~40! explicitly gives the force of con-
straint; no Lagrange multipliers are involved. The use of Lagran
multipliers constitutes one approach to solving the problem
constrained motion. We use in this paper a different approach
is innocent of this notion. These multipliers, which were invent
by Lagrange, are an intermediarymathematical devicefor solving
the problem of constrained motion. As such, they are not intrin
~essential! to either the description of the physical problem
constrained motion or to the final equation of motion that is o
tained, as witnessed by the fact that we make no mention
Lagrange multipliers in our approach. Another important point
difference is that the constraint equations we use to obtain
~40! are more general than those in Appell@1#, Beghin@2#, Cha-
taev @3#, Gibbs @6#, Hamel @7#, and Synge@17# because the ele
ments of the matrixA are allowed to be not just functions ofq and
t, but also ofq̇. This greatly expands the scope of the type
constraints that we use. However, it entails a more delicate in
pretation of the concept of virtual displacements~see, Ref.@14#!.
Furthermore, unlike the formulations of Gibbs@6# and Appell@1#
the coordinates we use to describe the constrained motion ar
same as those used to describe the unconstrained motion;
quasi-coordinates are used, and no coordinate transformation
needed. Dirac@4# developed a set of equations for the constrain
motion of hamiltonian systems in which the constraints are
explicitly dependent on time. Our equation differs from his in th
~1! Eq. ~40! ~with C(t)[0) is also applicable to non-hamiltonian
and dissipative systems, and~2! it allows constraints that contain
time explicitly in them. However, Eq.~40! assumes thatM is
positive definite, while Dirac’s method can handle singu
Lagrangians; such Lagrangians are more relevant to the fiel
quantum mechanics~for which Dirac developed his equation! and
are seldom found in well-posed problems in classical mechan

One consequence of the fact that we use the same set of c
dinates to describe the motion of the constrained system as we
to describe the unconstrained system is that our equation prov
SEPTEMBER 2004, Vol. 71 Õ 617
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the exceptional insight that the total force of constraint is the s
of two forces, as seen from the last two members on the right h
side of the last equality in Eq.~40!. The first corresponds to wha
would result were all the constraints ideal; the second cor
sponds to the force caused solely by the nonideal nature of
constraints. Our ability to obtain the general equation of motio
explicitly gives an additional insight whenC[0. Nature appears
to be acting like a ‘‘control engineer,’’ because the second term
the right-hand side of Eq.~40! may be viewed as a ‘‘feedbac
control force’’ proportional to the error, (b2Aa), in the satisfac-
tion of the constraint Eq.~3!. We observe that the feedback ‘‘con
trol gain matrix,’’ M1/2JBT, which nature uses turns out to be,
general, a highly nonlinear, time-dependent function ofq, q̇, and
t. Such insights into the fundamental nature of constrained mo
have been unavailable from previous formulations of the eq
tions for constrained mechanical systems, such as those of Ap
Begin, Chataev, Hamel, Gibbs, Jacobi, Lagrange, and Synge

3 Connection of Eq.„40… With Previous Results
In this section we show that the equation of motion obtain

above is equivalent to the ones previously obtained in R
@11,12#.

LEMMA 2.

JBT5B1, (41)

whereB1 is the Moore-Penrose inverse of the matrixB.
Proof.

Let us consider a conditionGG215G21G,

F I 1D 2I

2I I 1E
GFP J

J S
G5FP J

J S
GF I 1D 2I

2I I 1E
G ,

which can be expanded to

F ~ I 1D !P2J ~ I 1D !J2S

2P1~ I 1E!J 2J1~ I 1E!S
G

5FP~ I 1D !2J 2P1J~ I 1E!

J~ I 1D !2S 2J1S~ I 1E!
G . (42)

Equating the first element of the second column on either sid
Eq. ~42!, we get

~ I 1D !J2S52P1J~ I 1E!. (43)

After substituting Eqs.~28! and ~29! in Eq. ~43!, we obtain

DJ5JD. (44)

Similarly, equating the second element of the second column
either side of Eq.~42!, we get 2J1(I 1E)S52J1S(I 1E),
which simplifies to

ES5SE. (45)

As a result of Eqs.~44!, ~24!, and~45!, we have

DJ5JD5I 2SE5I 2ES. (46)

To show thatJBT is the Moore-Penrose~MP! inverse of the
matrix B, we need to prove the following conditions:

1. B(JBT)B5B;
2. (JBT)B(JBT)5JBT;
3. (BJBT)T5BJBT;

and

4 (JBTB)T5JBTB.
618 Õ Vol. 71, SEPTEMBER 2004
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1. By using the relations obtained from Eqs.~17!, ~46!, and
~18!, we haveB(JBT)B5BJD5B(I 2ES)5B2BES5B
2(BV)VTS. SinceBV50, B(JBT)B5B. Thus the first MP
condition is satisfied.

2. Due to Eqs.~17! and ~46!, (JBT)B(JBT)5J(BTB)JBT

5JDJBT5J(I 2ES)BT5JBT2JESBT. SinceSE5ES, E
5VVT, and BV50, JESBT5JSEBT and EBT5VVTBT

5V(BV)T50; thus (JBT)B(JBT)5JBT, and the second
MP condition is satisfied.

3. Since the matricesD andE are symmetric,J5(D1E)21, is
also symmetric. Hence (BJBT)T5BJTBT5BJBT; thus the
third MP condition is satisfied

4. Using Eqs.~17! and ~44! we get (JBTB)T5(BTB)JT5DJ
5JD5J(BTB); thus the fourth MP condition is satisfied.

From the result of lemma 2, after substitutingB15JBT in Eq.
~39!, we obtain

Fc5M1/2B1~b2Aa!1M1/2~ I 2B1B!M 21/2C. (47)

The first member on the right of Eq.~47! is the force of constraint
that would be generated were all the constraints ideal, the sec
member gives the contribution to total force of constraint beca
of its non-ideal nature. SinceB5AM21/2, Eq. ~47! can be rewrit-
ten as

Fc5M1/2~AM21/2!1~b2Aa!1M1/2~ I 2B1B!M 21/2C.
(48)

From Eq. ~4!, we have q̈5M 21F1M 21Fc5a1M 21Fc.
Hence, the explicit equation of motion of the constrained syst
can be expressed as

q̈5a1M 21/2~AM21/2!1~b2Aa!1M 21/2~ I 2B1B!M 21/2C,
(49)

which is identical to the equation given by Udwadia and Kala
~Refs. @11,12#!. When C[0, the constraint forces are ideal an
D’Alembert’s principle is satisfied. Equation~49! then reduces to
the result given in Refs.@9# and @13#.

4 Examples
In this section, we provide examples that demonstrate the us

the equations of motion~40! for systems with nonideal con
straints. The last example deals with a problem of sliding frictio

~a! Consider a particle of unit mass traveling in a thre
dimensional configuration space with ‘‘given’’ forcesf x(x,y,z,t),
f y(x,y,z,t) and f z(x,y,z,t) and satisfying the nonholonomic con
straint ẏ5z2ẋ1ag(x,t), wherea is a constant andg(x,t) is a
given function ofx and t. The initial conditions are taken to b
compatible with the nonholonomic constraint.

Since the mass of particle is unity, the unconstrained accel
tion is given by

a5F ẍ
ÿ
z̈
G5F f x~x,y,z,t !

f y~x,y,z,t !
f z~x,y,z,t !

G . (50)

After differentiating the constraint equation with respect
time, we get

@2z2 1 0#F ẍ
ÿ
z̈
G52zżẋ1agxẋ1agt , (51)
Transactions of the ASME



wheregx andgt are partial derivatives ofg(x,t) with respect tox
and t, respectively. A comparison with Eqs.~3! provides us

A5@2z2 1 0# (52)

and

b52zżẋ1agxẋ1agt . (53)

SinceM5I 3 ,

B5AM21/25A. (54)

In addition, the solution vectorsv1 andv2 to Eq. ~12! are
e

t

Journal of Applied Mechanics
V5@v1 v2#5F 1 1

z2 z2

k1 k2

G , (55)

where,k1 andk2 are arbitrarily chosen, withk1Þk2 , so that the
column vectorsv1 andv2 are linearly independent.

As previously shown in lemma 1,J5(D1E)215(BTB
1VVT)21. By Eqs.~54! and ~55!, we obtain~with k1Þk2)
J5
1

D F k1
21k2

21z4~k12k2!2 2k1k2z2 2~k11k2!~z411!

2k1k2z2 z4~k1
21k2

2!1~k12k2!2 2z2~k11k2!~z411!

2~k11k2!~z411! 2z2~k11k2!~z411! 2~z411!2
G ,
nd
ny

e
,
the
on

on-
whereD5(k12k2)2(z411)2.
This gives

JBT5
1

~z411!
F2z2

1
0

G . (56)

We could have, of course, started by choosing, say,k151 and
k250 in Eq. ~55!; we would then have arrived at relation~56!
with much less algebra.

Suppose that the constraint force is nonideal and it does w
under virtual displacements. Let us assume that the work don
the constraint force is given, for any virtual displacement,w, by

wTFc52wTa0~uTu!b~u/uuu!, (57)

where u5@ ẋ ẏ ż#T is the velocity of the particle,uuu5AuTu,
anda0 andb are constants. In this case,C is a known 3-vector,
and can be written as

C52a0~uTu!b~u/uuu!52a0~ ẋ21 ẏ21 ż2!b21/2F ẋ
ẏ
ż
G . (58)

After substituting Eqs.~50!, and~52! through~58! in Eq. ~39!, we
obtain

Fc5S 2zżẋ1agxẋ1agt1z2f x2 f y

z411
D F2z2

1
0

G
2a0

~ ẋ21 ẏ21 ż2!b21/2

z411 F ẋ1z2ẏ
z2ẋ1z4ẏ
ż~11z4!

G . (59)

From Eq.~40!, the equation of motion of the constrained system
then

F ẍ
ÿ
z̈
G5F f x

f y

f z

G1S 2zżẋ1agxẋ1agt1z2f x2 f y

z411
D F2z2

1
0

G
2a0

~ ẋ21 ẏ21 ż2!b21/2

z411 F ẋ1z2ẏ
z2ẋ1z4ẏ
ż~11z4!

G . (60)

The first member on the right-hand side of Eq.~60! is the im-
pressed force. The second member is the constraint force
would be generated had the constraint been ideal, and the
member results from the nonideal nature of the constraint tha
ork
by

is

that
hird
t is

described by Eq.~57!. When a50, and b51, the equation of
motion ~60! becomes identical to that given by Udwadia a
Kalaba@11#. We note that here the result is obtained without a
reference to generalized inverses.

~b! Consider a bead having a massm. Suppose that it moves on
a circular ring of radiusR as shown in Fig. 1. The motion can b
described by the coordinates (x,y). The gravitational acceleration
g, is downwards. We assume that the initial conditions on
motion of the bead are compatible with the constraint that it lie
the ring.

Were the bead not constrained to lie on the ring, its unc
strained acceleration would be

a5F 0
2gG . (61)

In this problem, the constraint equation isx21y25R2. After dif-
ferentiating the constraint equation twice, we obtain

@x y#F ẍÿG52 ẋ22 ẏ2, (62)

so that

A5@x y#, (63)

Fig. 1 A bead of mass, m , moving on a circular ring of
radius, R
SEPTEMBER 2004, Vol. 71 Õ 619
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b52 ẋ22 ẏ2. (64)

Since the mass matrixM5mI2 ,

B5AM21/25m21/2@x y#. (65)

For any virtual displacementwÞ0 such thatAw50, we havew
5@2x

y # so that

V5M1/2w5m1/2F y
2xG . (66)

Using Eq.~21!, ~65! and ~66!, we obtain

JBT5~BTB1VVT!21BT5
1

m3/2R4 F x2m21y2 xy~m221!

xy~m221! y2m21x2 G FxyG
5

m1/2

R2 FxyG . (67)

Suppose that the nonideal constraint force, due to the ro
surface of the ring, is given by

wTFc52wT
h~x,ẋ,y,ẏ,t !

Aẋ21 ẏ2 F ẋẏG , (68)

for any virtual displacementw, whereh is a known function ofx,
ẋ, y, ẏ, andt.

From the calculation in Eq.~39!, the force of constraint on the
bead can be expressed as

Fc52
m~ ẋ21 ẏ22yg!

R2 FxyG1 h~x,ẋ,y,ẏ,t !

Aẋ21 ẏ2
•

~xẏ2yẋ!

R2 F y
2xG .

(69)

Finally, by Eq.~40!, the equation of motion of the constraine
system is

Fmẍ
mÿG5F 0

2mgG2 m~ ẋ21 ẏ22yg!

R2 FxyG1 h~x,ẋ,y,ẏ,t !

Aẋ21 ẏ2

•

~xẏ2yẋ!

R2 F y
2xG . (70)

The first member on the right-hand side of Eq.~70! is the given
force acting on the unconstrained system; the second is the
straint force that would have been generated had the const
been ideal; and, the last member accounts for the nonideal n
of the constraint.

~c! Consider a rigid block of massm sliding on an inclined
plane that oscillates in the vertical direction with amplitudeb and
frequencyv, the coefficient of Coulomb friction between th
plane and the surface of the block beingm. See Fig. 2. We shal
assume that the acceleration of the inclined plane is sufficie
small so that the block does not leave the surface of the plan
it moves under gravity.

In the absence of the inclined plane, the unconstrained e
tions of motion of the block of massm and under gravity can be
written as

Fm 0

0 m
G F ẍÿG5F 0

mgG , (71)

so that the acceleration,a, of the unconstrained system is given b
a5@0 g#T, andM5mI2 .

The unconstrained system is then subjected to the constr
namely that the block must lie on the vibrating inclined plan
Hence, the constraint is given by the kinematic relationy(t)
5x(t)tana2b sinvt, which can be expressed after differentiatio
with respect to timet as
620 Õ Vol. 71, SEPTEMBER 2004
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@2tana 1#F ẍÿG5bv2 sinvt. (72)

Thus,A5@2tan a 1#, andb is the scalarbv2 sinvt.
By Eq. ~8!, we have the virtual displacement

w5dF 1
tana G , (73)

whered is any nonzero constant.
Hence, we get

V5v5M1/2w5m1/2dF 1
tana G . (74)

SinceB5AM21/25m21/2A, using Eq.~21!, we have

JBT5~BTB1VVT!21BT5S m21F2tana
1 G@2tana 1#

1md2F 1
tana G@1 tana# D 21S m21/2F2tana

1 G D ,

which can be simplified to

JBT5m1/2 cos2 aF2tana
1 G . (75)

Therefore, the force of constraint, were the constraint to be id
would then be given by

Fi
c5M1/2JBT~b2Aa!5m cos2 aF tana

21 G~g2bv2 sinvt !.

(76)

In the presence of Coulomb friction, the magnitude of the fr

tional force is muFi
cu, where uzu51AzTz. We note that Cou-

lomb’s law of friction is an approximate empirical relation~see
Ref. @18#!. The relative velocity of the block with respect to th
inclined plane is given byq̇5@ ẋ ẋ tana#T. The frictional force
is in a direction opposite that of this relative velocity. The wo
done by Coulomb friction under a virtual displacementw is then

W52wTS muFi
cu

q̇

uq̇u D , (77)

so that

C52muFi
cu

q̇

uq̇u
5

2muFi
cu

uẋuseca
F ẋ
ẋ tana G52muFi

cucosaF 1
tana Gs,

(78)

where,s5sgn(ẋ).
Relation~76! yields

Fig. 2 A block sliding under gravity on an inclined plane „0Ëa
ËpÕ2… that is vibrating vertically with amplitude b and fre-
quency v. The coefficient of Coulomb friction between the
plane and the block is m.
Transactions of the ASME
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uFi
cu5m cosau~g2bv2 sinvt !u. (79)

The contribution to the total force of constraint generated by
non-ideal nature of the constraint is then

Fni
c 5M1/2~ I 2JBTB!M 21/2C5m1/2S I 2m1/2 cos2 aF2tana

1 G
3@2tana 1#m21/2Dm21/2S 2muFi

cucosaF 1
tana GsD

52muFi
cucosaF 1

tana Gs
52mm cos2 au~g2bv2 sinvt !uF 1

tana Gs. (80)

Note that if the block is to remain in contact with the plane w
require (g2bv2 sinvt)>0. The equation of motion of the bloc
sliding on the plane, by Eqs.~40!, is then

Fmẍ
mÿG5F 0

mgG1m cos2 aF tana
21 G~g2bv2 sinvt !

2mm cos2 aF 1
tana G~g2bv2 sinvt !s. (81)

We note that each of the three members on the right-hand sid
Eq. ~81! has a simple interpretation. And it is precisely to expo
this essential simplicity with which nature seems to operate
we have desisted from simplifying the equation any further. F
the first member is the ‘‘given’’ force; the second is the for
of constraint were the constraint to be ideal; and, the third
the constraint force engendered by the nonideal nature of
constraint.

5 Conclusions
The explicit equations of motion for holonomic and nonho

nomic mechanical systems with nonideal constraints have so
been obtained in terms of generalized inverses of matrices. T
inverses were first proposed by Moore@19#, and their properties
were first extensively developed by Penrose@20#. Since the prop-
erties of generalized inverses have appeared to be essent
developing these explicit equations, it had been felt that it w
because of their relatively recent introduction—in the 1950s—
the scientific literature that the explicit equations of motion
nonholonomic mechanical systems were unavailable until q
recently~see Refs.@11–13#, and@15,16#!.

In this paper we show that this line of reasoning does not
pear to be correct. Rather than reliance on generalized invers
matrices and their properties, what we may have needed to ge
explicit equations of motion is a more refined understanding of
problem, and a further development of concepts that have l
since been with us. Among these are:~1! a proper conceptualiza
tion of the problem of constrained motion in terms of an unco
strained system, which is then subjected to the imposed c
straints, ~2! the generalized concept of a virtual displaceme
vector, described in Ref.@14# and,~3! the use of linear algebra. I
is somewhat surprising that though the equations of motion
govern even some of the simplest constrained mechanical sys
are nonlinear, it is linear algebra that plays a central role in th
development.

We point out that the explicit equations of motion obtain
herein, like those obtained earlier~Refs.@11–16#!, are completely
Journal of Applied Mechanics
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innocent of the notion of Lagrange multipliers. Over the last 2
years, Lagrange multipliers have been so widely used in the
velopment of the equations of motion of constrained mechan
systems that it is sometimes tempting to mistakenly believe
they possess an instrinsic presence in the description of
strained motion. This is not true. As shown in this paper, neithe
the formulation of the physical problem of the motion of co
strained mechanical systems nor in the equations governing
motion are any Lagrange multipliers involved. The use
Lagrange multipliers~a mathematical tool invented by Lagrang
@8#! constitutes onlyoneof the severalintermediarymathematical
devices invented for handling constraints. And, in fact, the dir
use of this device appears inapplicable when the constraints
functionally dependent. Lagrange multipliers do not appear in
physical description of constrained motion, and therefore can
and do not, ultimately appear in the equations governing s
motion.

The explicit equations of motion obtained in this paper apply
general, holonomic, and nonholonomic systems that may h
nonideal constraint forces. These constraint forces may, in g
eral, do positive, zero, or negative work under virtual displa
ments at any time during the motion of the system. The equat
given here are the first of their kind that are explicit, and that
not require the use of any generalized inverses, nor use of an
their properties.
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Applicability and Limitations of
Simplified Elastic Shell Equations
for Carbon Nanotubes
This paper examines applicability and limitations of simplified models of elastic cylin
cal shells for carbon nanotubes. The simplified models examined here include Do
equations and simplified Flugge equations characterized by an uncoupled single equ
for radial deflection. These simplified elastic shell equations are used to study s
buckling and free vibration of carbon nanotubes, with detailed comparison to e
Flugge equations of cylindrical shells. It is shown that all three elastic shell models a
excellent agreement (with relative errors less than 5%) with recent molecular dyna
simulations for radial breathing vibration modes of carbon nanotubes, while reason
agreements for various buckling problems have been reported previously for Do
equations. For general cases of buckling and vibration, the results show that the si
fied Flugge model, which retains mathematical simplicity of Donnell model, is con
tently in better agreement with exact Flugge equations than Donnell model, and h
significantly enlarged range of applicability for carbon nanotubes. In particular, the s
plified Flugge model is applicable for carbon nanotubes (with relative errors around 1
or less) in almost all cases of physical interest, including some important cases in w
Donnell model results in much larger errors. These results are significant for fur
application of elastic shell models to carbon nanotubes because simplified shell m
characterized by a single uncoupled equation for radial deflection, are particularly us
for multiwall carbon nanotubes of large number of layers.@DOI: 10.1115/1.1778415#
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1 Introduction

Elastic shell models have been effectively used to study
chanical deformation of carbon nanotubes~CNTs!, @1,2#, espe-
cially buckling of CNTs under axial compression,@3–5#, bending,
@6,4#, radial pressure,@7,8#, or combined loadings,@9#. Previous
work has shown that critical loading and the associated buck
mode predicted by simple isotropic elastic shell models are g
erally in reasonable agreement with available experiments
molecular dynamics simulations of singlewall nanotub
~SWNTs!, @4,9#, and multiwall nanotubes~MWNTs! of as many
as 20 layers,@8#. In particular, because elastic shell models a
relatively simple and cost-effective as compared to experime
and molecular dynamic simulations, they have the potentia
offer simple general formulas in some important cases, iden
major factors affecting mechanical behavior of CNTs, and exp
or predict new physical phenomena. On the other hand, almos
of these studies are limited to reversible elastic deformation
nanotubes, and do not account for fracture and failure,@10,11#.

So far, almost all existing elastic shell models for CNTs a
based on the simplest Donnell equations of cylindrical shells.
known that Donnell equations are based on several simplifi
tions,@12–17#: ~1! the contribution of two in-plane displacemen
to the changes in bending curvature is negligible;~2! the contri-
bution of transverse shear forces to the equilibrium in the circu
ferential direction is negligible;~3! the in-plane inertia is negli-
gible; and~4! the pre-stresses~for buckling problems only! are

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 2
2003; final revision, March 16, 2004. Associate Editor: H., Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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neglected in the two in-plane equations. The major advantag
Donnell equations over other more accurate shell equations~such
as exact Flugge equations of cylindrical shells,@13#, which do not
reply on any of the above four assumptions! is the remarkably
simple mathematical form of Donnell equations, especially due
an uncoupled single equation for the radial deflection. Since
radial deflection is the dominant displacement component
many problems, such as buckling and radial vibration of ela
shells, this advantage largely simplifies technical complexity
elastic shell analysis in many important cases. Here, it is emp
sized that this advantage of Donnell equations is even more
cial when elastic shell models are applied to MWNTs of lar
number of layers,@5,8,9#. On the other hand, although Donne
equations are proved to be an excellent approximate model
almost indistinguishable from exact shell models in many imp
tant cases, they indeed led to substantial errors in some cas
practical significance,@18–22#. Hence, in view of unusual geo
metrical and material characteristics of CNTs, it is necessary
clarify the conditions under which Donnell equations or oth
simplified elastic shell models are applicable for CNTs.

The present paper gives a systematic study of applicability
limitations of simplified elastic shell equations for CNTs. Her
beside Donnell model, a simplified Flugge model is also exa
ined, which is derived from the exact Flugge equations,@18#,
based on the last two assumptions of Donnell equations lis
above and leads to an uncoupled single equation for the ra
deflection,@12,15,17–21#. Various problems of static buckling an
free vibration will be discussed with Donnell model~model I!,
simplified Flugge model~model II!, and exact Flugge equation
~model III!. Since the applicability of Donnell model has bee
systematically demonstrated for static buckling of CNTs,@1–9#,
comparison between elastic shell models and available exp
ments or molecular dynamics simulations will focus on free
bration of CNTs. As will be seen below, the simplified Flugg
model ~model II!, which retains mathematical simplicity of Don
nell model ~model I!, enjoys improved accuracy and enlarge
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, and
range of applicability as compared to Donnell model, and thu
recommended for static and dynamic problems of CNTs.

2 Simplified Elastic Shell Models
Almost all existing elastic shell models for CNTs are based

the simplest Donnell equations of cylindrical shells. So, let
begin with a discussion of the assumptions of Donnell equatio

2.1 Donnell Equations„Model I …. For almost all important
problems of CNTs discussed so far in the literature, tangen
external loadings along axial or circumferential direction of CN
are absent. For example, for MWNTs, because interlayer fric
is usually so small that adjacent concentric tubes can almost fr
slide to each other, it is assumed,@5,8,9#, that the interlayer fric-
tion is negligible between any two adjacent tubes. In the abse
of any tangential external force, dynamics of the radial deflect
w(x,u,t) of an elastic cylindrical shell of radiusR is uncoupled
with other two in-plane displacements,u ~axial displacement!, and
v ~circumferential displacement!, and is governed by the Donne
equation,@5,8,9#:

D¹8w5¹4p~x,u!1Fx
0

]2

]x2
¹4w12

Fxu
0

R

]2

]x]u
¹4w

1
Fu

0

R2

]2

]u2
¹4w2

Eh

R2

]4w

]x4
2rh

]2

]t2
¹4w (1)

where x and u are axial coordinate and circumferential angu
coordinate, respectively,w is the radial~inward! deflection,p is
the net normal~inward! pressure,Fx

0, Fu
0, andFxu

0 are the known
uniform membrane forces~called ‘‘pre-stresses’’!, rh is the mass
density~per unit lateral area!, D and h are the effective bending
stiffness and thickness of the shell, andE is Young’s modulus.
Here, the effective bending stiffnessD can be independent of th
thicknessh, and thus not necessarily proportional toh cube,@4#.
Once the radial deflectionw is determined from~1!, other two
in-plane displacementsu ~axial displacement! and v ~circumfer-
ential displacement! can be determined from other two~axial and
circumferential! equations, see e.g., Eqs.~6.33c! of @12#, or Eqs.
~6.13a,6.13b! of @15#. The Eq.~1! and the other two equations~the
latter will not be used in the present paper! are called ‘‘Donnell
equations,’’ while the single Eq.~1! is also often called ‘‘Donnell
equation.’’

The single uncoupled Donnell Eq.~1! has been widely used in
many problems of cylindrical shells, due to its mathematical s
plicity compared to other more accurate shell equations, suc
exact Flugge’s coupled three equations for the displacement c
ponents (u,v,w) ~see Eqs.~7a–c! of @13# or Eqs. ~11!–~13! of
@18# for static case!. As mentioned before, the Donnell equatio
are based on four assumptions,@12–17#: ~1! the contribution of
two in-plane displacements to the bending curvature is negligi
~2! the contribution of transverse shear forces to the equilibrium
the circumferential direction is negligible;~3! the in-plane inertia
is negligible; and~4! the pre-stresses~for buckling problems only!
are neglected in two in-plane equations. The last two assumpt
imply that the pre-stresses, (Fx

0, Fu
0, andFxu

0 ), and in-plane iner-
tias (rh]2u/]t2 andrh]2v/]t2) are eliminated from two in-plane
equations, and thus the two in-plane equations have the same
as their static counterparts without any pre-stresses. In partic
this means that Donnell Eq.~1! could give satisfactory result
only when the in-plane inertia (rh]2u/]t2 andrh]2v/]t2) is less
important than the radial inertia (rh]2w/]t2). In addition, as long
as the assumption~3! is concerned, it is noticed that the pre
stresses (Fx

0, Fu
0, andFxu

0 ) do occur in each of all three equilib
rium equations of more accurate shell models~such as Flugge
equations, see Eqs.~5a–c! of @13#, or Eqs. ~10!–~13! of @14#!.
Hence, the assumption~3! is indeed a simplifying approximation
for buckling of elastic cylindrical shells and could lead to an er
as compared to exact shell models such as Flugge equations
Journal of Applied Mechanics
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2.2 Simplified Flugge Equations„Model II …. It was shown
by Kempner@15,18,20,21# that, in the absence of the in-plan
inertias and pre-stresses in two in-plane equations, an uncou
single equation for the radial deflection can be derived from ex
Flugge equations of cylindrical shells by a procedure similar
the derivation of Donnell equation. In the presence of all p
stresses and radial inertia, after neglecting powers ofh2/12R2 ~or
(12n2)D/Eh•1/R2 whenD is a material parameter independe
of the thicknessh! compared to unity, this single equation can
written as~see Eqs.~6.34a–c! of @15#, or @18–21#!:

D•¹4S ¹21
1

R2D 2

w1
2D•~12n!

R6 S ]6w

]x2]u4
1

]4w

]x2]u2
2R4

]6w

]x6 D
5¹4p~x,u!1Fx

0
]2

]x2
¹4w12

Fxu
0

R

]2

]x]u S ¹4w1
¹2w

R2 D
1

Fu
0

R2
¹4S ]2w

]u2
1wD 2

Eh

R2

]4w

]x4
2rh

]2

]t2
¹4w (2)

where the pre-stress terms are referred to Eq.~6.36! of @12#.
In other words, the simplified Flugge single Eq.~2! is based on

Donnell’s assumptions~3! and ~4! only ~partially for the latter,
because the pre-stress terms of~2! are approximate in nature!, but
not on the assumptions~1! and ~2!. On the other hand, it is see
from ~1! and ~2! that although the simplified Flugge Eq.~2! is
slightly complicated than Donnell Eq.~1!, it essentially retains
mathematical simplicity of Donnell Eq.~1!. Hence, it is of great
interest to examine the range of applicability of the simplifi
Flugge Eq.~2! for CNTs, with a comparison to the Donnell Eq
~1!. In connection with this, it should be stated that, in spite
known comparison between Donnell equations and exact Flu
equations,@15,20–22#, no detailed comparison has been made
tween exact Flugge model and the simplified Flugge model~2! for
buckling and dynamic problems of elastic shells. Here, we wo
mention that an interesting equation has been suggested by
ley @20# which is obtained by neglecting some terms in the si
plified Flugge Eq.~2! and has an elegant form very close to Do
nell Eq. ~1!. As commented by Donnell@12#, ‘‘the choice of
coefficients in Morley’s solution merely to give the desirable r
sults in certain particular applications, rather than deriving th
from basic principle as was done in Flugge’s and our own~Don-
nell! solutions, makes their accuracy somewhat questionabl
applications to unchecked problems.’’ Hence, in the present pa
we shall focus on the simplified models~I! and ~II !.

In order to apply the model~I! or ~II ! to CNTs, it is sufficient to
know the bending stiffnessD, the in-plane stiffnessEh, the mass
density per unit lateral arearh, and Piosson’s ration of CNTs. In
particular, these parameters are not dependent of the definitio
the thicknessh, @3,4#. In fact, the effective bending stiffness of
carbon SWNT is D50.85 eV, its in-plane stiffness isEh
5360 J/m2, the mass density per unite lateral area isr5~2.27
g/cm3!30.34 nm, andn can be assumed to be equal to 0.2. F
more recent studies on Young’s modulus and Poisson ratio
carbon nanotubes and their sensitiveness to diameter smaller
1 nm, see@23,24#.

2.3 Exact Flugge Equations„Model III …. Exact Flugge
equations will be used in the paper as standard elastic shell mo
For static buckling of CNTs, because the general formulas of
act Flugge equations for various buckling problems are availa
in Flugge’s book,@13#, the exact Flugge equations in the presen
of the pre-stresses, which are somewhat lengthy, will not be c
here~see Eqs.~7a–c! of @13#!. For free vibration of CNTs, on the
other hand, the exact Flugge equations of cylindrical shells
relatively simple because of the absence of the pre-stresses
are given by~see@16# and @18#!
SEPTEMBER 2004, Vol. 71 Õ 623
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R2
]2u

]x2
1

1

2
~12n!

]2u

]u2
1

R

2
~11n!

]2v
]x]u

2nR
]w

]x

1~12n2!
D

EhR2 F 1

2
~12n!

]2u

]u2
1R3

]3w

]x3

2
R

2
~12n!

]3w

]x]u2

G
5

rh

Eh
~12n2!R2

]2u

]t2
,

R

2
~11v !

]2u

]x]u
1

R2

2
~12v !

]2v

]x2
1

]2v

]u2
2

]w

]u

1~12n2!
D

EhR2 F3R2

2
~12v !

]2v

]x2
1

R2

2
~32v !

]3w

]x2]u
G

5
rh

Eh
~12v2!R2

]2v

]t2
, (3)

nR
]u

]x
1

]v
]u

2w2~12n2!
D

Eh
R2

•¹4w

1~12n2!
D

EhR2 F 2R3
]3u

]x3
1

R

2
~12n!

]3u

]x]u2

2
R2

2
~32n!

]3v

]x2]u
2w22

]2w

]u2

G
5

rh

Eh
~12n2!R2

]2w

]t2
.

In order to apply Flugge Eqs.~3! to CNTs, it is sufficient to
know the bending stiffnessD, the in-plane stiffnessEh, the mass
density per unit lateral arearh, and Piosson’s ration of CNTs. In
particular, these parameters are not dependent of the definitio
the thicknessh, @3,4#. Here, it is emphasized that, even for sta
problems without any pre-stresses~for which assumptions~3! and
~4! are valid!, Eq. ~2! is not exactly the same as the exact Eqs.~3!
because some powers ofh2/12R2 ~or (12n2)D/Eh•1/R2 whenD
is a material parameter independent of the thicknessh! have been
neglected in~2! compared to unity. To our knowledge, no detail
comparison has been made between the simplified Flugge Eq~2!
~model II! and the exact Flugge equations~model III! for buckling
and dynamic problems. In particular, in view of unusual geome
and materials characteristics of CNTs, it is relevant to compare
simplified shell models~1! and~2! with exact Flugge Eqs.~3! and
available experiments or molecular dynamics simulations
CNTs.

3 Static Buckling of Carbon Nanotubes
First, let us examine static buckling of SWNTs. Since agr

ments between Donnell shell model~I! and available experiment
or molecular dynamics simulations have been demonstrated
viously for various static buckling problems of CNTs,@3,4,8,9#,
we shall focus on comparison between Donnell model~I!, simpli-
fied Flugge model~II !, and exact Flugge model~III !. Throughout
the paper, we shall consider simply supported boundary co
tions for cylindrical shells given by

w50, v50, Nx50 and Mx50. (4)

Thus, for all three models I, II, and III, the buckling modes a
given by
624 Õ Vol. 71, SEPTEMBER 2004
n of
ic

d
.

ric
the

of

e-

pre-

di-

re

w~x,u!5A sin
mpx

L
cosnu

u~x,u!5B cos
mpx

L
cosnu (5)

v~x,u!5C sin
mpx

L
sinnu

whereA, B, andC are some constants representing amplitudes
radial, axial and circumferential displacements, respectively,m is
the axial half-wave number, andn is the circumferential wave
number. In particular,n50 represents axisymmetric mode. Su
stitution of ~5! into Eqs. ~1!, ~2!, or ~3! leads to homogeneou
equations for the coefficientA or A, B, andC. Thus, eigenequation
derived by existence condition of nonzero solution determines
buckling strain, as function of the wave numbersm andn. Finally,
the critical strain for buckling is decided as the minimum buckli
strain. Here, strictly speaking,m must be nonzero integer for sim
ply supported end conditions. However, it is easily understo
that buckling of axially uniform modes, which do not strictly me
simply supported end conditions, can be studied by the eigene
tion based on the modes~5! by takingm50.

3.1 Axial Compression. Let us first discuss buckling o
SWNT ~of typical diameter 1.3 nm! under axial compression. It is
shown,@4#, that the Donnell Eq.~1! ~model I! gives good estimate
of the critical stress, while the numbersm andn cannot be deter-
mined uniquely by Donnell model~I!. On the other hand, the
predicted axial wavelength of buckling mode, based on an emp
cal assumption,@4#, that the axial wavelength is equal to the c
cumferential wavelength, is found to be in good agreement w
available molecular dynamics simulations. It is well known,@12#,
that, because linear theories of shell buckling admit a large n
ber of different buckling modes which correspond to almost
same buckling stresses, they usually cannot predict the ac
buckling mode without aid of any empirical assumption like th
mentioned above. Thus, one cannot expect that simplified or e
Flugge model could give an accurate theoretical prediction for
wavelengths of buckling mode of SWNTs without any empiric
assumption. Therefore, our focus here is to compare three s
models and examine whether simplified Flugge Eq.~2! is in better
agreement with exact Flugge equations than Donnell Eq.~1!.

Because two key parameters for buckling modes are the
cumferential wave numbern and the dimensionless axial wave
length~normalized by the diameter 2R) L/(Rm), the dependency
of the buckling strain on (L/(Rm),n) is shown in Figs. 1–3 for
the model I, II, and III, respectively. It is seen from Figs. 1–3 th
although all three models give similar results forn larger than 4 or
L/(Rm) below unity, simplified Flugge model~II ! is in much
better agreement with exact Flugge model~III ! than Donnell
model~I! for n51, 2 or 3 andL/(R•m) larger than unity. In fact,
it is found from the data shown in Figs. 1–3 that the relati
errors of the simplified Flugge model~II ! is about less than 10%
for n larger than 2 orL/(Rm) below 2, while the relative error of
Donnell model~I! is about less than 10% only forn larger than 4
or L/(Rm) below 1. The critical strain given by the three mode
for several typical cases is shown in Table 1. In particular, beca
long SWNTs of larger aspect ratio exhibit beam-like bucklingn
51), the critical strain given by elastic beam-model~Euler for-
mula! is also shown in Table 1 for larger values ofL/(Rm). It is
seen from Table 1 that the simplified Flugge model~II ! has much
better accuracy than Donnell model~I! especially whenn52 or 3
which corresponds to the minimum buckling strain in many i
portant cases. In addition, simplified Flugge model~II ! is a better
approximate model than Donnell model~I! for very long shells for
which the buckling mode corresponds ton51 ~beam-mode!. In-
deed, in this case, Donnell Eq.~1! lead to an error in the order o
magnitude, while simplified Flugge Eq.~2! differs than exact
Flugge model~III ! or the beam-model by a factor of two. Thi
Transactions of the ASME
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conclusion for very long SWNTs shows that simplified Flug
model ~II ! is significantly better than Donnell model~I! even in
extreme cases.

3.2 Radial Pressure. It has been shown,@8#, that the Don-
nell model~I! gives satisfactory estimate of the critical pressure
CNTs. Here, our goal is to compare three shell models and ex
ine whether simplified Flugge Eq.~2! is in better agreement with
exact Flugge equations than Donnell Eq.~1!. The dependency o
buckling pressure on (L/(Rm),n) ~where, by the definition of
buckling under radial pressure, n is not smaller than 2! is qualita-
tively similar for all three models I, II and III, and thus is show
only for the exact Flugge model~III ! in Fig. 4. In addition, the
relative errors of the model I and II compared to the exact mo
III are shown in Figs. 5 and 6, respectively. Particularly, the cr
cal pressure given by three models~I, II and III! are shown in
Table 2 for several typical cases. It is seen from Figs. 4–6
Table 2 that simplified Flugge model gives much small relat
errors than Donnell model forn52 andL/(Rm) larger than one,
while relative errors of both models~I and II! are not much larger
than 10% forn larger than 2. On one hand, forL/(Rm) smaller
than one, the minimum buckling pressure is decided byn.2 ~Fig.

Fig. 1 The buckling strain given by Donnell model „I… for the
SWNT of radius 0.65 nm under axial compression

Fig. 2 The buckling strain given by simplified Flugge model
„II… for the SWNT of radius 0.65 nm under axial compression
Journal of Applied Mechanics
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4! in which both model~I! and model~II ! are applicable with
relative errors not much larger than 10%. On other hand, for lar
L/(Rm) ~it is the case when SWNTs are long or moderately lon!,
the minimum buckling pressure is decided byn52 and thus the
simplified Flugge model~II ! is much better than Donnell Mode
~I!. Hence, it is concluded that, in any case, simplified Flug
model ~II ! is a better approximate model than Donnell model~I!
for buckling of CNTs under radial pressure.

4 Free Vibration of Carbon Nanotubes
Free vibration of CNTs is a topic of major concern, large

because of the usefulness of frequency analysis to Raman sp
of CNTs,@25–28#. Here, we are particularly interested in compa
son between resonant frequencies of radial breathing mode
CNTs predicted by elastic shell models and the available d
obtained by experiments or molecular dynamics simulations,@25–
28#.

4.1 Radial Breathing Modes. Because of complicated vi
bration spectrum, existing data on vibration of CNTs have mai
focused on radial breathing modes of SWNTs and MWNTs. T
is due to the fact that the radial breathing modes exhibit str
resonant characteristics in Raman spectra, and the frequenc
radial breathing modes of SWNTs is simply proportional to t
inversed radius. These features make radial breathing mod
very useful probe for structure and properties of CNTs,@25–28#.
Here, our goal is to examine applicability of elastic shell mod
for vibration of CNTs with comparison to available data on rad
breathing modes, and also to examine the accuracy of the van
Waals intertube interaction coefficient suggested in our previ
work, @5,8,9#.

For radial breathing modes, the radial deflectionw(t) is spa-
tially uniform and thus independent ofx and u. In this special
case, an uncoupled equation can be detained for the radial de
tion w(t) from all three models I, II, and III. In fact, the third
equation of Donnell equations~see Eqs.~8.13c! of @15#!, or the
third equation of Flugge Eq.~3! gives almost the same uncouple
equation forw(t) as

w

R2
1

rh

Eh
~12n2!

]2w

]t2
50 (6)

where a small termh2/12R2 ~or (12n2)•D/Eh•1/R2 whenD is a
material parameter independent of the thicknessh! has been ne-
glected compared to unity. For radial breathing mode of SWN
Eq. ~6! gives the breathing frequency

Fig. 3 The buckling strain given by exact Flugge model „III… for
the SWNT of radius 0.65 nm under axial compression
SEPTEMBER 2004, Vol. 71 Õ 625
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Table 1 The comparison of minimum buckling strains, predicted by different models for the SWNT of
radius 0.65 nm under axial compression
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f 5230 cm21 ~nm/2R! (7)

which is in good agreement with experimental resultf
5224 cm21 (nm/2R) @25,26#, or Mahan’s three-dimensional elas
ticity result f 5227 cm21 (nm/2R), @28#. In this case, it is noticed
that bending stiffness of SWNTs does not appear because r
breathing vibration does not involve bending deformation.

Let us apply Eq.~6! to radial breathing modes of MWNTs an
compare to Popov et al. results obtained by molecular dynam
simulations,@27#. Since all nested tubes of a MWNT are orig
nally concentric and initial interlayer spacing is equal or ve
close to the equilibrium spacing, the van der Waals interac
pressure between any two adjacent tubes of a MWNTs is ne
gible prior to vibration. When radial vibration occurs, the inte
layer spacing changes, and the van der Waals interaction pre
~per unit lateral area! at any point between any two adjacent tub
depends linearly on the difference of their radial deflections at
point (Dw). Thus, intertube pressure can be calculated as follo

p5cDw (8)

where c is vdW interaction coefficient. In our previous work
@5,8,9#, a value ofc is suggested as follows:

Fig. 4 The buckling pressure given by exact Flugge model „III…
for the SWNT of radius 0.65 nm under radial pressure
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c05
3203erg/cm2

0.16d2
~d51.4231028 cm!. (9)

Here the curvature effect and the dependency on radius are
glected and thusc0 given by ~9! has been used for SWNTs o
various radii.

Consider DWNTs and three-wall CNTs. The results based
the elastic model~6!, ~8!, ~9! are shown in Figs. 7 and 8, with
comparison to Popov et al.’s results obtained by molecular
namics simulations,@27#. It is seen that the elastic shell model~6!,
~8!, ~9! is in excellent agreement with molecular dynamics sim
lations of radial breathing modes for DWNTs and three-w
CNTs, with relative errors less than 5%. Further, radial breath
frequencies of MWNTs of innermost radii 1 nm are shown in F
9 for various number of nested layers up to 10. Comparison
tween the present Fig. 9 and Popov et al.’s results based
continuum model,@27#, shows that the maximum of relative erro
is less than 25%. Since no details are given for Popov et al. c
tinuum model,@27#, we cannot comment on the difference b
tween their results and the present results.

Fig. 5 The relative error of buckling pressure predicted by
Donnell model „I… for the SWNT of radius 0.65 nm under radial
pressure
Transactions of the ASME
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Finally, to examine the coefficientc0 given by~9!, we study the
sensitiveness of radial breathing frequencies on the coefficiec
~8!. Since breathing frequencies are very high for small-rad
SWNTs, the intertube interaction has little influence on the brea
ing frequencies of DWNTs or three-wall CNTs of small rad
~such asR150.34 nm). Thus, the frequencies of DWNTs or thre
wall CNTs are insensitive to the coefficient c for small-radi
DWNTs or three-wall CNTs, and comparison with molecular d
namics simulations of small-radius CNTs cannot identify the b
value of the coefficientc. Here, some results are shown in Fig. 1
for a DWMT and a three-wall CNT of relatively large innermo
radius 1.36 nm and 1.02 nm, respectively. Because the low
frequency is insensitive to the value ofc, only the dependency o
higher frequencies is shown in Fig. 10. It is seen from Fig. 10 t
a relative error of 20% occurs when the coefficientc0 changes by
a factor of 2. Therefore, the excellent agreement given in Fig
and 8 between the model based on the coefficientc0 ~9! and
molecular dynamics simulations suggests that the coefficienc0
given by~9! can be regarded as a good value at least for CNT
larger radii~not smaller than 1.02 nm!. This offers an evidence fo
the accuracy of the coefficient~9! which was suggested in@5# and
applied to MWNTs in@8,9#.

Fig. 6 The relative error of buckling pressure predicted by
simplified Flugge model „II… for the SWNT of radius 0.65 nm
under radial pressure

Table 2 The comparison of critical buckling pressure, pre-
dicted by different models for the SWNTs of radius 0.65 nm or 5
nm under radial pressure

Radius
~nm!

Vibration
Modes

Aspect
Ratio

Critical Buckling Pressure~GPa!

m n Model I Model II Model III

0.65

4 0.7 15.58 15.16 15.28
3 1.5 6.29 5.84 5.90

1 5 2.15 1.67 1.68
2 10 2.00 1.13 1.51

20 1.97 1.48 1.48

0 2 1.97 1.48 1.48

5.00

7 0.7 0.077 0.077 0.076
5 1.5 0.035 0.033 0.034

1 3 5 10.9031023 9.9031023 9.9031023

2 10 5.0531023 4.1931023 4.2031023

20 4.3831023 3.3131023 3.3031023

0 2 4.3231023 3.3131023 3.2431023
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4.2 Free Vibration of SWNTs. Let us now clarify the range
of applicability of Donnell model~I! and simplified Flugge mode
~II ! for free vibration of CNTs, in terms of the dimensionless ax
wavelengthL/(Rm) and the circumferential wave number n. Th
vibration modes of a simply supported shell (m.0) are given by
~v is the circular frequency!

w5A sin
mpx

L
•cosnu•exp~ iv•t !

u5B cos
mpx

L
cosnu•exp~ iv•t ! (10)

v5C sin
mpx

L
cosnu•exp~ iv•t !

wherem should be nonzero integer for simply supported end c
ditions. Substitution of~10! into Eqs. ~1!, ~2!, or ~3! leads to
homogeneous equations, the existence condition for non
solution determine resonant frequencies as function of the n
bersm andn.

Fig. 7 Frequencies of radial breathing vibration predicted by
elastic shell models and MD simulation for DWNTs of various
outer radii

Fig. 8 Frequencies of radial breathing vibration predicted by
elastic shell models and MD simulation for three-wall CNTs of
various outermost radii
SEPTEMBER 2004, Vol. 71 Õ 627
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Here, the frequencies given by the exact model~III ! are shown
in Fig. 11 for the SWNT of radiusR50.65 nm, while the relative
errors of the frequencies given by two simplified models~I! and
~II ! compared to the exact model~III !, are shown in Figs. 12 and
13, respectively. Similar results for the radiusR55 nm, are given
in Figs. 14–16. It is seen from Figs. 11–16 that the relative err
of the simplified Flugge model~II ! are about 10% or less provide
thatn is larger than one orL/(Rm) is smaller than two, while the
relative errors of Donnell model~I! are about 10% or less pro
vided thatn is larger than 3 orL/(Rm) is less than one. Hence, th
simplified Flugge model~II ! is a much better approximate she
model than Donnell model I. In particular, it is seen from Figs.
and 14 that the critical aspect ratio (L/(2R)) at which the vibra-
tional mode corresponding to the minimum frequency trans
from n52 to n51 ~beam-mode! is about 5 for SWNT of radius
0.65 nm, and is larger than 10 for SWNT of radius 5 nm.
addition, for long simply supported shells, the vibrational mo
corresponding to the minimum frequency is characterized bym
51 andn51 ~beam-model!. In this case, it is seen from Figs
12–13 and Figs. 15–16 that Donnell model~I! leads to errors in

Fig. 9 Frequencies of radial breathing vibration predicted by
the elastic shell models for MWNTs of the innermost radius 1
nm

Fig. 10 Dependence of the breathing mode frequencies of a
DWNT of inner radius 1.36 nm and a three-wall CNT of inner-
most radius 1.02 nm on the vdW interaction coefficient
628 Õ Vol. 71, SEPTEMBER 2004
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the order of magnitude, while simplified Flugge model~II ! is
comparable to exact Flugge model~III ! ~with relative errors 40%!.
These conclusions are qualitatively consistent with those dra
for static buckling discussed in Section 3. It is emphasized that
improved accuracy of simplified Flugge model over Donn
model is significant for CNTs because the low-frequency vib
tional modes often have circumferential wave numbern52 or 3.
Therefore, these results are important for further application
simplified shell models to CNTs, especially to MWNTs of larg
number of layers.

Here, it should be stressed that one essential shortcomin
simplified shell models~I! and ~II ! is that they give only one
frequency~radial vibration! for each combination (m,n), while
the exact shell model~III ! gives three frequencies for givenm and
n which represent radial, axial and circumferential vibration
modes, respectively. Therefore, the simplified shell models~I! and
~II ! cannot be used to discuss axial and circumferential vibra
modes. In spite of this, because radial vibration is dominan
many important problems and the corresponding frequency is
ally lower than the frequencies of axial and circumferent
modes, the radial vibrational modes are of major concern.

Fig. 11 The frequency of radial vibration given by exact
Flugge model „III… for the SWNT of radius 0.65 nm

Fig. 12 The relative error of radial vibration frequency pre-
dicted by Donnell model „I… for the SWNT of radius 0.65 nm
Transactions of the ASME
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example of SWNTs of radius 5 nm are given in Fig. 17 for thr
frequencies given by the exact model~III !, and single frequency
given by the simplified model~I! and ~II !, respectively, which
indicates that the radial frequency is lower than other two~axial
and circumferential! frequencies for almost all given (L/(Rm),n)
exceptn50 which means axisymmetric vibrational modes.

4.3 Beam-Like Vibration. The above results indicate tha
large errors of simplified shell models~I! and ~II ! could occur
whenn51 andL/(Rm) is much larger than one or two. It is th
case when low-frequency vibrational modes of long SWNTs
concerned. Here, to compare the three models in this special
let us discuss beamlike vibration of simply supported SWNTs
larger aspect ratio whose lowest frequency corresponds ton51
andm51, @29–32#. All three shell models, together with the ela
tic beam-model,@10#, are shown in Fig. 18 for SWNTs of radiu
0.65 nm, as function of the aspect ratio (L/(2R)). In addition,
detailed comparison is shown in Table 3 for several relevant ca
It is found that, for special case of beam-like vibration of CNT
simplified Flugge model~II !, in which the effect of in-plane iner-
tia is neglected,@33,34#, leads to as large as 40–50% relati

Fig. 13 The relative error of radial vibration frequency pre-
dicted by simplified Flugge model „II… for the SWNT of radius
0.65 nm

Fig. 14 The frequency of radial vibration given by exact
Flugge model „III… for the SWNT of radius 5 nm
Journal of Applied Mechanics
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errors as compared to exact Flugge model~III !, while Donnell
model ~I! leads to errors in the order of magnitude.

4.4 Axially Uniform Vibrational Modes. The results
shown above do not include the special case of axially unifo
vibrational modes withm50, which cannot strictly meet the sim
ply supported end conditions. However, it is easily understo
that axially uniform vibrational modes can be studied by t
eigenequation based on the modes~10! by takingm50. The fre-
quencies given by the exact model~III ! and the simplified model
~I! and ~II !, are shown in Table 4 for axially uniform modes (m
50) of SWNTs of radiusR50.65 nm and 5 nm. Since the case
(m50, n51) represents a pure rigid-body motion, it is not i
cluded in Table 4. It is seen that the frequency forn50 ~radial
breathing mode! is higher than all other frequencies given in Tab
4. On the other hand, forn>2, the frequencies shown in Table
monotonically increase with the circumferential wave number

Fig. 15 The relative error of radial vibration frequency pre-
dicted by Donnell model „I… for the SWNT of radius 5 nm

Fig. 16 The relative error of radial vibration frequency pre-
dicted by simplified Flugge model „II… for the SWNT of radius 5
nm
SEPTEMBER 2004, Vol. 71 Õ 629
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5 Conclusions
This paper examines applicability of the simplified Flugge a

Donnell cylindrical shell equations for carbon nanotubes. St
buckling and free vibration of carbon nanotubes are studied u
the two simplified shell models with comparison to the ex
Flugge shell model. It is found that all three elastic shell mod
are in excellent agreement~with relative errors less than 5%! with
recent molecular dynamics simulations for radial breathing mo
of carbon nanotubes. For general cases of static buckling and
vibration, one major conclusion is that the relative errors of
simplified Flugge model~II ! are generally less than 10% forn
larger than 1 or 2, or forL/(Rm) smaller than two, while the
relative errors of Donnell model~I! are less than 10% only forn
larger than 3 or 4, or forL/(R.m) smaller than one. This conclu
sion is significant because the critical buckling mode and lo
frequency vibrational modes often have circumferential wa
number n52 or 3. Hence, simplified Flugge model~II ! has a
significantly enlarged range of applicability compared to Donn
model~I!, and covers almost all important cases of major conce
Almost the only missing significant case is the beam-like buckl
or vibration of long CNTs. In this case, however, simple elas

Fig. 17 The vibration frequencies given by three shell models
for the SWNT of radius 5 nm

Fig. 18 Comparison of beam-like vibrational frequencies
given by different models for SWNT of radius 0.65 nm
630 Õ Vol. 71, SEPTEMBER 2004
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beam model gives excellent approximate results as compare
the exact Flugge shell model and thus the latter is not necess
needed. Here, we would emphasize that simplified shell mod
characterized by a single uncoupled equation for radial deflect
will be particularly useful for MWNTs of large number of layers
On the other hand, such simplified shell models are applica
only for radial deformation of cylindrical shells with simpler en
conditions~such as simply supported ends!. In other words, when
axial or circumferential deflection becomes essential or m
complicated end conditions are involved, more accurate s
models~such as exact Flugge shell model! are usually needed.
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Stability Criteria for
Nonclassically Damped Systems
With Nonlinear Uncertainties
The asymptotic stability of nonclassically damped systems with nonlinear uncertaint
addressed using the Lyapunov approach. Bounds on nonlinear perturbations that
tain the stability of an asymptotically stable, linear multi-degree-of-freedom system
nonclassical damping are derived. The explicit nature of the construction permits
directly express the algebraic criteria in terms of plant parameters. The results are
applied to the symmetric output feedback control of multi-degree-of-freedom system
nonlinear uncertainties. Numerical examples are given to demonstrate the new sta
criteria and to compare them with the previous results in the literature.
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1 Introduction
Dynamic analysis of structures is commonly accomplished

suming deterministic behavior of model parameters and loa
Mathematical modeling of physical dynamic systems in many
gineering problems, however, includes some degree of uncer
ties due to structural parameter variations, unmodeled dynam
and control input constraints. Each of these constraints can lea
severe degradation in performance and even instability. Hence
problem of maintaining the stability of a nominal stable syst
subjected to linear and/or nonlinear perturbations has been a
tive area of research for some time. To obtain stability measu
of linear state-space systems with unstructured and/or struct
uncertainties, the Lyapunov stability theory is utilized in the l
erature~see, for example, Yedavalli@1#, Zhou and Khargoneka
@2#, Siljak @3#, Bien and Kim@4#, and the literature cited therein!.

Stability measures of second-order systems have been relat
scarce compared to those in the first-order form, even for nom
cases. A good account of stability conditions for nominal seco
order system is presented in Shieh et al.@5#. Stability robustness
bounds on unstructured perturbations of second-order system
presented using the Lyapunov function approach in Hsu and
@6#. Robust stability bounds on structured perturbations and
pendent parametric perturbations are proposed in Cao and Sh@7#.
A design procedure is carried out in Diwekar and Yedavalli@8# for
stabilizing the matrix second-order systems with variations in
ertia, damping and stiffness matrices. In 1997, Cox and Moro@9#
studied the stability of a class of nonlinear dynamic syste
whose linear part is almost classically damped and propose
stability criterion that bounds the degree of the uncertain non
earity and deviation from classical damping. According to C
and Moro@9#, a linear second-order system is classically damp
if the damping and stiffness matrices of the system are commu
ones. Although the Rayleigh damping models or other class
damping strategies~e.g., Cox and Moro@9#! are commonly used
in the stability analysis due to their simplicity, they may not ge
erally apply to real structures.

In this paper, we are concerned with the problem of the stab

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2003; final revision, February 2, 2004. Associate Editor: M. P. Mignolet. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jo
of Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication of the paper itself in the AS
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robustness of nonclassically damped systems with nonlinear
certainties. By using a specific Lyapunov function, bounds
nonlinear perturbations that maintain the stability of an asympt
cally stable, linear system with nonclassical damping are deri
and directly expressed in terms of plant matrices. The main
bility criterion obtained is shown to be less conservative than
criterion for the stability of almost classically damped syste
proposed by Cox and Moro@9#. In order to stabilize the second
order system with nonlinear uncertainties a symmetric out
feedback structure is introduced for the control law. As a con
quence of the structure of the control law, the proposed appro
can be employed to guarantee the global stability of the clos
loop system in the Lyapunov sense. Simple examples are stu
for demonstrating the merit of the stability measures and to co
pare them with the previous results in the literature.

The following notation will be used throughout this paper.

Rn 5 n-dimensional Euclidean space
Rn3m 5 n3m real matrix
l j (A) 5 j -th eigenvalue of square matrixA

lM(P)(lm(P)) 5 maximum~minimum! eigenvalue of
symmetric matrixP

I 5 n3n identity matrix
ixi 5 Euclidean norm of vectorx
iAi 5 spectral norm of matrixA

A.0 (A,0) 5 positive ~negative! definite matrix

2 Main Results
Consider a differential equation governing the motion of

n-degree-of-freedom system

Mẍ~ t !1Dẋ~ t !1Kx~ t !5 f ~x~ t !,ẋ~ t !,t ! (1)

wherex(t)PRn is configuration vector,f PRn is a smooth func-
tion of x, ẋ and t; M , D and KPRn3n are symmetric positive
definite mass, damping and stiffness matrices, respectively.
assumed that there exist positive constants«1 and«2 such that the
nonlinear forcing functionf (x,ẋ,t) satisfies

i f ~x,ẋ,t !i<«1ixi1«2i ẋi , for all t>t0 . (2)

The state-space expression of system~1! can be written as

ẏ~ t !5Ay~ t !1F~y~ t !,t !, (3)

where

y~ t !5Fx~ t !
ẋ~ t !G , A5F 0 I

2M 21K 2M 21D
G ,

7,
ion
rnal

ing,
l be
E
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s

of
F~y~ t !,t !5F 0
M 21f ~x~ t !,ẋ~ t !,t !G . (4)

The following lemma is well known~Skelton et al.@10#! and
will be used in the proof of our main results.
Lemma 1. ~Skelton et al.@10#!: Let a symmetric matrixP be
partitioned as

P5F P11 P12

P12
T P22

G .

Then the following statements are equivalent:
~i! P.0;
~ii ! P11.0 andP222P12

T P11
21P12.0;

~iii ! P22.0 andP112P12P22
21P12

T .0.
THEOREM 1. Suppose that the nonlinear perturbationf satisfies
condition ~2!; then system~1! is globally asymptotically stable if

1

4 S «22
2m

g
«1D 2

1m«11
2mk

g
«2,mk, (5)

wherem5lM(M ), k5lm(K), andg5lm(D).
Proof. Introduce a Lyapunov function candidateV(y(t))
5yT(t)Py(t), where

P5F D1
2m

g
K M

M
2m

g
M
G . (6)

SinceM , D andKPRn3n are positive definite matrices, it follow
from Lemma 1 that the symmetric matrixP is positive definite if
and only if the symmetric matrix

D1
2m

g
K2

g

2m
M.0. (7)

Taking notice of

g

2m
lM~M !5

g

2
,lm~D !<lmS D1

2m

g
K D , (8)

we see that~7! holds and thereforeP.0. Taking the time deriva-
tive of V(y(t)) along the solution of system~3! yields

V̇~y~ t !!5 ẏT~ t !Py~ t !1yT~ t !Pẏ~ t !

5yT~ t !~ATP1PA!y~ t !12yT~ t !PF~y~ t !,t !

522yT~ t !F K 0

0
2m

g
D2MG y~ t !12yT~ t !PF~y~ t !,t !.

(9)

Since

ẋT~ t !S 2m

g
D2M D ẋ~ t !5

2m

g
ẋT~ t !Dẋ~ t !2 ẋT~ t !Mẋ~ t !

>2mi ẋ~ t !i22lM~M !i ẋ~ t !i2

5mi ẋ~ t !i2, (10)

in terms of~2! and ~4!, we obtain

V̇~y~ t !!522xT~ t !Kx~ t !22ẋT~ t !S 2m

g
D2M D ẋ~ t !

12S xT~ t !1
2m

g
ẋT~ t ! D f ~x~ t !,ẋ~ t !,t !

<22~kix~ t !i21mi ẋ~ t !i2!12S «1ix~ t !i2
Journal of Applied Mechanics
1S«21
2m

g
«1Dix~t!iiẋ~t!i1

2m

g
«2iẋ~t!i2D

522@ix~t!iiẋ~t!i#F k2«1 2
1

2 S«21
2m

g
«1D

2
1

2 S«21
2m

g
«1D m2

2m

g
«2

G
3Fix~t!i

iẋ~t!iG. (11)

Then,V(y(t)) is a Lyapunov function if

k2«1.0, 12
2

g
«2.0, and

det3S F k2«1 2
1

2 S «21
2m

g
«1D

2
1

2 S «21
2m

g
«1D m2

2m

g
«2

G D .0.

(12)

The inequalities in~12! hold if

mk2m«12
2mk

g
«22

1

4 S «22
2m

g
«1D 2

.0. (13)

Therefore, if the inequality~5! holds,V(y(t)) is a Lyapunov func-
tion for system~3! and the nonlinear system~1! is globally as-
ymptotically stable.
THEOREM 2. Suppose that the nonlinear perturbationf satisfies
condition ~2!; then system~1! is globally asymptotically stable if

«5max$«1 ,«2%,
2gk

A~2k1g!21
k

m
~2m2g!21~2k1g!

.

(14)

Proof. Taking the same Lyapunov function candidateV(y(t))
5yT(t)Py(t) and employing the very similar ways as the proof
Theorem 1, we have

V̇~y~ t !!<22~kix~ t !i21mi ẋ~ t !i2!12«S ix~ t !i2

1S 11
2m

g D ix~ t !ii ẋ~ t !i1
2m

g
i ẋ~ t !i2D

522@ ix~ t !ii ẋ~ t !i #

3F k2« 2
1

2
«S 11

2m

g D
2

1

2
«S 11

2m

g D m2
2m

g
«

G F ix~ t !i
i ẋ~ t !i G .

(15)

Then,V(y(t)) is a Lyapunov function if

k2«.0, and

detS F k2« 2
1

2
«S 11

2m

g D
2

1

2
«S 11

2m

g D m2
2m

g
«

G D .0.

(16)
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The last inequality in~16! holds if

mk2S m1
2mk

g D «2
1

4 S 12
2m

g D 2

«2.0. (17)

The inequality~17! is met if

«,H gk

g12k
, for m5

g

2

2g

~g22m!2 @Am2~g12k!21mk~g22m!22m~g12k!#, for mÞ
g

2

5
2gmk

Am2~g12k!21mk~g22m!21m~g12k!
5

2gk

A~g12k!21
k

m
~g22m!21~g12k!

.

t

.
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m

Thus, taking notice of

2gk

A~g12k!21
k

m
~g22m!21~g12k!

<
gk

2k1g
<minH k,

g

2J ,

(18)

it is easily to verify that the inequalities in~16! are met if the
inequality ~14! holds. This completes the proof of Theorem 2.

Consider a nonlinear system whose mass matrix has been
malized to the identity, which is a special case of system~1!,
described as

ẍ~ t !1Dẋ~ t !1Kx~ t !5 f ~x~ t !,ẋ~ t !,t !, (19)

wherex(t)PRn, f PRn satisfies condition~2!; D and KPRn3n

are symmetric positive definite damping and stiffness matric
respectively. By Theorems 1 and 2, it is easy to obtain the follo
ing Corollary.
COROLLARY 1. Suppose that the nonlinear perturbationf satisfies
condition~2!; then system~19! is globally asymptotically stable if

1

4 S «22
2

g
«1D 2

1«11
2k

g
«2,k, (20)

or

«5max$«1 ,«2%,
2gk

A~2k1g!21k~22g!21~2k1g!
(21)

wherek5lm(K) andg5lm(D).
Remark 1. For system~19!, Cox and Moro@9# worked out a
stability criterion that bounds the degree of nonlinear perturba
and the deviation from classically damping. In Cox and Moro@9#,
the stiffness and damping matrices are assumed to be pos
definite and can be written as

K5K01K1 and D5D01D1 , (22)

whereK0D05D0K0 , i.e.,K0 andD0 is a classically damped pair
and there exists a positive constantd such that

iK1i<d and iD1i<d. (23)

Based on a special Lyapunov function, Cox and Moro@9# derived
a sufficient condition for asymptotic stability of system~19! that
can be written as

«1d,
2g0k0

A~2k01g0!21k0~22g0!21~2k01g0!
, (24)

where«5max$«1,«2%, k05lm(K0) andg05lm(D0). Obviously,
the inequality~24! coincides with the inequality~21! if the linear
part of the nonlinear system~19! is classically damped. If the
634 Õ Vol. 71, SEPTEMBER 2004
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stiffness and damping matricesK and D is not a classically
damped pair, however, the criterion in Cox and Moro@9# is rela-
tively conservative in comparing with the results in Corollary 1

3 Robust Stabilization by Symmetric Output Feed-
back Control

In this section we extend the above approach to the stud
robust controller design of second-order nonlinear systems.
symmetric output feedback is introduced for the control law. T
idea builds directly upon the work reported in Junkins and K
@11# and the literate cited therein.

Consider a class of nonlinear dynamical systems modeled
the equation of motion

Mẍ~ t !1Dẋ~ t !1Kx~ t !5 f ~x~ t !,ẋ~ t !,t !1Bu~ t ! (25)

wherex(t)PRn andu(t)PRm are configuration and control vec
tors, respectively;f PRn is a smooth function ofx, ẋ, andt; M ,
D, andKPRn3n are symmetric positive definite mass, dampi
and stiffness matrices, respectively;BPRn3m is the control influ-
ence matrix. Also, assume that there exist positive constant«1
and«2 such that the inequality~2! holds.

In order to maintain the symmetric property of the system,
introduce the following symmetric output feedback form of t
control law:

u52~G1y1G2ẏ!, y5BTx (26)

whereG1 andG2 arem3m positive definite symmetric gain ma
trices.

With the assumption that the sensors and actuators are pe
i.e., linear and instantaneous, the closed-loop equations ca
written as

Mẍ~ t !1~D1BG2BT!ẋ~ t !1~K1BG1BT!x~ t !5 f ~x~ t !,ẋ~ t !,t !.
(27)

Since the gain matricesG1 and G2 are positive definite, the
control-induced stiffness and damping termsBG1BT andBG2BT

are positive semi-definite. Therefore, if the system is controllab
then the linear part of closed-loop system~27! is at least asymp-
totically stable so long as the gain matrices are chosen to be p
tive definite. The following theorem can be derived directly fro
Theorem 1.
THEOREM 3. Suppose that the nonlinear perturbationf satisfies
condition~2!; then the closed-loop system~27! is globally asymp-
totically stable if there exist positive definite gain matricesG1 and
G2 such that

kc.«11
«2

2

4m
(28)
Transactions of the ASME
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Fig. 1 Schematic of a three-degree-of-freedom vibrator
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2m~2A~«2

2kc1m«1
2!~kc2«1!1«2~2kc2«1!!

4m~kc2«1!2«2
2 (29)

where m5lM(M ), kc5lm(K1BG1BT), and gc5lm(D
1BG2BT).

For given bounds«1 and «2 on the nonlinear perturbations
Theorem 3 can be used to determine the output feedback co
law ~26! to stabilize the trivial solution of the nonlinear syste
~25!.

4 Illustrative Examples
The following simple examples serve to illustrate the usefuln

of the stability criteria presented here and to compare them w
the existing criterion in the literature.
Example 1. Consider a three-degree-of-freedom nonlinear m
chanical system depicted in Fig. 1. The system consists of t
rigid bodies connected by springs and dampers.

The equations of motion in matrix form for the system in Fig
can be written as

Fm11m2 m2 0

m2 m2 0

0 0 m3

G F ẍ1

ẍ2

ẍ3

G1F c1 0 0

0 c2 0

0 0 c3

G F ẋ1

ẋ2

ẋ3

G
1F k11k0 0 2k0

0 k2 0

2k0 0 k31k0

G F x1

x2

x3

G5F g~x,ẋ!

0
2g~x,ẋ!

G (30)

wherex5@x1 x2 x3#T. We suppose that there exist positive co
stants«1 and «2 such that the nonlinear perturbation functio
g(x,ẋ) in ~30! satisfy the following inequality:

ug~x,ẋ!u<
1

2
«1ux12x3u1

1

2
«2uẋ12 ẋ3u. (31)

Thus, in comparing with system~1!, we have

i f ~x,ẋ!i5I F g~x,ẋ!

0
2g~x,ẋ!

G I
<I F 1 0 1

0 0 0

1 0 1
G S «1

2 F ux1u
ux2u
ux3u

G1
«2

2 F uẋ1u
uẋ2u
uẋ3u

G D I
<«1ixi1«2i ẋi .

Obviously, system~30! is a nonclassically damped system if th
viscous damping coefficientc1 is not identical withc3 , i.e., c1
Þc3 . Consider the system~30! with

H m152 kg, m25m351 kg;
c150.9 Ns/m, c250.6 Ns/m, c350.6 Ns/m;

k154 N/m, k255 N/m, k354 N/m, k052 N/m.
Mechanics
,
trol

ss
ith

e-
ree

1

n-
n

e

It follows that

m5lM~M !521&, g5lm~D !50.6, k5lm~K !54.
(32)

Application of the stability condition in Theorem 1 yields

~«225.690356«1!2113.656854«11180.091390«2,54.627417.
(33)

From Theorem 2, we have

«5max$«1 ,«2%,0.245808. (34)

The results are depicted in Fig. 2 where the stability region
sulted from~33! is enclosed by the curveC and the axes, while
the region given by~34! is enclosed by the linesL1 , L2 and the
axes. It can be seen from Fig. 2 that the stability bound given
condition~14! in Theorem 2 is relatively conservative than that
Theorem 1.
Example 2. Consider system~1! with

M5I , D5F 1 20.5

20.5 2 G , K5F4 0

0 6G . (35)

Then, we haveg5lm(D)5 1/2 (32&), k5lm(K)54. Ap-
plication of the stability condition~20! in Corollary 1 yields

~«222.522408«1!214«1140.358524«2,16. (36)

Applying the stability condition~21! in Corollary 1, it can be
easily computed that

«5max$«1 ,«2%,0.354144. (37)

The corresponding stability region is depicted in Fig. 3. Ob
ously, the stability region given by condition~20! is much larger
than that given by condition~21!.

Since the matricesK and D do not commute, we cannot di
rectly employ Theorem 3.1 of Cox and Moro@9#. Let

D05F 1 0

0 2G , D15F 0 20.5

20.5 0 G .

Fig. 2 Predicted stability regions for the system in Example 1
SEPTEMBER 2004, Vol. 71 Õ 635
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Then, we haveKD05D0K and

g05lm~D0!51, k05lm~K !54, d5iD1i50.5.

Therefore, according to Theorem 3.1 of Cox and Moro@9#, the
system is stable if«1d,0.439089. This inequality cannot b
satisfied sinced50.5.0.439089. Thus, for this example, the st
bility criterion of Cox and Moro@9# is not being able to draw any
conclusion.

5 Conclusions
In conclusion, a specific Lyapunov function has been chose

investigate the stability robustness of nonclassically damped
tems with nonlinear perturbations. In terms of the positive defin
mass, damping and stiffness matrices, algebraic criteria have
introduced to guarantee the asymptotic stability of the system.
checking of stability by our criteria can be carried out rather s
ply. This is believed to be a useful contribution to existing sca
literature on the problem of robust stability of multi-degree-o

Fig. 3 Predicted stability regions for the system in Example 2
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freedom systems. Moreover, the symmetric output feedback c
trol law is introduced to stabilize the second-order system w
nonlinear uncertainties. Numerical examples have demonstr
that the new stability criteria are less conservative and more p
erful comparing to those in the literature.
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Dynamic Response of a Clamped
Circular Sandwich Plate Subject
to Shock Loading
An analytical model is developed for the deformation response of clamped circular s
wich plates subjected to shock loading in air and in water. The deformation histo
divided into three sequential stages and analytical expressions are derived for the d
tion, degree of core compression, and for the overall structural response time. An ex
finite element method is employed to assess the accuracy of the analytical formulas
simplified case where the effects of fluid-structure interaction are neglected. The san
panel response has only a low sensitivity to the magnitude of the core compre
strength and to the degree of strain hardening in the face-sheets. The finite element
confirm the accuracy of the analytical predictions for the rigid ideally plastic sandw
plates. The analytical formulas are employed to determine optimal geometries o
sandwich plates that maximize the shock resistance of the plates for a given mas
optimization reveals that sandwich plates have a superior shock resistance relati
monolithic plates of the same mass.@DOI: 10.1115/1.1778416#
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1 Introduction
Clamped sandwich plates are representative of the struct

used in the design of commercial and military vehicles. For
ample, the outermost structure on a ship comprises plates we
to an array of stiffeners. The superior performance of sandw
plates relative to monolithic solid plates is well known for app
cations requiring high quasi-static strength. However, the re
tance of sandwich plates to dynamic loads remains to be f
investigated in order to quantify the advantages of sandwich
sign over monolithic design for application in shock resista
structures.

The response of monolithic beams and plates to shock
loading has been extensively investigated over the past 50 yea
so. For example, Wang and Hopkins@1# and Symmonds@2# ana-
lyzed the response of clamped circular plates and beams, res
tively, under impulsive loads. However, their analyses was
stricted to small deflections and linear bending kinematics.
direct application of the principle of virtual work for an assum
deformation mode, Jones presented approximate solutions
simply supported and clamped beams,@3#, and also simply sup-
ported circular plates,@4#, undergoing finite deflections.

Recently, Xue and Hutchinson@5# carried out a preliminary
finite element~FE! investigation of the resistance of clamped c
cular sandwich plates with a foamlike core to shock loading w
the effects of fluid-structure interaction neglected. By employin
series of FE calculations they demonstrated that near-optim
circular sandwich plates offer a higher resistance to shock loa
than monolithic plates of the same mass. In parallel studies, F
and Deshpande@6# proposed an analytical model for the respon
of clamped sandwich beams to shock loadings including the
fects of fluid-structure interaction and showed that the analyt
predictions are in close agreement with FE calculations,@7#.

In this study we extend the analytical method of Fleck a

1To whom correspondence should be addressed.
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Deshpande@6# to clamped circular sandwich plates. First, analy
cal formulas are presented for the response of clamped ri
ideally plastic circular sandwich plates to a uniform shock wa
including the effects of fluid-structure interaction. Next, the an
lytical predictions of the response of sandwich plates are co
pared with FE predictions for the case where the effect of flu
structure interaction is neglected: This loading represents sh
loading in air. Finally, the analytical formulas are used to det
mine the optimal designs of sandwich plates that maximize
shock resistance in air for a given mass and the performa
gain of these optimal sandwich plates over monolithic plates
quantified.

2 An Analytical Model for the Shock Resistance of
Clamped Sandwich Plates

Fleck and Deshpande@6# have developed an analytical mod
for the response of clamped sandwich beams subject to air
underwater shock loading. This model is now extended to ana
the response of clamped axisymmetric sandwich plates to a
tially uniform air or underwater shock.

Consider a clamped circular sandwich plate of radiusR with
identical face-sheets of thicknessh and a core of thicknessc, as
shown in Fig. 1. The face-sheets are made from a rigid ide
plastic solid of yield strengths f Y , densityr f , and tensile failure
straine f . The core is taken to be a compressible isotropic solid
density r f and deforms in uniaxial compression the core a
constant strengthsc with no lateral expansion up to a densific
tion straineD ; beyond densification the core is treated as rig
Fleck and Deshpande@6# split the response of the sandwich stru
ture into three sequential stages:

~i! Stage I—fluid-structure interaction phase,
~ii ! Stage II—core compression phase, and
~iii ! Stage III—plate bending and stretching phase.

Here, we assume a similar separation of time scales for the s
wich plate deformation history.
Stage I—The initial fluid-structure interaction phase

G. I. Taylor @8# developed the solution for a one-dimension
wave impinging a free-standing plate to compute the momen
transmitted to the plate by the shock pulse. Fleck and Deshpa
@6# followed this approach and similarly computed the moment
transmitted to the sandwich beam by treating the outer face of
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sandwich beam as a free-standing plate. Their analysis also h
for the circular sandwich plate, and we briefly review the relev
equations.

The pressurep at any point in the fluid of densityrw engulfed
by the pressure wave travelling at a velocitycw is taken to be
~starting at timet50)

p5poe2t/u, (1)

where po is the peak pressure andu the decay constant of th
wave. When this pressure wave hits a stationary rigid plate
normal incidence it imparts an impulseI

I 52E
0

`

poe2t/udt52pou, (2)

to the plate. The factor of two arises in relation~2! due to full
reflection of the pressure wave.

If instead, the pressure wave impacts a free-standing plate
imparted impulse is less thanI, and can be estimated as follow
When the pressure wave strikes a free-standing plate of thick
h made from a material of densityr f , it sets the plate in motion
and is partly reflected. At the instant the plate achieves its m
mum velocity, the pressure at the interface between the plate
the fluid is zero and cavitation sets in shortly thereafter. The m
mentum per unit areaI trans transmitted into the structure is the
given by

I trans5zI , (3a)

where

z[cc/~12c!, (3b)

andc[rwcwu/(r fh). It is assumed that this transmitted impul
imparts a uniform velocityvo5I trans/(r fh) to the outer front face
of the sandwich plate.

In the present model, the effect of the fluid after the first ca
tation event is neglected. This is consistent with the observa
that the secondary shocks have a much smaller effect on the s
ture compared to the primary shock wave, see Cole@9#.
Stage II—Core compression phase

At the start of this phase, the outer face has a velocityvo while
the core and inner face are stationary. The outer face compre
the core, while the core with compressive strengthsc decelerates
the outer face and simultaneously accelerates the inner face
final common velocity of the faces and the core is dictated
momentum conservation and the ratiof of the energy lostU lost in
this phase to the initial kinetic energyI 2z2/2r fh of the outer face
is given by

f[
U lost

I 2z2/~2r fh!
5

11m̄

21m̄
, (4)

wherem̄5rcc/(r fh) is the ratio of the mass of the core to th
mass of a face-sheet. This energy lost is dissipated by pla
dissipation in compressing the core and thus the average thro
thickness strainec in the core is given by

ec5
Ī 2z2

2s̄ c̄2h̄

h̄1 r̄

2h̄1 r̄
, (5)

Fig. 1 Geometry of the clamped sandwich plate
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where h̄[h/c, c̄[c/R, r̄[rc /r f , Ī [I /(RAs f Yr f) and s̄
[sc /s f Y . However, ifU lost is too high such thatec as given by
~5! exceeds the densification straineD , thenec is set equal toeD
and the model does not account explicitly for the additional d
sipation mechanisms required to conserve energy. Rather it is
sumed that inelastic impact of the outer face against the comb
core and inner face leads to the additional dissipation. After
core has compressed by a strain ofec , the core height is reduced
to (12ec)c. An approximate estimate of the timeTc for this
second stage of motion~calculated by neglecting the mass of th
core! is given by@6#

T̄c[
Tc

RAr f /s f Y

55
Ī z

2s̄
, if Ī 2z2,4s̄c2h̄eD

Ī z

2s̄
F 12A12

4s̄ c̄2h̄eD

Ĩ 2z2
G , otherwise.

(6)

This timeTc is typically small compared to the structural respon
time and thus the transverse deflection of the inner face of
sandwich plate in this stage can be neglected.
Stage III—Plate bending and stretching phase

At the end of Stage II, the sandwich plate has a uniform vel
ity except for a boundary layer near the supports. The plate
brought to rest by plastic bending and stretching. The prob
under consideration is a classical one: what is the dynamic
sponse of a clamped plate of radiusR with an initial uniform
transverse velocityv? The structural response is broken down in
two phases:~i! small displacement analysisas first considered by
Wang and Hopkins@1# and ~ii ! large displacement analysis.
(i) Small displacement analysis

When the transverse displacement of the platew(t) is less than
the total thickness 2h1c, the dynamic response is governed b
bending and transverse inertia of the plate. Wang and Hopkins@1#
showed that the plate response comprises two sequential ph
Phase I comprises stationary plastic hinges at the supports
plastic hinges travelling inwards from each clamped support.
ter the moving hinges have coalesced at the center of the p
continued rotation occurs about the central hinge until the plat
brought to rest in phase II.

We now introduce the appropriate nondimensional geome
parameters for the sandwich plate

c̄[
c

R
, ĉ[ c̄~12ec!, h̄[

h

c
and ĥ[

h̄

12ec
, (7)

and the nondimensional material properties of the core

r̄[
rc

r f
, and s̄[

sc

s f Y
. (8)

The nondimensional structural response timeT̄ and blast im-
pulse Ī are

T̄[
T

R
As f Y

r f
, Ī [

I

RAr fs f Y

. (9)

In the small deflection regime, the maximum central deflectionw
of the inner face of the sandwich plate and the structural respo
time T are given by Eqs.~4.99! and~4.100!, respectively, of Jones
@4#. Noting that the plastic bending momentMo of the circular
sandwich plate is given by

Mo5sc

~12ec!
2c2

4
1s f Yh@~12ec!c1h#, (10)
Transactions of the ASME
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these equations reduce to

w̄[
w

R
50.28

Ī 2z2

c̄ĉ2a1~2h̄1 r̄ !
, (11a)

and

T̄[
T

R
As f Y

r f
50.36

Ī z

ĉ2a1
, (11b)

where

a15~112h̄!2211s̄, (12a)

and

a25A2h̄1 r̄

2ĥ1s̄
. (12b)

(ii) Large displacement analysis
The above analysis ignores the buildup of membrane ac

associated with the lateral deflection of the clamped plates. J
@4# has taken this into account by assuming that the plate defl
from the initial undeformed configuration with a velocity profi
which decreases linearly from a maximum value at the cente
zero at the supports. The analysis in Jones@4# is given for a
simply supported circular plate and can be easily extended
clamped circular plates by assuming that stationary plastic hin
form at the center and at the clamped supports of the plate. Pl
dissipation is both by rotation about discrete plastic hinges and
uniform radial stretching of the plate due to its transverse d
placement between the clamped supports.

The yield locus of an axisymmetric sandwich element subjec
to a circumferential membrane forceNu and a circumferential
bending momentM u is well approximated by

M u

Mo
1

Nu

No
51, (13)

whereMo is the plastic bending moment specified by~10! andNo
the circumferential plastic membrane force given by

No52hs f Y1~12ec!csc , (14)

where we have assumed the strength of the foam is unaffecte
core compression. Analytical formulas for the deflection a
structural response time of the circular plate can be obtained
approximating the above yield locus by either inscribing or c
cumscribing squares as sketched in Fig. 2~a!. Employing a proce-
dure similar to that detailed in Jones@4# the maximum central
deflectionw of the inner face and structural response timeT of a
clamped circular sandwich plate are given by

w̄5
c̄a1

2ĥ1s̄
SA11

2

3

Ī 2z2

c̄ĉ3a1
2a2

2
21D , (15a)

and

T̄5a2A c̄

6ĉ
tan21SA 2

3c̄ĉ

Ī z

ĉa1a2
D , (15b)

respectively, for the choice of a circumscribing yield locus, and

w̄5
ĉa1

2ĥ1s̄
SA11

4

3

Ī 2z2

c̄ĉ3a1
2a2

2
21D , (16a)

and

T̄5a2A c̄

3ĉ
tan21S 2

A3c̄ĉ

Ī z

ĉa1a2
D , (16b)
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for an inscribing yield locus. A number of criteria can be devis
for the transition from the small to the large deflection analys
For example, the transition can be assumed to occur at an imp
level where both analyses predict equal displacements. It wil
shown subsequently in the comparisons with the FE calculat
that for most practical values of displacement or impulses,
large displacement solution suffices. Thus, we propose here to
the large displacement solution over the entire range of impul

The circumferential tensile strainem in the face-sheets due t
stretching is approximately equal to

em5
1

2
w̄2. (17)

Neglecting the strains due to bending, an approximate fail
criterion for the sandwich plates is given by setting the face-sh
tensile strainem equal to the tensile ductilitye f of the face-sheet
material.

2.1 Response of a Monolithic Clamped Plate. Similar ex-
pressions exist for the deflection and structural response time
monolithic clamped circular plate. For monolithic plates, no co
compression phase exists and Stage II of the deformation his
vanishes. Again the analysis is divided into the small and la
displacement regimes. Consider a monolithic plate of thicknesH
and radiusR made from a solid material with yield strengths f Y .
Then the analysis of Wang and Hopkins@1# implies that the maxi-
mum central deflectionw and the timeT to attain this deflection
are given by

w̄[
w

R
50.28Ī 2z2S R

H D 3

, (18a)

Fig. 2 Sketches of the exact, inscribing and circumscribing
yield loci of „a… the sandwich plate and „b… the monolithic plate.
Here, Mo and No are the fully plastic bending moments and
axial loads, respectively, of the plates.
SEPTEMBER 2004, Vol. 71 Õ 639
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T̄[
T

R
As f Y

r f
50.36Ī zS R

H D 2

. (18b)

Next consider the large displacement regime. The yield lo
for any plate element of the monolithic circular plate, subject t
circumferential membrane forceNu and bending momentM u is
given by

S M u

Mo
D 2

1
Nu

No
51, (19)

whereNo5Hs f Y and Mo5s f YH2/4. The maximum central de
flectionw of the clamped circular plate and the structural respo
time in the large displacement regime can be calculated in
manner detailed in Jones@4# by approximating the yield locus by
either inscribing or circumscribing squares as sketched in
2~b!. Under the assumption of an inscribing yield locus, the n
dimensional deflectionw̄ and structural response timeT̄ are given
by

w̄5S H

RD SA111.079Ī 2z2S R

H D 4

21D , (20a)

and

T̄50.519 tan21F1.039Ī zS R

H D 2G . (20b)

Similarly, the assumption of a circumscribing yield locus gives

w̄5S H

RD SA11
2

3
Ī 2z2S R

H D 4

21D , (21a)

and

T̄5
1

A6
tan21FA2

3
Ī zS R

H D 2G . (21b)

Again, it will be shown via FE calculations that the large displac
ment solution is adequate over the entire range of deflections

In the analytical formulas given above, we have ignored sh
deflections of the plates. For the slender sandwich plate fa
sheets (h/R→0) and monolithic plates (H/R→0) under consid-
eration here, Jones and Gomes de Oliveira@10# have shown that
the shear deflections are negligible. Thus, it suffices to cons
only the bending deflections of the plates as done above. A
strain-rate effects in the parent material have been neglected i
current analysis. As a first-order approximation, Perrone
Bhadra@11# have shown that the effect of strain rate sensitiv
can be captured by replacings f Y with the flow stressso associ-
ated with the strain-rate in the beam at the representative tr
verse deflection 2w/3.

3 Finite Element Study
In order to assess the accuracy of the above analytical mod

finite element~FE! study was conducted with the effects of fluid
structure interaction neglected. In the limit of no fluid-structu
interaction (c50 andz51) it is assumed that the entire shoc
impulse I is transferred uniformly to the outer face of the san
wich plate and to the full section of the monolithic plate. It
worth mentioning here that Xue and Hutchinson@5# demonstrated
that impulsive loading of clamped circular sandwich plates s
fices to capture the response of these plates subject to pre
versus time histories corresponding to most practical sh
loadings.

In all the FE calculations presented here, loading correspon
to a nondimensional impulseĪ is specified by imparting an initia
uniform velocityvo
640 Õ Vol. 71, SEPTEMBER 2004
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vo5
Ī

c̄h̄
As f Y

r f

, (22)

to the outer face-sheet of the sandwich plate and by giving
initial velocity

vo5
Ī R

H
As f Y

r f
(23)

uniformly to the monolithic plate.

3.1 Constitutive Description. Unless otherwise specified
the material properties of the sandwich plates are taken to b
follows. The face-sheets of the sandwich plate are assumed t
made from an elastic ideally plastic solid with yield strengths f Y ,
a yield straine f Y and densityr f . The Young’s modulus is speci
fied by Ef[s f Y /e f Y . The solid is modeled as a J2 flow theo
solid. The core is modeled as a compressible continuum using
foam constitutive model of Deshpande and Fleck@12#. This con-
stitutive law employs an isotropic yield surface specified by

ŝ2sc50, (24a)

where the equivalent stress is defined by

ŝ2[
1

11~a/3!2 @se
21a2sm

2 #. (24b)

Here,se[A3si j si j /2 is the von Mises effective stress withsi j the
deviatoric stress tensor andsm[skk/3 the mean stress. The yiel
strengthsc is specified as a function of the equivalent plas
strain using uniaxial compression stress versus strain data.
mality of plastic flow is assumed, and this implies that the ‘‘plas
Poisson’s ratio’’np52 ė22

p / ė11
p for uniaxial compression in the

1-direction is given by

np5
1/22~a/3!2

11~a/3!2 . (25)

Numerical values for the reference material properties for
sandwich plate were taken to be as follows. The face-sheets
assumed to be made from a stainless steel of yield strengths f Y
5500 MPa, yield straine f Y50.2%, elastic Poisson’s ration
50.3, and densityr f58000 kgm23. The strength of the core is
taken to be representative of that for a lattice material such as
octet truss,@13#, made from the same solid material as the fac
sheets. Thus, the isotropic core yield strength is taken to be

sc50.5r̄s f Y , (26)

where r̄[rc /r f is the relative density of the core. As the refe
ence case, we taker̄50.1 ~i.e., core densityrc5800 kgm23) with
a53/& giving a plastic Poisson’s rationp50. The plastic crush
strengthsc of the foam core is taken to be independent of t
effective plastic strain up to a densification straineD50.5: beyond
densification, a linear hardening behavior is assumed with a v
large tangent modulusEt50.2Ef . Further, the core is taken to b
elastically isotropic with a yield strainecY50.2% and an elastic
Poisson’s rationc50.

3.2 Details on the Finite Element Method. All computa-
tions were performed using the explicit time integration version
the commercially available finite element code ABAQUS versi
6.2. The plate was modeled using four-noded axisymmetric qu
rilateral elements with reduced integration,~element typeCAX4R
in the ABAQUS notation!. Numerical damping associated wit
volumetric straining in ABAQUS explicit was switched off b
setting the bulk viscosity associated with this damping to ze
using the default viscosity in ABAQUS results in substantial a
ficial viscous dissipation due to the large volumetric compress
of the core. For a typical plate of geometryc̄50.03 andh̄50.1,
there were 2 and 8 elements through the thickness of the f
sheets and core, respectively, and 100 elements along the radR.
Transactions of the ASME
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Mesh sensitivity studies revealed that further refinements did
improve the accuracy of the calculations appreciably.

4 Comparison of Finite Element and Analytical Pre-
dictions

4.1 Monolithic Plates. Comparisons between analytical an
FE predictions of the dynamic response of monolithic plates m
from the same material as the face-sheets of the reference s
wich plate ~i.e., an elastic perfectly plastic solid with a yiel
strengths f Y5500 MPa, yield straine f Y50.2%, an elastic Pois
son’s ration50.3 and a material densityr f58000 kgm23) are
presented in this section. The dependence of the normalized m
mum central deflectionw̄ of the plate upon the uniformly applie
normalized impulseĪ is shown in Fig. 3~a!, for a plate with aspect
ratio R/H550. In the FE simulations,w is defined as the pea
value of the central deflection versus time trace. Analytical p
dictions of this maximum deflection employing the small defle
tion analysis and the finite deflections analyses with the circu
scribing and inscribing yield surfaces are included in Fig. 3~a!.
While the inscribing yield surface predictions are in good agr
ment with the FE results over the range of impulses investiga
here, the circumscribing yield surface model underpredicts
deflections. Further, for realistic levels of the shock impulse,
FE results are captured accurately with the finite deflection an
sis employing the inscribing yield locus.

The analytical and FE predictions of the normalized structu
response timeT̄, as functions of the applied normalized impulseĪ

Fig. 3 Analytical and FE predictions of „a… maximum central
deflection and „b… structural response time, of a monolithic
plate with aspect ratio RÕHÄ50 as a function of the applied
impulse
Journal of Applied Mechanics
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are given in Fig. 3~b!. In the FE simulations,T is defined as the
time taken to reach the maximum deflection and written in n
dimensional form via~9!. For the range of impulses considere
here, the response of the plate is governed by stretching and
structural response time is approximately independent of ma
tude of the impulse. It is seen that the FE predictions of the str
tural response timeT are also in good agreement with the analy
cal model employing the inscribing yield locus. Again the sm
deflection analysis is not relevant for realistic levels of shock i
pulses. Thus, in the subsequent discussion we only present
parisons with the finite deflection solution and neglect the sm
deflection analysis.

4.2 Sandwich Plates. Comparisons of dynamic finite ele
ment simulations and analytical predictions have been perform
on sandwich plates made from the reference materials spec
above. The comparisons between the analytical and FE pre
tions are carried out in two stages. First, for a fixed impulse,
response of the sandwich plate is investigated as function of
plate geometry and second, the response of a sandwich plate
a representative geometry is studied for varying levels of impu

For the purposes of selecting appropriate sandwich plate ge
etries for the FE calculations, we plot a design chart for sandw
plates subjected to a normalized impulseĪ 51023, with an as-
sumed face-sheet material ductilitye f50.2. The design char
shown in Fig. 4 has been constructed using the analytical mo
with the circumscribing yield locus. Contours of the maximu
normalized central deflectionw̄ of the inner face of the sandwich
plates along with the regime of tensile failure of the face-sheet
shown on the chart. Twelve plate geometries in the range 0
<h̄<0.3 and 0.01< c̄<0.06 ~as indicated in Fig. 4! are selected
for the FE calculations. This range of plate geometries is rep
sentative of practical plate geometries, and the analytic pre
tions for the central displacements of the inner face of the sa
wich plate are in the range 0.01<w̄<0.2.

Comparisons of the FE and analytical predictions~inscribing
yield locus! for the central deflectionw̄ of the inner face-sheet a
functions of h̄ are shown in Fig. 5~a! for c̄50.03 andc̄50.04,
subject toĪ 51023. Similar to the monolithic beam case, in th
FE simulationsw is defined as the peak value of the deflecti
versus time trace. Figure 5~b! shows comparisons of the analytic

Fig. 4 Design chart for a clamped sandwich plate with core
strength s̄Ä0.05 and densification strain eDÄ0.5 and an as-
sumed face-sheet material ductility e fÄ0.2. Contours of the
maximum normalized central deflection w̄ of the inner face-
sheet subject to a normalized impulse ĪÄ10À3 are included.
The symbols denote the sandwich plate geometries selected
for the FE calculations.
SEPTEMBER 2004, Vol. 71 Õ 641
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and FE predictions ofw̄ versusc̄ for plates withh̄50.06 and 0.2,
again for the fixed impulseĪ 51023. In all of the above cases
good agreement is seen between the analytical and FE predict
with the discrepancy inw between the analytical and FE predi
tions not exceeding 5%. As in the monolithic plate case, the a
lytical model employing the circumscribing yield locus underp
dicts the deflections.

Next consider a representative sandwich plate of geometrc̄
50.03 andh̄50.1, subject to impulses in the range 7.531024

< Ī <3.231023. A comparison of the FE and analytical predi
tions of the maximum deflectionw̄ and core compressionec ver-
sus Ī are shown in Figs. 6~a! and 6~b!, respectively. In the FE
simulations, the strainec is defined as the final through thickne
nominal strain at the center of the plate. The choice of an insc
ing yield surface for the analytical model leads to good agreem
with the finite element predictions at low impulses, while
higher impulses the circumscribing yield surface appears to g
better predictions. Figure 6~b! shows that the analytical calcula
tion also substantially overpredicts the core compression in
high impulse domain. Similar to the sandwich beam case analy
in Qiu et al.@7#, these discrepancies can be rationalized by rec
ing that the analytical model neglects the reduction in momen
due to an impulse provided by the supports in the core comp
sion phase. With increasing impulse this assumption is no lon
valid as the higher core compression gives rise to signific
stretching of the outer face-sheet at the supports and thus to a
in momentum. This effect is not accounted for in the analyti

Fig. 5 Analytical and FE predictions of the maximum central
deflection w̄ of the inner face-sheet of sandwich plates with
reference material properties subjected to a normalized im-
pulse ĪÄ10À3. „a… w̄ as a function of h̄ for two values of c̄ . „b… w̄
as a function of c̄ for two values of h̄ .
642 Õ Vol. 71, SEPTEMBER 2004
ions,
-
na-
e-

,

-

s
rib-
ent
at
ive
-
the
zed
all-
um
res-
ger
ant
loss
al

model and consequently the analytical model overpredicts the
flections and core compression at high values of impulse.

In the FE simulations, the structural response timeT is defined
as the time taken to reach the maximum deflection and the
compression timeTc is defined as the time taken to first attain th
final through thickness strainec in the core. Comparisons of th
analytical and FE predictions of the normalized structural
sponse timeT̄ and the core compression timeT̄c as functions ofĪ
are shown in Fig. 7 for the sandwich plate withc̄50.03 andh̄
50.1. Good agreement between the analytical and FE predict
is seen for the core compression time and, similar to the cas
the monolithic plate, the inscribing yield locus model is in go
agreement with the FE predictions of the structural response t
The normalized core compression timeT̄c is at least an order of
magnitude smaller than the structural response timeT̄; this sup-
ports the assumption of a separation of time scales for the
compression phase and the plate bending and stretching pha
the analytical model.

4.2.1 Effect of Strain Hardening Upon the Dynamic Respo
of Sandwich Plates. The analytical models discussed in Secti
2 and the FE calculations detailed above, both assume ide
plastic face-sheet materials. On the other hand, structural all
which are expected to be employed in shock resistant sandw
construction, can have a strong strain hardening response.
effect of strain hardening of the face-sheet material on the sa
wich plate response is investigated here by suitable modificat
of the FE model. The face-sheet material is assumed to be m

Fig. 6 Analytical and FE predictions of the „a… maximum cen-
tral deflection w̄ of the inner face-sheet and „b… core compres-
sion ec as a function of the applied impulse for sandwich
plates. c̄Ä0.03 and h̄Ä0.1 and the sandwich plate is made from
the reference core material, with both ideally plastic and strain
hardening face-sheets.
Transactions of the ASME
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from a elastic plastic material with yield stress and strains f Y
5500 MPa and e f Y50.2%, respectively, and a densityr f

58000 kgm23. The strain hardening response is assumed to
linear with a tangent modulusEt /s f Y510; this high rate of strain
hardening is representative of the AL6XN stainless steel. The
properties are unchanged from the reference material case.

Consider a sandwich plate with core made from the refere
material and elastic strain hardening plastic face-sheets, with
ometry c̄50.03 andh̄50.1. The normalized maximum deflectio
w̄ and core compressionec are plotted againstĪ in Figs. 6~a! and
6~b!, respectively, along with the deflections and core compr
sions of the sandwich plates made from the reference mate
~with elastic-ideally plastic face-sheets!. The strain hardening re
sponse of the face-sheets has only a small effect upon the de
tion and core compression of the sandwich plate. This can
rationalised by recalling that the circumferential strain in the fa
sheets isem'0.5w̄2'4.5% for w̄'0.3. This level of straining
does not increase the yield strength of the face-sheet mat
appreciably for the strain hardening considered here and henc
response is only mildly sensitive to the strain hardening beha
of the face-sheets. This conclusion should be moderated for
case of annealed face-sheets for which the flow strength
uniaxial strain of 4.5% may be significantly above the yie
strength.

4.2.2 Effect of Core Strength Upon the Dynamic Respons
Sandwich Plates. In the calculations detailed above, the co
strength was held constant. Here we investigate the effect of
strength on the sandwich plate response. Results are present
sandwich plates of geometryc̄50.03 andh̄50.1, subjected to a
normalized impulseĪ 51023. Other than the core strength, th
material properties of the sandwich plates were unchanged f
the reference material properties. The normalized core strengs̄
was varied from 0.01 to 0.08, with a densification straineD held
fixed at 0.5; cores weaker thans̄50.01 were not considered a
numerical difficulties were encountered in such cases.

The maximum normalized deflection of the inner face of t
sandwich platew̄ is plotted against the normalized core strengths̄
in Fig. 8. The FE results indicate thatw̄ is relatively insensitive to
the core strength. Analytical predictions ofw̄ employing the in-
scribing and circumscribing yield surfaces are included in Fig
the analytical model employing the inscribing yield surface agr
reasonably well with the FE predictions for plates with the hi

Fig. 7 A comparison between analytical and FE predictions of
the structural response time T̄ and core compression time T̄c ,
as a function of the applied impulse, for sandwich plates with
c̄Ä0.03 and h̄Ä0.1 made from the reference materials
Journal of Applied Mechanics
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core strength but overpredicts the deflection of the plates with
weaker cores. Time histories of the plastic dissipation of the en
sandwich plate and of the core alone, each normalized by
initial kinetic energy of the outer face-sheet of the sandwich pl
are shown in Fig. 9~a!. These curves reveal two stages of defo
mation. In the first stage, plastic dissipation occurs primarily
the core, with the outer face-sheet approaching the inner fac
the end of this stage both face-sheets are moving at approxim
the same velocity. Subsequently, plastic dissipation occurs pri
rily within the face-sheets, with the dissipation in the core incre
ing only gradually with time. It is worth noting that the plast
dissipation in the core at the end of the first stage is nearly in
pendent of the core strength. Further, this stage lasts longer fo
weaker cores. Consequently, the core compression phase ove
with that for the face-sheet deformation for the choice of a sa
wich plate with a weak core.

Finite element predictions of the plastic dissipation at the end
the first stage of the deformation~i.e., the plastic dissipation cor
responding up to the ‘‘knee’’ in the plastic dissipation versus tim
curves of Fig. 9~a!! are shown in Fig. 9~b! as a function of the
mass ratiom̄5rcc/(r fh), for the choices of core strengths̄
50.04 ands̄50.01. These calculations were conducted on pla
with the above geometry subject to a normalized impulseĪ
51023. The ratiom̄ was varied by changing the density of th
core material from 80 kgm23 to 1600 kgm23. The figure reveals
that the plastic dissipation at the end of the core compres
stage is independent of the core strength and increases withm̄, in
excellent agreement with the analytical predictions, Eq.~4!.

4.2.3 Comparison of the Dynamic Response of Clam
Sandwich Plates and Beams.Comparisons between FE and an
lytical predictions of the impulsive response of clamped sandw
beams have already been presented by Qiu et al.@7#. Here we
compare the analytical and FE predictions of the deflectionw of
sandwich plates with these existing results for sandwich beam

Consider a clamped sandwich beam of span 2L comprising two
identical face-sheets of thicknessh and a core of thicknessc made
from the reference materials described above. Qiu et al.@7# pre-
sented FE results of the maximum normalized midspan defec
w̄[w/L of such sandwich beams with geometryc̄[c/L50.03
and h̄[h/c50.1 as a function of the applied normalized impul
Ī [I /(LAr fs f Y). These results are plotted in Fig. 10 along wi
the corresponding sandwich plate results. We note that the

Fig. 8 A comparison between the analytical and FE predic-
tions of the maximum central deflection w̄ of the inner face-
sheet of sandwich plates with cÄ0.03 and h̄Ä0:1, subject to a
normalized impulse IÄ10À3 as a function of the normalized
core strength s̄
SEPTEMBER 2004, Vol. 71 Õ 643
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Fig. 9 „a… FE predictions of the time histories of the normal-
ized plastic dissipation in sandwich plates for three selected
core strengths. „b… Ratio f of the plastic dissipation in the core
compression stage to the initial kinetic energy of the outer face
as a function of the mass ratio m̄ for two selected core
strengths. The sandwich plates in both cases have geometry
c̄Ä0.03 and h̄Ä0.1 and are subjected to an impulse ĪÄ10À3.

Fig. 10 Analytical and FE predictions of the maximum central
deflections w̄ of the inner face-sheet for clamped sandwich
plates and beams, as a function of the applied impulse. Both
the sandwich plates and beams have a geometry c̄Ä0.03 and
h̄Ä0.1, and are made from the reference materials.
644 Õ Vol. 71, SEPTEMBER 2004
predictions of the maximum deflections of the clamped sandw
beams and plates as functions of the applied normalized imp
are approximately equal when the half-spanL of the sandwich
beam is equated to the radiusR of the sandwich plate. The ana
lytical predictions~employing the inscribing yield locus! of the
deflections of the beams@7# and plates are included in Fig. 10. I
line with the FE predictions, the analytical predictions for t
beams and plates are approximately equal.

5 Optimal Design of Sandwich Plates Subject to Shock
Loading

In the preceding sections we have demonstrated that the fi
deflection analytical formulas for the response of the clamp
sandwich plates are in reasonable agreement with FE calculat
We now employ these analytical finite deflection formulas to d
termine the optimal designs of sandwich plates that maximise
resistance of a sandwich plate of given mass to shock load
subject to the constraint of a maximum allowable inner face
flection. The optimization is conducted by assuming that the en
shock impulse is transmitted to the sandwich plate (z51). This is
representative of shock loading in air where the acoustic imp
ance of air is much less than that of the steel outer face-she
the sandwich plate as detailed in the Stage I analysis of Sectio

To help with this optimization, it is instructive to construct
design chart relating the sandwich plate geometry to the sh
impulse for a specified deflection. Such a design chart with axec̄
and h̄ is plotted in Fig. 11 for a normalized deflectionw̄50.1 of
the inner face of the sandwich plate by employing the circu
scribing yield locus analytical expressions. The chart is plotted
sandwich plates with reference materials properties, i.e., a cor
relative densityr̄50.1 and strength specified by~26!. Contours of
the nondimensional massM̄ of the sandwich plates have bee
added to Fig. 11, where

M̄[
M

pR3r f
52h̄c̄1 c̄r̄, (27)

and M is the mass of the sandwich plate. The arrows in Fig.
trace the trajectory of (c̄,h̄) which maximizesĪ for a given M̄
with increasingM̄ .

Fig. 11 Design chart for a clamped sandwich plate made from
the reference materials for a fixed maximum central deflection
of the inner face w̄Ä0.1. Contours of the applied impulse Ī and
nondimensional mass M̄ are displayed. The underlined values
denote the nondimensional impulse values while the arrows
trace the path of the optimal designs with increasing M̄.
Transactions of the ASME
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The maximum normalized impulseĪ max sustained by these op
timal designs is plotted in Fig. 12 as a function of the nondim
sional massM̄ . Closed-form expressions for the optimal desig
do not exist and hence only numerical results are presented
Also included in Fig. 12 are the maximum impulses sustained
sandwich plates comprising a core withr̄50.05 and strength
again specified by~26!: Sandwich plates comprising the les
dense core have a superior performance. The maximum impu
sustained by the sandwich plates with the constraint on the al
able deflection of the inner face relaxed tow̄<0.2 are also in-
cluded in Fig. 12 for the sandwich plates with ther̄50.05 and 0.1
cores: the sandwich plates sustain about a 40% higher imp
with the constraintw̄<0.2 as compared tow̄<0.1.

For comparison purposes the impulses sustained by monol
plates made from the same material as the sandwich plate
sheets and subject to the constraintsw̄<0.1 andw̄<0.2 are in-
cluded in Fig. 12 with the choice of the circumscribing yie
locus. In the monolithic case the nondimensional mass of
monolithic plates is

M̄[
M

pR3r f
5

H

R
, (28)

in terms of the massM of the monolithic plate. In all cases, th
optimal sandwich plates out-perform monolithic plates. Howev
the performance gain obtained by employing sandwich const
tion reduces if the maximum allowable deflectionsw̄ are larger: at
large deflections the resistance of the plates is primarily due to
stretching action and the performance advantage of the sand
plates in terms of their high bending resistance plays a m
smaller role. It is worth mentioning here that the results will n
qualitatively change if the optimisations were performed using
inscribing yield locus instead of the circumscribing yield locus

6 Conclusions
An analytical model for the response of clamped circular pla

subject to shock loading in air and underwater has been der
using the framework proposed by Fleck and Deshpande@6# for
clamped sandwich beams. The predictions of the analytical m

Fig. 12 A comparison of the maximum shock impulse sus-
tained by monolithic plates and by optimal designs of the sand-
wich plates subject to the constraints w̄Ë0:1 and w̄Ï0:2 for
two relative densities r̄ of the core material
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have been compared with dynamic FE results with the effec
fluid-structure interaction neglected and the analytical model u
to determine optimal designs of the sandwich plates. The m
findings include:

1. FE calculations demonstrate that the time scale for c
compression separates from the time scale for plate bend
stretching of the sandwich plate, as assumed in the analy
model.

2. the analytical model employing the inscribing yield loc
agrees well with the FE predictions at small deflectio
while the FE results are in better agreement with the anal
cal predictions employing the circumscribing yield locus
larger deflections.

3. for realistic levels of plates deflections, the presence
strain hardening representative that for most structural all
has a negligible influence on the sandwich plate respons

4. both the FE calculations and the analytical model pred
that the compressive strength of the core has only a lim
influence on the sandwich plate response.

5. optimal designs of sandwich plates sustain larger shock
pulses than monolithic plates of the same mass assum
that the face-sheets of the sandwich plate are made from
same solid as that of the monolithic plate.
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A Continuum Theory That Couples
Creep and Self-Diffusion
In a single-component material, a chemical potential gradient or a wind force dr
self-diffusion. If the self-diffusion flux has a divergence, the material deforms. We fo
late a continuum theory to be consistent with this kinematic constraint. When the diff
flux is divergence-free, the theory decouples into Stokes’s theory for creep and Her
theory for self-diffusion. A length emerges from the coupled theory to characteriz
relative rate of self-diffusion and creep. For a flow in a film driven by a stress gradi
creep dominates in thick films, and self-diffusion dominates in thin films. Dependin
the film thickness, either stress-driven creep or stress-driven diffusion prevails to c
terbalance electromigration. The transition occurs when the film thickness is compa
to the characteristic length of the material.@DOI: 10.1115/1.1781176#
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1 Introduction
Self-diffusion can generate stress in a single-component m

rial. During deposition, for example, a thin film sometimes dev
ops a compressive stress. One possible mechanism has to do
the injection of atoms into the film,@1#. Impinging atoms may not
have enough time to find equilibrium positions on the film s
face, and may diffuse into the film. Oxidation leads to analog
phenomena. For some materials, during oxidation, atoms
emit from the materials, causing tension in the materials,@2#. For
other materials, notably silicon, atoms may inject into the mat
als, causing compression in the materials,@3#. Electromigration
provides yet another compelling example. The conduction e
trons motivate atoms to diffuse, generating tension upstream
compression downstream,@4#.

The stress generated in the material depends on the deform
mechanism of the material. Only elastic property enters the c
sideration if inelastic deformation~i.e., creep! is either so slow as
to be negligible, or so fast as to relax the stress field locally t
hydrostatic state. For electromigration along a thin line, encap
lated in a stiff dielectric, it was thought that local stress relaxes
a hydrostatic state long before diffusion along the line reache
steady state,@5,6#. Experiments, however, have shown large d
viatoric stresses, @7#. Indeed, the initial discovery o
electromigration-induced stress was made in a wide alumin
film, which could only sustain in-plane stresses,@4#.

This paper formulates a theory to couple self-diffusion a
creep in single-component materials. The new theory will cont
Stokes’s creep and Herring’s diffusion as special cases. Stok
creep, as formulated in fluid mechanics, describes a velocity fi
and a pressure field; it neglects self-diffusion. Herring’s theo
@8#, for self-diffusion is in terms of the chemical potential, a sc
lar; it makes no attempt to equilibrate stress tensor field.

Our theory parallels that of nonreciprocal diffusion in mul
component solid solutions~i.e., the Kirkendall effect! due to
Darken @9# and Stephenson@10#, and extends our previous one
dimensional theory,@11#. The theory rests on a kinematic con
straint: the divergence in the self-diffusion flux must be acco
modated by deformation. The remainder of this section recal
few historic highlights of the mechanistic picture of creep a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
4, 2004; final revision, March 17, 2004. Associate Editor: R. M. McMeeking. D
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Journal of Applied Mechanics, Department of Mechanical and Environmental E
neering, University of California–Santa Barbara, Santa Barbara, CA 93106-5
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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self-diffusion. Sections 2–4 describe the kinematics, energe
and kinetics of the theory. Section 5 gives the coupled par
differential equations for the velocity field and the chemical p
tential field, and identifies the characteristic length in the theo
Sections 6 discusses examples of flows driven by stress grad
wind force, and atomic injection or emission. Stress gradie
driven channel flow is dominated by creep in thick channels, a
by self-diffusion in thin channels. Section 7 discusses an an
tropic rule to place diffusion flux divergence as strain rates
various directions.

That creep and self-diffusion in some materials result from
same atomistic process has been known for a long time. I
liquid, self-diffusion and creep are different macroscopic manif
tations of the same microscopic fact: Molecules change neigh
readily in the liquid. Einstein@12# related the Brownian movemen
of a macroscopic particle in a liquid to the viscosity of the liqui
The Stokes-Einstein formula, derived by Einstein using Stoke
continuum solution, has since been applied to diffusion of m
ecules in liquids, including self-diffusion.

Nabarro@13# and Herring@8# related creep in a polycrystal to
self-diffusion mediated by the motion of vacancies. By itself, t
motion of vacancies does not change the crystal shape, bu
creation and annihilation of vacancies at the grain boundaries
Consequently, creep in the polycrystal is fast when the s
diffusivity is high and the grains are small. When the grain s
approaches the molecular dimension, the Nabarro-Herring
mula for polycrystals reduces to the Stokes-Einstein formula
liquids, except for a numerical factor. Similar comments apply
the Coble creep,@14#, mediated by atoms diffusing on grai
boundaries.

Needleman and Rice@15# formulated a theory for polycrystals
where atoms diffuse on grain boundaries and creep in grains. H
creep can result from the motion of dislocations. The two p
cesses, self-diffusion and creep, occur in different places,
couple through a kinematic constraint. For two grains meeting
grain boundary, the creep in the two grains accommodates
divergence of the diffusion flux on the grain boundary.

Our theory neglects the microstructure. Regardless of the
cific microstructure, when a wind force motivates atoms to d
fuse, the material must deform to accommodate the divergenc
the self-diffusion flux. The main advantage of the theory is th
simple and enlightening solutions may be obtained for coup
problems. The main drawback is that the theory may lead
wrong predictions at the size scale approaching or smaller than
microstructural feature size. The new theory can be applied, w
virtues and vices of a continuum theory, to complex materials,
to crystalline materials when atoms also diffuse in grains, am
other situations for which the Needleman-Rice theory is not
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tended. In particular, we will use the new theory to analy
electromigration-induced creep in Newtonian liquids.

2 Kinematics
When the two rate processes occur in separate places, cre

grains and diffusion on grain boundaries, there is no ambig
about their distinct contributions to mass transport. When di
sion and creep occur in the same continuum space, how can
contributions be distinguished? We must give operational de
tions of creep and self-diffusion without referring to the micr
structure. Following Darken@9#, we imagine that markers are dis
persed throughout the material~Fig. 1!. The markers in the
material are analogous to leaves on a river. The flow of wa
carries the leaves, but is unaffected by their presence. The mo
of the markers defines convection. The atomic flux in excess
convection defines diffusion. The markers should be small co
pared to the size scale in the flow of interest, but large compa
to the atomic dimension so that the markers themselves dif
negligibly.

We adopt the Eulerian approach. Let (x1 ,x2 ,x3) be the coordi-
nates of a fixed space. The fieldv i(x1 ,x2 ,x3 ,t) is the velocity
vector of the marker at position (x1 ,x2 ,x3) at timet. Let V be the
volume per atom in the body. Imagine a plane fixed in space
perpendicular to the axisxi . The convection flux,v i /V, is the
number of atoms moving with the marker across the plane,
unit area per unit time. The net atomic flux,Ni , is the number of
atoms across the plane, per unit area and per unit time. We
independently measure the marker velocity and the net ato
flux. The difference between the two fluxes defines the s
diffusion flux Ji , namely,

Ni5Ji1v i /V. (1)

The net flux is the sum of the diffusion flux and the convecti
flux.

To demonstrate the new features of the theory with minim
complication, we neglect elasticity. Following Balluffi@16#, we
also neglect strains due to the space occupied by point de
such as vacancies or free volumes; enough dislocations clim
other defects move to maintain the point defects close to equ
rium concentrations, which are typically small. Consequently
fixed volume contains a constant number of atoms at all time.
volume per atom,V, is constant. The net atomic flux i
divergence-free,Nk,k50, so that

vk,k52VJk,k . (2)

A repeated subscript implies summation over 1, 2, and 3
comma before a subscript indicates partial differentiation. Eq
tion ~2! has a clear interpretation. Imagine a volume fixed
space. WhenJk,k.0, atoms diffuse out the volume; for the vo
ume to maintain a constant number of atoms, convection m
carry atoms into the volume, so that the markers converge.
opposite is true whenJk,k,0. In this theory, the material is in
compressible, but the marker velocity has a divergence to c

Fig. 1 The marker velocity v defines the convection flux, v ÕV.
We can also independently measure the net atomic flux N. The
atomic flux in excess of the convection flux defines the diffu-
sion flux J .
Journal of Applied Mechanics
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pensate for the divergence in the diffusion flux. It is this kinema
constraint, Eq.~2!, that couples creep and self-diffusion.

Markers at different locations may move at different velocitie
When two markers move away from each other, atoms have t
inserted in the space between them. When two markers m
toward each other, atoms have to be removed from the sp
between them. The gradient of the marker velocity field defin
the strain-rate tensor:

di j 5
1
2 ~v i , j1v j ,i !. (3)

If mi is the unit vector pointing from one marker to the other, th
midi j mj /V is the number of atoms inserted or removed per u
time, per unit area normal to and per unit distance along the
rectionmi . The strain rate is the sum of that due to diffusion,di j

D ,
and that due to creep,di j

C :

di j 5di j
C1di j

D . (4)

As suggested by Eq.~2!, the divergence in the diffusion flux
Jk,k , causes the divergence in the marker velocity. We assume
the divergence in the diffusion flux causes an equal strain rat
all three directions:

di j
D52

V

3
Jk,kd i j , (5)

whered i j 51 wheni 5 j , andd i j 50 wheniÞ j .
A combination of Eqs.~2!–~5! gives the creep strain rates i

terms of the marker velocity field:

di j
C5

1
2 ~v i , j1v j ,i !2

1
3 vk,kd i j . (6)

The creep strain-rate tensor is symmetric and traceless.

3 Energetics
Figure 2 illustrates three types of load on the material.

identify them by the ways they supply power to the material. T
wind forceFi supplies power*FiJidV, with the integral over the
volume of the material. The tractiont i supplies power* t iv idS,
with the integral over the material surface where the traction
prescribed. The chemical potentialm is the free energy difference
between an atom on the material surface and an atom in a r
ence body~a bulk under no stress!. The chemical potential is a
scalar field defined on the material surface, in the same spir
the traction is a vector field defined on the surface. We assu
local equilibrium: The chemical potential of atoms in the mater
immediately beneath the surface equals that of atoms on the
face. Let the unit vectorni be normal to the surface and point t
the outside of the material, andJini be the flux at which the atoms
diffuse out the material. The chemical potential acts on atom
the same way as the voltage acts on electrons. When atoms di
out of the material and join the reference body~i.e., when atoms
move across the chemical potential!, the chemical potential sup
plies power2*mJinidS, with the integral over the material sur
face where the chemical potential is prescribed.

Fig. 2 The material is subject to three types of load: the wind
force Fi in the volume, the traction t i on the surface, and the
chemical potential on the surface
SEPTEMBER 2004, Vol. 71 Õ 647
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We next identify driving forces for the two rate processes, f
lowing an approach often used in constructing continuum theo
of multiple rate processes and thermodynamic forces, e.g.,@17#.
We state the principle of virtual power in the form of the balan
between power dissipation and power supply:

E ~si j di j
C1 f iJi !dV1E l~vk,k1VJk,k!dV

5E FiJidV1E t iv idS2E mJinidS. (7)

On the right-hand side of Eq.~7! are the three modes of powe
supply discussed above. On the left-hand side, the first inte
contains two modes of power dissipation. Equation~7! defines the
creep driving force,si j , as the power-conjugate of the creep stra
rate. Becausedi j

C is a symmetric and traceless tensor, without lo
of generality, we require thatsi j be a symmetric and traceles
tensor. Eq.~7! defines the diffusion driving force,f i , as the
power-conjugate of the diffusion flux. The second integral e
forces the kinematic constraint, Eq.~2!, with l as the Lagrange
multiplier.

Becausesi j is a symmetric and traceless tensor, anddi j
C relates

to the marker velocity field by Eq.~6!, we confirm thatsi j di j
C

5si j v i , j . Using the divergence theorem, we can express Eq.~7!
as

2E ~si j 1ld i j ! , jv idV1E ~~si j 1ld i j !nj2t i !v idS

1E ~ f i2Fi2Vl ,i !JidV1E ~Vl1m!JinidS50. (8)

This equation holds for arbitrary marker velocity and diffusi
flux field, with no constraint. Consequently, the power balan
requires that

~si j 1ld i j ! , j50, in volume (9)

~si j 1ld i j !nj5t i , on surface (10)

f i5Fi1Vl ,i , in volume (11)

m52Vl, on surface. (12)

Equation~9! and~10! recover force balance equations. In famili
terms, the creep driving forcesi j is the deviatoric stress tensor, th
Lagrange multiplierl is the mean stresss, and the combination
s i j 5si j 1sd i j is the Cauchy stress tensor. Equations~11! and
~12! recover Herring’s equations for the diffusion driving forc
@4,8#. The quantity2Vs is the free energy change associat
with transferring an atom in the stress-free reference body
point inside the material under the mean stresss. In short,2Vs
is the chemical potential inside the material. Its gradient, toge
with the wind forceFi , drives diffusion. To maintain local equi
librium, the chemical potential in the material just beneath
surface matches the prescribed value on the surface.

Following the established usage in mechanics, we intend
phrase ‘‘virtual power’’ to mean that Eq.~7! holds true provided
all the kinematic relations are satisfied, and that no constitu
relations are assumed between the kinematic quantities and
force-like quantities. We could have as well followed an equiv
lent approach by invoking stress potential and strain rate poten
@18#. This paper considers isothermal phenomena. Were we in
ested in phenomena with nonuniform temperature fields,
would follow the practice of the nonequilibrium thermodynamic
working with the entropy production,@19#.

4 Kinetics
Familiar isotropic kinetic laws are prescribed for diffusion a

creep. The diffusion flux is proportional to the diffusion drivin
force:
648 Õ Vol. 71, SEPTEMBER 2004
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Ji5
D f i

VkT
, (13)

whereD is the self-diffusion coefficient,k Boltzmann’s constant,
andT the temperature. The creep strain rate relates to the de
toric stresses as

di j
C5

si j

2h
, (14)

whereh is the viscosity. For linear creep,h is constant. For non-
linear creep, a standard approach is to assume thath is a function
of either the effective stressse5(3si j si j /2)1/2, or the effective
creep strain ratede

C5(2di j
Cdi j

C/3)1/2. The functionh(se) or h(de
C)

is determined by fitting to the relation between stress and st
rate measured under a simple stress state.

5 Governing Equations and Characteristic Length
Inserting the creep law~14! and creep strain-rate expression~6!

into the force balance Eq.~9!, we obtain that

@h~v i , j1v j ,i2
2
3 vk,kd i j !# , j1s ,i50. (15)

Inserting the diffusion law~13! and diffusion driving force expres
sion ~11! into the kinematic constraint~2!, we obtain

vk,k52F D

kT
~Fk1Vs ,k!G

,k

. (16)

When the diffusion flux divergence vanishes, the marker veloc
divergence also vanishes,vk,k50; Eq. ~15! reduces to Stokes’s
equation for creep, and Eq.~16! reduces to Herring’s equation fo
self-diffusion. In general,vk,kÞ0, and Eqs.~15! and~16! are four
coupled partial differential equations that govern the marker
locity v i and the mean stresss. Each point on the material surfac
requires four boundary conditions: three conditions of either
locities or tractions, one condition of either chemical potential
the diffusion flux component normal to the surface.

The theory has a characteristic length. WhenD andh are con-
stant, Eqs.~15! and ~16! are linear. Lets0 be a representative
stress scale in a boundary problem, andL be the length scale to be
determined. Scale the stresses bys0 , the velocities byLs0 /h,
the wind forces byVs0 /L, and the spatial coordinates byL.
Equations~15! and~16! become dimensionless and parameter-f
provided

L5ADhV/kT. (17)

The length characterizes the relative rate of diffusion and cre
and is independent of the scale of the stress.

For polycrystals, when creep is facilitated by diffusion, eith
through grains or along grain boundaries, the viscosity scales
the grain sizedg ash5kTdg

2/42DV, @20#, so that the character
istic length scales with the grain size,L5dg /A42. For simple
liquids, the self-diffusivity is estimated by the Stokes-Einstein f
mula, @12#, D5kT/6pah, wherea is atomic radius, so that the
characteristic length scales with the atomic size,L5AV/6pa. It
is important to determine this length for more complex materia
such as amorphous metals and polymer melts.

If the creep data under the uniaxial tensile stress state fit
power law,d

11

C5Bs11
n , whereB andn are constants, the function

h is given by

h~se!5
1

3Bse
n21 , or h~de

C!5
1

3B1/n~de
C!121/n . (18)

For power-law creep, with a constant diffusivityD, the solution to
Eqs.~15! and~16! has a remarkable scaling structure. Lets* be a
representative stress scale in a boundary problem,d

*
C5Bs

*
n ,

h* 5h(s* ), andL* be a length scale. Scale the stress field
s* , the strain-rate field byd

*
C , the velocity field byd

*
CL* , the
Transactions of the ASME



o
a

o

a

o
e

h

k

-
d

r

ient,

nds
ol-
reep
r
c
be

ple-
tion
igh

en
k-
ion,
ind

o
ress
. The
-

the

r-

h in

hes:

hat
to

tial

ess
wind force field byVs* /L* , and the spatial coordinates byL* .
In terms of the dimensionless fields, the governing Eqs.~15!–~17!
have only one parameter, the power indexn, provided we identify
the lengthL* with Eq. ~17!, and replaceh with h* in the expres-
sion. For a power-law creep material, the length depends on
stress levels* . For polycrystals this length relates to a lengthL
identified by Needleman and Rice@15#, L* 5AL3/3dg. These au-
thors also tabulated the experimental data for the lengthL for
several metals.

6 Examples

6.1 Flow in a Film Driven by Stress Gradient and Electron
Wind. In an interconnect line encapsulated in a dielectric, wh
the electron wind drives atoms to diffuse toward the anode, c
pression develops near the anode, and tension develops ne
cathode. The stress gradient drives atoms to flow toward the c
ode, in the direction opposite to the electron wind. It was disc
ered that the stress gradient could counter the electron wind
that net mass flow vanished,@4#. This discovery has since becom
an effective means to avert electromigration failure; see rec
reviews, @21,22#. In their original paper@4#, Blech and Herring
asserted that mass flow stops when the driving force for diffus
vanishes, namely,F1V¹s50, where F is the electron wind
force, and¹s the stress gradient. This assertion neglects a d
experience: The stress gradient also drives creep flow in a cha
~e.g., in pumping water through a pipe!. Given that the stress
gradient can drive both a creep flow and a diffusion flow, w
creep flow be also significant enough to counter electromigrati

To answer this question, consider a conductor film, thickn
H, sandwiched between two dielectrics~Fig. 3!. Let the axisx3 be
normal to the film, and the two faces of the film coincide with t
planesx356H/2. We will first analyze a steady flow subject to
constant electron wind forceF and a constant stress gradient¹s.
For simplicity, we assume that both diffusivity and viscosity a
constant.

In the steady flow, the only nonzero component of the mar
velocity is in the flux direction, and varies in the thickness dire
tion; that is,v25v350 andv15v1(x3). Consequently, the veloc
ity field has no divergence, and convection and diffusion
couple. Of the pair of the governing equations, Eq.~16! is satisfied
automatically, and Eq.~15! reduces toh]2v1 /]x3

21¹s50. This
is an ordinary differential equation for the velocity profilev1(x3).
The gradient in the hydrostatic stress can induce a shear st
Assuming the no-slip boundary condition at the conduct
dielectric interface, we obtain the familiar parabolic velocity pr
file: v15((H/2)22x3

2)¹s/2h.
The flow in the film has two contributions: the creep flowQC

5*2H/2
1H/2v1dx35H3¹s/12h, and the diffusion flowQD5HJ1

5H(D/VkT)(F1V¹s). First consider flow under the stres
gradient alone, in the absence of the wind forceF. The ratio of
creep flow to diffusion flow is

QC/QD5H2/12L2, (19)

whereL is the length defined by Eq.~17!. For a flow driven by the
stress gradient, creep dominates in thick films, and diffus

Fig. 3 A conductor film, sandwiched between dielectrics, is
subject to an electron wind force and a stress gradient. The
stress gradient can cause both a self-diffusion flux and a creep
flow.
Journal of Applied Mechanics
the

en
m-
r the
ath-
v-

, so
e
ent

ion

ily
nnel

ill
n?
ss

e
a

re

er
c-

e-

ress.
or/
o-

s

ion

dominates in thin films. Recall thatL scales with the grain size fo
polycrystals, and with the atomic size for liquids.

In the presence of both the wind force and the stress grad
the combined flow due to creep and diffusion vanishes when

F1S 11
H2

12L2DV¹s50. (20)

The contribution of creep in countering electromigration depe
on the film thickness. This effect is small in the exiting techn
ogy. To enhance the creep effect, we have to accelerate c
relative to diffusion, so that the lengthL becomes much smalle
than the film thickness. For example,L approaches the atomi
dimension for a liquid metal. The effect of creep can probably
demonstrated in laboratories, but there is no clear way to im
ment the effect in the electronic industry. Such an implementa
would call for a material with both a large creep rate and a h
electric conductivity.

6.2 Stress Generated by Electromigration Through Film
Thickness. Figure 4 illustrates a metal film sandwiched betwe
two other conductors, with electric current through the film thic
ness. The two outside conductors do not suffer electromigrat
but the film does. This setup idealizes a contact. The electron w
force, F, now in the x3-direction, causes atoms of the film t
diffuse from one side to the other. Consequently, a state of st
is generated, tensile on one side and compressive on the other
stress state is biaxial,s115s22; all other stress components van
ish. The mean stress component iss52s11/3. The stress is the
function of the depth,s11(x3), and is to be determined.

The diffusion flux is a long thex3-direction, given by

J35
D

VkT S F1
2V

3

]s11

]x3
D . (21)

Because the net atomic flux vanishes, the markers move in
direction opposite to the diffusion flux,v352VJ3 . The diffusion
flux induces a strain rated11

D 52(V/3)]J3 /]x3 . The deviatoric
stress component iss115s11/3. The creep strain rate is propo
tional to the deviatoric stress,d11

C 5s11/6h. The film is con-
strained by the refractory metals, so that the strain rates vanis
the two lateral directions:d115d2250. The strain rate is the sum
of that due to diffusion, and that due to creep. The sum vanis

2
2DV

9kT

]2s11

]x3
2 1

s11

6h
50. (22)

This is a second-order differential equation fors11(x3).
Atoms do not diffuse in or out the refractory conductors, so t

the diffusion flux vanishes at the two faces of the film. Subject
these the boundary conditions, the solution to the differen
equation is

s11~x3!52
3Fl sinh~x3 / l !

2V cosh~H/2l !
. (23)

The characteristic length isl 5A4DhV/3kT, which differs from
the length identified in Section 5 by a numerical factor. The str

Fig. 4 A thin conductor subject to a through-thickness wind
force. The diffision flux is in the same direction as the wind
force, and the marker velocity is in the opposite direction. Ten-
sion is generated near one face of the film, and compression
the other.
SEPTEMBER 2004, Vol. 71 Õ 649
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vanishes at the middle of the film, tensile on one side, and c
pressive on the other. When the diffusivity or viscosity is larg
electromigration is rapid, and the material creeps slowly, so
the magnitude of the stress is large.

6.3 The Effect of Elasticity. When the electric current jus
starts, atoms have yet migrated much, and the stress in the fi
negligible. This time-dependence is absent in the above solu
The problem arises because we have neglected elasticity. In
case, the geometric change is small, and we can include elas
easily. The biaxial stress causes an elastic strain rated11

E 5@(1
2n)/E#]s11/]t. The combined strain rate due to diffusion, cre
and elasticity vanishes:

2
2DV

9kT

]2s11

]x3
2 1

s11

6h
1

12n

E

]s11

]t
50. (24)

The problem now has a time scalet56(12n)h/E. The stress no
longer changes instantaneously, but builds up gradually. The s
distribution given by~23! is the steady state, reached over the tim
scalet.

6.4 Stress Generated by Atomic Injection or Emission
The chemicalpotentialm on the surface can be varied in seve
ways, by applying a stress normal to the surface, by creating
cess number of adatoms with an impinging flux, or by creat
excess number of vacancies by oxidation. A surplus or defici
the chemical potential will motivate atoms to diffuse in or out t
material, leading to biaxial compression or tension~Fig. 5!. Let
the bulk of the material occupies the half-spacex3,0. The stress
is prescribed by the chemical potential,s115s22523m/2V, on
the surface, and vanishes asx3→2`. Equation~22! governs the
stress as a function of the depth, giving

s11~x3!52
3m

2V
exp~x3 / l !. (25)

The chemical potential of the surface atoms sets the magnitud
the stress field. The stress decays exponentially over the lengl .

6.5 Lateral Expansion or Contraction of a Free-Standing
Film. Next consider a free-standing thin film. When the fil
thickness is on the order of the lengthl , the lateral constraint is
partially relieved, and the film will expand or contract. The late
strain rated11 is independent of positionx3 . The strain rate is the
sum of that due to diffusion, and that due to creep:

d1152
2DV

9kT

]2s11

]x3
2 1

s11

6h
. (26)

Force balance requires that the resultant force van
*2H

1Hs11(x3)dx350. The solution to the ordinary differential equa
tion is

s11~x3!5S 2
3m

2V D ~H/2l !cosh~x3 / l !2sinh~H/2l !

~H/2l !cosh~H/2l !2sinh~H/2l !
. (27)

The lateral strain rate is

Fig. 5 An excess of the chemical potential on the surface
drives atoms to inject into the material, leading to compressive
stress
650 Õ Vol. 71, SEPTEMBER 2004
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d115S m

4hV D sinh~H/2l !

~H/2l !cosh~H/2l !2sinh~H/2l !
. (28)

If atoms emit or inject preferentially at one of the film surface
the film will bend. The above analysis can be extended to ca
late the rate at which the bending curvature increases.

6.6 Effect of Nonlinear Creep. Again consider the stres
generated in a semi-infinite material by atomic injection or em
sion at the surface. Under the biaxial stress state,s115s22, the
equivalent stress isse5us11u. The lateral creep strain rate isd11

C

5B/2 us11un21s11. The combined strain rate due to diffusion an
creep vanishes:

2
2DV

9kT

]2s11

]x3
2 1

B

2
us11un21s1150. (29)

The solution of the boundary value problem is

s11~x3!52
3m

2V S 12
x3

l *
D 2 2/~n21!

, (30)

with

l * 5
2

n21
A 2~n11!VD

9u3m/2Vun21BkT
. (31)

This length differs from the length identified in Section 5 by
numerical factor. Compared to the linear creep, the power-
creep modifies both the decay length and the decay function.
a large value ofn the stress is substantial over a depth seve
times l * .

7 Anisotropic Placement Rule
Equation~5! has been called the isotropic placement rule,@11#.

We caution that this rule must be modified if atoms can be
moved and inserted preferentially on some planes. For exam
Fig. 6 illustrates a polycrystalline aluminum film, of column
grain structure in the direction of the film thickness, and the nat
oxide covering the film surfaces. Aluminum diffusion is fast alo
the grain boundaries, and negligible on the film surfaces. Con
quently the divergence in the self-diffusion flux will place atom
We now extend the theory on the basis of an anisotropic pla
ment rule.

Recall that, according to Eq.~2!, the divergence in the diffusion
flux causes the divergence of the marker velocity field. The is
is how to proportion this divergence in various directions. O
anisotropic placement rule stipulates that

di j
D52b i j VJk,k . (32)

Here the coefficientsb i j weigh the placement in different direc
tions. We require the tensorb i j to be symmetric with a unit trace
b i i 51. Consistent with this placement rule, the creep strain-r
tensor relates to the marker velocity field as

di j
C5

1
2 ~v i , j1v j ,i !2b i j vk,k . (33)

The creep strain-rate tensor is symmetric and traceless.
The statement of power balance still takes the form of Eq.~7!.

However, the creep dissipation rate now becomessi j di j
C5si j v i , j

2b i j si j vk,k . This will modify Eq. ~8! by replacingsi j 1ld i j in
the two places bysi j 1(l2bpqspq)d i j ; the rest of Eq.~8! remains
unchanged. We now identify (l2bpqspq) as the mean stresss, so
that l5s1bpqspq5bpqspq . It is the chemical potential
2Vbpqspq that enters Herring’s equations of diffusion drivin
force, Eqs.~11! and ~12!. We may also wish to introduce aniso
ropy into the kinetic laws, Eqs.~13! and ~14!, which we will not
pursue here.

As an example, when diffusion flux divergence is plac
equally in thex1 andx2-directions, but not inx3-direction, we let
b115b2251/2, and all other components vanish. Consequen
Transactions of the ASME
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the chemical potential in the material becomes2V(s11
1s22)/2. The work is done by the stresses acting in the direct
where mass insertion or removal occurs.

8 Summary
Both convection and diffusion contribute to mass transp

Identify convection by the motion of markers dispersed in
material. Creep and self-diffusion couple because the mar
must move to compensate for the diffusion flux divergence,
~2!. We stipulate rules to place the diffusion flux divergence
various planes; two versions are given: isotropic rule Eq.~5! and
anisotropic rule Eq.~33!. We define the driving force for cree
and diffusion by a statement of power balance, Eq.~7!, subject to
the kinematic constraint. The theory leads to partial differen
equations for the marker velocity field and the chemical poten
field, Eqs. ~15! and ~16!. The pair of equations generalize
Stokes’s creep and Herring’s diffusion. A length characterizes
relative rate of diffusion and creep, Eq.~17!. Several boundary
value problems illustrate the theory. In particular, a stress grad
can drive both a diffusion flow and a creep flow. Diffusion flo
prevails in a thin channel, and creep flow prevails in a thick ch
nel. The transition occurs when the channel thickness is com
rable to the characteristic length of the material.
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Fig. 6 An aluminum film has a columnar grain structure, with
top and bottom surfaces covered by the native oxide. Under an
electron wind force in the plane of the film, aluminum atoms
diffuse fast on the grain boundaries, but negligibly on the film
surfaces. The divergence of the diffusion flux will place atoms
in the x 1 and x 2-directions, but not in the x 3-direction.
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Sandwich Plates Actuated by a
Kagome Planar Truss
Kagome truss plates have properties that suggest they should be uniquely effective
actuation plane for sandwich plates: a Kagome truss plate has in-plane isotropy, op
stiffness and strength, and its truss members can be actuated with minimal internal
tance. In this paper, sandwich plates are studied that are comprised of one solid face
and one actuated Kagome face sheet joined by a pyramidal truss core. Various aspe
the actuation behavior of these plates are investigated, including internal resistance
strains resulting from actuation and efficiency of actuation. Single and double curva
actuation modes are investigated. Contact is made with analytic results for actu
modes with long wavelength.@DOI: 10.1115/1.1778720#
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1 Introduction
Recent studies of planar trusses based on the ancient Kag

basket weave pattern have shown that these truss plates
many properties that make them desirable for actuation plane
sandwich plates,@1,2#. In this study, we begin by analyzing th
actuation characteristics of a single Kagome truss plate~Fig. 1!
and follow with an actuation analysis of a sandwich plate co
prised of one solid face sheet and one actuated Kagome face
joined by a pyramidal truss core~Fig. 2!.

The single Kagome truss plate can be constructed from the
cell shown in Fig. 1~b!. The 120 deg symmetry of the structu
ensures in-plane elastic isotropy assuming all the truss mem
are identical. Here, only solid circular members are considered
lengthL and radiusR. The Kagome-backed solid skin plate can
constructed from the unit cell depicted in Fig. 2~c!. In the present
study we limit consideration to plates with identical solid circu
truss members of lengthL and radiusR both for the Kagome face
and the core. The solid skin thickness is denoted byt. In addition,
to further limit the number of parameters in the system, we c
sider only plates in which both face sheets and the core mem
are constructed of the same material with Young’s modulusE,
Poisson’s ration and yield stresssY . The Kagome-backed sand
wich plate in Fig. 2 has isotropic bending and stretching stiffne

The feature of the planar Kagome truss in Fig. 1 that make
most advantageous for actuation is the ability to actuate mem
to achieve arbitrary in-plane nodal displacements with minim
internal resistance. Among infinite isotropic planar truss str
tures, a pin jointed planar Kagome truss is optimally stiff a
strong to overall stressing. Although it has kinematic mechanis
it is nevertheless able to carry arbitrary states of overall str
Members of a pin jointed Kagome truss can be actuated~i.e.,
elongated or shortened! with no internal resistance, or equiva
lently, with no redundant stresses. When joints are welded, as
be assumed throughout this paper, actuation of a member
encounter internal resistance, but minimally so as will be sho
Welded joints also suppress the kinematic mechanisms and r
in a structure with substantial in-plane buckling resistance. Th
and other aspects of the Kagome structure are explored elsew
@1–5#.

In this study, we aim to explore the details of actuation of t
planar Kagome truss and the Kagome-backed sandwich p

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
15, 2003; final revision, January 14, 2004. Associate Editor: R. M. McMeek
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McM
ing, Journal of Applied Mechanics, Department of Mechanical and Environme
Engineering, University of California–Santa Barbara, Santa Barbara, CA 93
5070, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
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Simulations of various periodic actuation modes of these infin
Kagome structures have been performed for a range of mem
aspect ratios. In its most general form, the approach is numer
A calculation requires the formulation of a ‘‘super element’’ re
resenting a unit cell followed by the assembly of the compl
structure as a union of the super elements. The scaling of
energy required for actuating the unloaded structure with as
ratio of the truss members is investigated. Bending and stretc
strains in the members induced by actuation are also determi
For actuation modes with wavelengths long compared to
member length, the response computed with the numerical
proach is compared to actuation predicted by an analytical l
wavelength approximation outlined in a previous study,@1#.

2 Planar Kagome Structure

2.1 The Planar Kagome Structure. Consider the infinite
planar Kagome structure shown in Fig. 1~a! having members of
length L and solid circular cross-sections of radiusR and under-
going in-plane displacements. The unit cell of such a structur
shown in Fig. 1~b!. The members are modeled as Euler-Bernou
beams, with clamped conditions at each node representing we
joints ~i.e., the displacement and rotational degrees-of-freedom
the same for all beams meeting at a given node!. Actuation of any
member comprises an elongation or contraction of the membe
a straine if the member were unconstrained. In other words,
actuation straine is equivalent to a stress-free transformati
strain.

2.2 Actuation Methodology. The actuation of beam mem
bers is modeled via the so-called cut-stress-reweld scheme
ployed by Eshelby in his study of the transformation strains
ellipsoidal inclusions,@6#. To actuate a given member, envisio
the following steps:

1. Remove the actuating member from the structure.
2. Allow the member to actuate~elongate or contract! freely by

straine.
3. Place equal and opposite forces2EpR2e on the ends of the

member to deform it back to its original configuration.
4. Place the member back into the structure and ‘‘weld’’ it

place.
5. Release the forces from the ends of the member by appl

equal and opposite forcesEpR2e to the joints at the mem-
ber ends.

Thus, the cut-stress-reweld procedure is equivalent to analy
the complete truss subject to equal and opposite actuation fo
of magnitudeEpR2e applied to the joints at the ends of the r
spective member.

er
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eek-
tal
06-
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2.3 Enforcement of Periodicity. Our goal is to simulate pe
riodic actuations of an infinite structure by modeling the behav
of just one periodic cell subject to periodic boundary conditio
Consider the potential energy functional for a periodic cell:

F5
1

2
Ki j uiuj2kj

0uj (1)

whereK is the conventional stiffness matrix of the structure,u is
the vector of displacements and rotations at the nodes of the s
ture, andk0 is the vector of applied nodal forces and moments~in
this situation these correspond to the virtual actuation forces
scribed earlier!. If the structure were isolated and unconstrain

Fig. 1 „a… The Kagome planar truss. „b… The unit cell used for
the Kagome planar truss analysis. The dashed lines are the
outline of the cell. The solid lines are truss members of the unit
cell.
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~apart from rigid-body motion!, the problem would be solved in
the usual manner by solving the system of equations represe
by

Ki j uj5ki
0. (2)

Now consider periodic boundary conditions represented
constraints of the form

ai j uj50. (3)

The details of the actual periodic boundary conditions imposed
in-plane nodal displacements and rotations are included in
Appendix. It is important to note that once the appropriate pe
odic boundary conditions are imposed on thedisplacements/
rotations, periodicity of forces/momentsis satisfied by the solu-
tion. For the periodic cell in Fig. 3, the forces acting on a no
along one edge of the periodic cell~corresponding to internal
forces in the structure! will be equal and opposite to those actin
on the equivalent node on the opposite edge, for a displacem
field which satisfies the periodic conditions outlined in the Appe
dix. The displacements themselves are not, in gene
periodic—we consider, for example, a displacement field cor
sponding to a constant strain. Thus, there are some cases
which the strains, forces and moments, will be periodic, but n
the displacements.

To impose these additional conditions, Lagrangian multiplie
are employed. The modified energy functional now takes
form:

F5
1

2
Ki j uiuj2kj

0uj2l iai j uj (4)

The systems of equations resulting from minimization of the e
ergy functional with respect to displacementsui and the Lagrang-
ian multipliersl i are

Ki j uj5ki
01l jaj i (5)

ai j uj50. (6)

Now consider periodic actuations of the infinite structure. T
actuation forces exert no net force or moment on the structu

Fig. 2 „a… The Kagome plane and tetrahedral core of the
Kagome plate structure. The solid members are the Kagome
face members, and the dashed members the tetrahedral core
members. „b… The Kagome plate structure. „c… The unit cell
used for the Kagome plate analysis.
SEPTEMBER 2004, Vol. 71 Õ 653
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This means that if the energy functional given by~4! above is
minimized over the periodic cell, the energy of the infinite stru
ture is also minimized. Thus, it is possible to simulate the beh
ior of the infinite structure by modeling just the periodic cell wi
the appropriate boundary conditions.

2.4 Calculation of Actuations. The objective is to probe
how effectively the planar Kagome structure can achieve arbit
in-plane deformations through actuation of its members. To
end, periodic actuation of the structure is simulated as descr
in previous sections for actuation of each member in the perio
cell, tracking the nodal displacements in a matrix of influen
coefficients,A. The i j th component of this matrix is theith dis-
placement resulting from the actuation of thejth member. To gen-
erate this matrix, displacements are calculated at each of the n
in the periodic cell resulting from a unit actuation of each mem
in that cell.

As this simulation is linear, once the matrix of influence co
ficients,A, has been constructed, the displacements of the no
from actuation of any combination of members is easily compu
as

ui5Ai j ej (7)

wheree is a vector of member actuations.

Fig. 3 The periodic cell used for the planar Kagome truss
simulations
654 Õ Vol. 71, SEPTEMBER 2004
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Now consider a target field of in-plane nodal displacementsud.
The aim is to determine how well this field can be recreated
actuating members of the Kagome structure. Calculate elongat
ẽ and displacementsũ via the relations:

ẽi5Ai j
† uj

d (8)

ũi5Ai j ẽj (9)

where A† is the Moore-Penrose generalized inverse ofA, also
called the pseudo-inverse ofA, @7#. Then,ẽ is the vector of mem-
ber actuations which minimize the squared error betweenũ and
ud. If there exist multiple vectors of actuations that minimize th
squared error,ẽ is such a vector of minimal length~i.e., uẽu is
minimized!.

2.5 Example Target Displacement Fields. The simulations
outlined above were run for several target displacement fields.
objective is to assess the ability of the structure to achieve spe
actuations and to determine the associated energy required
stresses induced. The periodic cell used for these simulation
shown in Fig. 3. It contains a total of 100 unit cells. The axes u
for describing the displacements fields described here are
z-axis and theh-axis shown in Fig. 3. It is important to note tha
the target displacement fields are all consistent with the perio
displacement boundary conditions.

The first target displacement field is described by

ud5A0ez sinS pz

Lz
D . (10)

Here,A0 is an amplitude factor,ez is a unit vector aligned with the
z-axis, andLz the length of the periodic cell in thez-direction.
This target field is a displacement in thez-direction that is every-
where positive except along the edgesz50 andz5Lz of the pe-
riodic cell where it is zero and reaches a maximum ofA0ez along
the line z5Lz/2 of each periodic cell. In this case, the displac
ment field is repeated in every periodic cell. This target field
depicted in Fig. 4. The Moore-Penrose best-fit actuations for
displacement field are calculated as described above. For this
riodic cell, the number of nodal displacements in the target field
640, while the number of members actuated is 600. One wo
expect some error between the target and achievable fields, h
ever the actual displacements differ from the target displacem
by less than 1% of the maximum target displacement. The ac
tions are quite close to the actuations predicted by the long wa
length approximation outlined in previous work,@1#. In this long
wavelength theory, the actuation strain,«T, of a member connect-
ing neighboring nodes I and J is«T5(ua

d(xI)2ua
d(xJ))ta /L

where ta is the unit vector parallel to the member and direct
from J to I andua is the displacement derived from the targ
displacement field.

A second target displacement field is described by:

ud5A0~ez1eh!sinS pz

Lz
D sinS ph

Lh
D . (11)

Here,eh is a unit vector aligned with theh-axis andLh the length
of the unit cell in theh direction. This displacement is zero alon
all of the edges of the periodic cell and reaches a maximum
A0(ez1eh) at the center (h5Lh /2,z5Lz /2) of each periodic
cell. The target displacement field can be seen in Fig. 5. T
Moore-Penrose best-fit actuations are predicted quite well by
long wavelength approximation. In this example, the maxim
discrepancy between the actual displacements of the nodes
the target displacements is less than 2% of the maximum ta
displacement. For simulations run for a target displacement fi
in the same direction, but with a wavelength half of that of~11!
~in both thez andh directions!, this maximum discrepancy is les
than 1027. The critical difference between the two sets of targ
displacement fields is that the field described by~11! with the full
wavelength has a jump in slope across the boundaries betw
Transactions of the ASME
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periodic cells~and, as a result, a jump in actuation!. For the dis-
placement field with the half-wavelength, the slope of displa
ment is continuous across periodic cell boundaries.

A final target displacement field of interest is described by

ud5A0zez . (12)

This corresponds to a constant strain ofA0 in thez direction. This
field is shown in Fig. 6. In this example, the actual displaceme
of the nodes match the target displacements almost perfectly—
maximum discrepancy is less than 1027 of the maximum target
displacement. Note that for this displacement field, the slope
displacement is again continuous across periodic cell bounda

2.6 Actuation of Selected Kagome Members. In practical
applications it will generally be desirable to manufacture stru
tures in which only a small subset of the members will be ac
ated. The Moore-Penrose actuation scheme can be applied
similar manner in such cases. This procedure is outlined in S
tion 4.4 for the Kagome plate structure. Given a restriction on
number of members to be actuated, systematic procedures

Fig. 4 The target field described by u dÄA 0ez sin „pzÕLz…. The
arrows show the displacement vectors of the nodes.
Journal of Applied Mechanics
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identifying the ‘‘best’’ subset of actuation members remain to
established. The behavior of planar Kagome structures with l
ited numbers of actuation members will be considered in sub
quent work.

3 Energy of Actuation of Planar Kagome Structure

3.1 Energy of Actuation. One of the motivations behind
the selection of the Kagome structure for actuation is the desir
find a structure that can be actuated with minimal internal res
tance to actuation. Here, we present the total strain energy st
in the planar Kagome structure actuated to achieve the target
placement fields described above. In the limit of a pin-joint
Kagome structure, actuations can be achieved with no inte
resistance, although mechanisms will also exist,@1#. For the
Kagome structures considered here, simulated with Eu
Bernoulli beams welded together at their ends, the energy of
tuation is expected to be due primarily to elastic bending of
beams.

Fig. 5 The target displacement field described by u dÄA 0„ez

¿eh…sin „p z ÕLz…sin „p h Õ Lh…. The arrows show the displace-
ment vectors of the nodes.
SEPTEMBER 2004, Vol. 71 Õ 655
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The strain energy of actuation is calculated in a straightforw
manner depicted in Fig. 7. Consider an actuating member
length L, cross-sectional areaA, and Young’s modulusE. The
imposed actuation strain of«T is the strain the member would
undergo if the member were free to actuate~if the structure of-
fered no resistance!. As the structure will have some resistance
the actuation, the member will undergo some elastic strain tha
denote«e. The axial forceF experienced by the member is the
easily calculated asF5«eEA. The work done by the actuato
~acting on the structure! is the work of this axial force acting
through the actuation strain«T, 21/2«e«TEAL, and it is stored as
elastic strain energy in the structure.

3.2 Reference Energy. Now consider the work done by the
same actuator, undergoing the same actuation strain«T, but in this
case consider the structure to be rigid—that is, consider a st
ture that will completely resist the actuation. This corresponds
fixing both ends of the member as it is actuated. In this situati
the total strain of the member is zero, so«e1«T50. The energy

Fig. 6 The target displacement field described by u dÄA 0zez
656 Õ Vol. 71, SEPTEMBER 2004
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of actuation in this case is therefore 1/2(«T)2EAL, and this is
chosen as the reference energy for each member in the en
calculations and comparisons below.

Actuation of multiple members does not pose any energy
counting difficulties—the total energy of actuation can be calc
lated by adding up the contributions from each individual me
ber, with the elastic strain of each member calculated in respo
to all the actuations. In some circumstances, the work done by
individual member may be negative—the actuations of oth
members may result in the structure actually assisting, not res
ing, an actuation. However, the overall energy of actuation will
course always be positive. Thus, the relevant energy ratio ca
lated for energy comparisons is

Ŵ5

(
i 51

#members

2
1
2 « i

e« i
TEiAiLi

(
i 51

#members
1
2 ~« i

T!2EiAiLi

. (13)

This energy ratioŴ is plotted for several slenderness ratios
Fig. 8 for the target displacement fields shown above. For a st
ture with energy storage dominated by bending energy,Ŵ can be

Fig. 7 The energy of actuation of a beam. The rest of the struc-
ture resists the imposed actuation strain «T, generating an
elastic strain of «e and an internal force FÄ«eEA .

Fig. 8 Normalized actuation energy for the target displace-
ment fields, as a function of „RÕL …2
Transactions of the ASME
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shown to scale with the slenderness ratio squared, (R/L)2, while
for a statically overdetermined structure, such as a fully trian
lated sheet,Ŵ is expected to be of order unity, independent of t
slenderness ratio and whether pin jointed or weld jointed. T
energy associated with actuation of the Kagome structure
clearly much smaller than that energy of a fully triangulated tr
grid. The energy associated with actuation of an isolated bea
a Kagome structure is investigated in work by Wicks and Gu
@5#. For such actuations,Ŵ scales linearly with slenderness, wit
energy equally partitioned between stretching and bending. H
ever, for the target fields considered here,Ŵ clearly scales as the
square of the slenderness.

3.3 Strain Levels Induced by Actuation. As the structures
will generally undergo cyclic actuations, investigation of stra
levels for fatigue design is also required. One quantity of inter
is the maximum stretching strain occurring in the structure
vided by the maximum actuation strain. For a bending contro
structure, this ratio is also expected to scale with slenderness
squared. Of more interest is the ratio of maximum bending st
to maximum actuation strain—which is expected to scale linea
with the slenderness ratio for bending controlled structures. Th
trends are seen to hold in Fig. 9 where the normalized maxim

Fig. 9 „a… Maximum bending strain normalized by maximum
actuation strain for the target displacement fields, as a function
of RÕL . „b… Maximum stretching strain normalized by maximum
actuation strain for the target displacement fields, as a function
of RÕL .
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bending and stretching strains are plotted as a function of slen
ness ratio for the target displacement fields described above.
maximum actuation strain,«max

A , is used to normalize the induce
bending and stretching strains. The relatively larger bend
strains will restrict the levels of actuation due to fatigue.

4 Kagome Plate Structure

4.1 The Kagome Plate Structure. Consider a solid face
sheet of thicknesst, backed by a planar Kagome structure. Co
members attach to the face sheet and Kagome plane to form
rahedral units, as shown in Fig. 2. The Kagome planar memb
and the core members have solid circular cross sections of ra
R and are all of the same lengthL. As a result, the core thicknes
is Hc5A2/3L. While in some applications it may be desirable
use solid face sheets and Kagome planar sheets of different m
rials, for the purposes of this study we restrict the structure to
of one single isotropic material of Young’s ModulusE and with a
Poisson’s ratio ofn51/3. The unit cell used in this analysis i
shown in Fig. 2~c!.

The stiffness matrix of the unit cell~Fig. 2~c!! of the Kagome
plate structure is simulated through the use of a composite
ment comprised of beam and shell elements. We model
Kagome planar and core members as three-dimensional E
Bernoulli beams, with six degrees-of-freedom at each node.
behavior of the solid plate is simulated via linear shell element
the commercial finite element package ABAQUS@8#. The in-
plane behavior of these elements is plane stress, while the ou
plane behavior corresponds with linear plate theory,@9#, as these
are flat shell elements.

Since the sandwich plate will generally be subject to appl
transverse loads, the Kagome planar truss in its role as a
sheet must carry substantial in-plane loads in addition to unde
ing actuation. For the sandwich plate to carry transverse lo
efficiently, it is desirable for the solid and Kagome plane fa
sheets to have comparable in-plane stiffness. The in-plane s
ness of the Kagome planar truss is isotropic, with the relat
between average in-plane strains and the overall stress resu
given by

«115S21~N112nN22!, «225S21~N222nN11!,

«125S21~11n!N12 (14)

with S5EA/(A3L) andn51/3. Equating the in-plane stiffness o
the solid sheet and that of the Kagome sheet described by~14!
leads to the following relation between the face sheet thickn
and member radius:

t

L
5

p

A3
S R

L D 2

. (15)

This relation will be used to specify the face sheet thickness
the various member radii used in the examples detailed below

4.2 Actuation and Periodicity of the Infinite Kagome
Plate.. First consider an infinite Kagome plate structure. T
objective of this section is to probe how well the shape of
solid face sheet can be controlled by periodic actuations of
members of the planar Kagome face sheet. Actuation is simul
via the same cut-stress-reweld scheme outlined in Section 2.2
the infinite plate, periodic target and actuation fields are con
ered and a corresponding periodic cell is adopted for perform
the computations. The details of the periodic boundary conditi
for out of plane behavior are given in the Appendix. The perio
boundary conditions, in addition to those suppressing rigid-bo
motions, are imposed via the use of Lagrangian multipliers,
shown in Section 2.3, resulting in solutions that show periodic
of the forces and moments exerted on the boundaries of the
odic cell.

As in the planar Kagome case, a simulation is run for a u
elongation of every member of the Kagome plane. Core memb
SEPTEMBER 2004, Vol. 71 Õ 657
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are not actuated. In this case, the vertical displacements of
nodes of the solid face sheet are assembled into a matrix of in
ence coefficientsB. The i j th component ofB is the vertical dis-
placement of theith node of the solid face sheet resulting from
unit elongation of thejth member of the Kagome plane.

The linearity of the theory allows the displacements of t
nodes from arbitrary actuation~elongation or contraction! of any
combination of members to be calculated easily onceB is
assembled:

wi5Bi j ej (16)

wheree is the vector of member actuations andw the vector of
vertical displacements of solid face sheet nodes.

Now consider a target field of the vertical displacements of
solid face sheet displacement fieldwd. We wish to determine how
well this field can be recreated by actuating members of
Kagome plane. The Moore-Penrose generalized inverse is
ployed in a similar manner as before to calculate elongationẽ
and displacementsw̃ via the relations

ẽi5Bi j
† wj

d (17)

w̃i5Bi j ẽj (18)

whereB† is the Moore-Penrose generalized inverse ofB. Here,ẽ
is the vector of member actuations which minimize the squa
error betweenw̃ andwd. As before, if there exist multiple vector
of actuations which minimize this squared error,ẽ is such a vector
of minimal length.

4.3 Example Target Displacement Fields. The simulations
outlined above were run for several target displacement fields.
periodic cell used for these simulations is shown in Fig. 10.
contains a total of 64 unit cells. The axes used for describing
displacements fields described here are the samez-axis andh-axis
used in the planar Kagome examples. It is important to note
the target displacement fields imposed are all consistent with
periodic displacement boundary conditions described in the
pendix. As in the planar Kagome examples, the displaceme
themselves are not, in general, periodic, while the stresses, st
and curvatures are periodic. Here we consider, for example
displacement field corresponding to a constant curvature—the
ternal forces are periodic~with periodicity size of the periodic
cell!, while the displacements are clearly not periodic.

The first target displacement field is described by

wd5A0z2ez . (19)

Here, the displacement corresponds to the vertical displaceme
the nodes of the solid face sheet corresponding to a state of
stant curvature ofkzz52A0 with A0 as the amplitude factor andez
the unit vector perpendicular to the plate~aligned with thez-axis!.
The Moore-Penrose best-fit actuations for this displacement fi
are calculated as described above. The achievable displace
field is shown in Fig. 11—only the achievable field is shown, as
is indistinguishable from the target field. There are 384 memb
that are actuated in this simulation and only 209 target no
displacements. However, the rank ofB is only 194, so it is inter-
esting that the achievable field is so close to the target field.
tuation energy and strains will be discussed in Section 5.

The second target displacement field is

Fig. 10 Periodic cell used for Kagome plate simulation
658 Õ Vol. 71, SEPTEMBER 2004
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wd5A0ez sinS 2pz

Lz
D (20)

where Lz is the length of the unit cell in thez-direction. This
displacement field has zero displacement along two edges of
periodic cell, corresponding toz50 andz5Lz . Along these same
edges, the slope in thez-direction takes the value of 2pA0 /Lz .
This displacement field takes on a maximum value of6A0ez at
z5Lz/4 andz53Lz/4. The achievable displacement field show
in Fig. 12 again matches the target field.

One final target displacement field of interest is described b

wd5A0ez sinS 2pz

Lz
D sinS 2ph

Lh
D . (21)

Note that, unlike the previous target displacement fields, this fi
involves a nonzero Gaussian curvature of the solid face sheet.
achievable field shown in Fig. 13 also matches the target field

4.4 Comparison With Long Wavelength Theory. The
best-fit actuations for the displacement fields described ab
have been compared with the actuations predicted by the l
wavelength approximation outlined in previous work,@1#. In this
long wavelength theory, the extensional strain,«T, of a member is
«T52Hkab

d tatb wherekd is the curvature tensor associated wi
wd (kab

d 5w,ab
d ) and ta is the unit vector specifying the orienta

tion of the member.
Member actuations calculated via the Moore-Penrose anal

for the case of constant curvature agree well with actuations p
dicted by the long wavelength theory. As this is a displacem
field with infinite wavelength, the agreement is not surprisin
Actuations for the simulation corresponding to the sinusoidal d

Fig. 11 Best-fit displacement field calculated using Moore-
Penrose analysis for target field w dÄA 0z2ez

Fig. 12 Best-fit displacement field calculated using Moore-
Penrose analysis for target field w dÄA 0ez sin „2p z Õ Lz…

Fig. 13 Best-fit displacement field calculated using
Moore-Penrose analysis for target field w dÄA 0ez sin „2p z Õ Lz…

Ãsin „2p h Õ Lh…. The faceting of the solid sheet is an artifact of
the plotting—the actual shape of the solid sheet is smooth.
Transactions of the ASME
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placement field~20! are also predicted well by the long wave
length theory. This displacement field has a wavelength of e
unit cells. Actuations were also calculated for a sinusoidal d
placement field with a wavelength of only four unit cells:

wd5A0ez sinS 4pz

Lz
D . (22)

The actuations predicted by the long wavelength theory sh
more discrepancy in this case, as would be expected, but the
est actuation strains are not in major disagreement.

4.5 Actuation of Selected Kagome Members. As a practi-
cal matter, it will usually be the case that only a small subse
the Kagome face members will be actuated. The Moore-Pen
actuation scheme described previously can still be used to p
how well such structures can achieve the target displacem
fields.

Consider there are onlyM members which have been identifie
for actuation. The matrixB contains the displacements of the so
face sheet nodes corresponding to all member actuations. T
we can construct a new matrixB* that contains only theM col-
umns corresponding to the members to be actuated. Then the
tical displacements of the face sheet nodes are again easily c
lated according to

wi5Bi j* ej* (23)

where nowe* is the vector of actuations of those members t
can be actuated.

Consider a target displacement fieldwd. The minimum length,
minimum squared error set of actuations for theM members is

ẽi* 5Bi j*
†wj

d . (24)

Here,B* † is the Moore-Penrose generalized inverse ofB* . The
vertical displacements of the solid face nodes are also easily
culated:

w̃i5Bi j* ẽj* . (25)

Reconsider the target displacement field that correspond
constant curvature:

wd5A0z2ez . (26)

Now, however, assume that only members of the Kagome plan
the row corresponding toz'Lz/2 can actuate. These members a
located in the middle of the periodic cell, as shown in Fig. 14~a!.
The Moore-Penrose best-fit displacement field is shown in F
15. Note that the structure displays only local curvature along
line z5Lz/2.

Reconsider also the target sinusoidal displacement field:

wd5A0ez sinS 2pz

Lz
D . (27)

Here, however, assume that only the selected members o
Kagome plane are actuated corresponding to those aligned in
having z'Lz/4 and z'3Lz/4, as shown in Fig. 14~b!. These
members lie within the zones of maximum curvature magnitu
of the target displacement field. When the Moore-Penrose ana
is run under these conditions, the resulting displacement fiel
displayed in Fig. 16. While the shape looks very similar to tha
Fig. 12 achieved by activating all the members of the Kago
face, the curvature in Fig. 16 is nevertheless limited to regi
where members are actuating alongz'Lz/4 andz'3Lz/4.

5 Energy of Actuation of Kagome Plate Structure

5.1 Energy of Actuation. The strain energy of actuation i
again calculated in the manner depicted in Fig. 7 and the w
done by each actuator is21/2«e«TEAL where«T is its actuation
strain and«e is the elastic strain it experiences as a conseque
of all actuations. This work is stored as elastic strain energy in
Journal of Applied Mechanics
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structure. The work done by the same actuator, undergoing
same actuation strain«T, in a perfectly stiff structure is, as before
1/2(«T)2EAL. This energy is taken as the reference energy for
energy calculations presented below. As with the planar Kago
truss, actuation of multiple members does not pose any ene
accounting difficulties—the total energy of actuation can be c
culated by adding up the contributions from each individual me
ber. The relevant energy ratio calculated for energy comparison
again given by~13! where« i

e are computed for each specific set o
actuations« i

T .
As noted earlier, for a structure with energy storage domina

by bending energy in the beam members, the energy ratioŴ can
be shown to scale with the slenderness ratio squared, (R/L)2. It is
important to note that the sandwich plate comprised of
Kagome face with a solid face sheet is indeterminate—not o
are the joints welded, but a solid face is intrinsically indeterm
nate. It can be anticipated that this indeterminacy will result

Fig. 14 The members which are allowed to actuate in the
analysis of actuation of selected Kagome members. Only the
Kagome plane is shown. The dashed members are the mem-
bers selected to actuate.

Fig. 15 The best-fit displacement field when limited members
are allowed to actuate for the target displacement field w d

ÄA 0z2ez

Fig. 16 The best-fit displacement field when limited members
are allowed to actuate for the target displacement field w d

ÄA 0ez sin „2p z Õ Lz…
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somewhat larger actuation energies than those predicted for b
ing dominated structures. The energy ratioŴ is plotted against the
slenderness ratio for the truss members in Fig. 17 for the th
target periodic displacement fields described above. It is c
from this plot that the Kagome-backed sandwich plate offers c
siderably more resistance to actuation for modes with curvatur
two directions than to actuations that bend the plate solely in
direction. Nevertheless, compared to the reference energy, th
tuation energy is still small. A more meaningful interpretation
the actuation energy will be given in Section 5.2. Similar tren
are seen in Figs. 18 and 19, where the maximum bending
stretching strain quantities for these displacement fields are p
ted as a function of slenderness ratio.

Plates actuated to produce double curvature will necessaril
limited to smaller actuation strains~and thus displacements! to
ensure they do not undergo plastic yield. It is important to n
that the results here for the double curvature plate have been
puted using linear theory. Large resistance will arise for su

Fig. 17 Normalized actuation energy for the target displace-
ment fields, as a function of RÕL

Fig. 18 Maximum bending strain normalized by maximum ac-
tuation strain for the target displacement fields, as a function of
RÕL
660 Õ Vol. 71, SEPTEMBER 2004
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ciently large deflections due to nonlinear coupling between be
ing and stretching in the solid face sheet whenever shapes
nonzero Gaussian curvature are actuated. This nonlinear effe
not considered in this paper. Thus, the results for doubly cur
shapes presented here are restricted to small deflections.

5.2 Comparison of Two Energy Quantities. In most appli-
cations, a multifunctional role of these actuating structures is
ticipated where the structures will be required to both chan
shape and carry and lift significant loads. Here an approxim
calculation is presented of the relative energies to perform th
two different functions, highlighting the significance of structur
with low resistance to actuation.

For specificity, consider a cantilevered Kagome plate struct
of length, subjected to a load per unit lengthP at free end. Now
imagine that, via actuation of Kagome members, the cantileve
end is raised a distancedA . The work per unit length done to rais
this load scales as

WP'PdA5P«A, (28)

where «A is the typical actuation strain for a member near t
clamped end. The energy per unit length stored as strain energ
the Kagome plate structure due to resistance to actuation scal

WA'kEA«A
2 (29)

whereA is the member cross-sectional area andk is a small frac-
tion of unity for structures with low internal resistance to actu
tion, such as those reported above.

The structure must be designed to be able to carry the load
unit lengthP. For an optimally designed structure, we anticipa
that face yielding or buckling will be an active constraint,@10#.
With sc as the critical stress in a Kagome member~set by either
buckling or yielding!, the member must be sized to satisfy a re
tion that scales asscAL'PL,. Thus, to carry the applied load
the member cross-sectional area will be sized according to
scaling law

A'P,/sc . (30)

The maximum allowable actuation is also related to this criti
stresssc according to

«A' f sc /E. (31)

Here, f is the factor relating actuation strain and the maximu
strain induced in the structure due to actuation as plotted for

Fig. 19 Maximum stretching strain normalized by maximum
actuation strain for the target displacement fields, as a function
of RÕL
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Kagome structures earlier in the paper. In most instances, the
dition limiting actuation is likely to be yielding in bending, at lea
for the Kagome structures, but the possibility of buckling of me
bers under compression must also be considered. Now calc
the ratio of the energy stored in the structure due to actuatio
the amount of energy required to raise the load:

WA

WP
'

kEP,«A
2/sc

P«A,
5

k~E/sc!«A
2

«A
5k f . (32)

For the Kagome sandwich plates analyzed in Section 4, typ
values off are about 10, as the maximum induced bending stra
in the Kagome plane are about 10% of the maximum actua
strain. Values ofk depend upon the specifics of the actuation, b
because of their low resistance to actuation they typically ra
from about 1/100 to 1/1000 for the Kagome structures. Thus,
such structures, the energy required to raise the applied loads
be 10–100 times the energy stored as strain energy in the s
ture. The sandwich plates subject to double curvature offer so
what more internal resistance to actuation (k'1/40), but values
of f are also lower (f '2) such that the energy stored in intern
resistance is still relatively low, i.e.,WA /WP'1/20. In this fun-
damental sense, the Kagome plate structure offers minimal in
nal resistance to the actuation.

6 Concluding Remarks
Sandwich plates employing as the actuation plane a Kag

planar truss have been studied to assess their effectivenes
efficiency in the dual role of a load carrying structure capable
actuated shape changes. The advantage of the Kagome p
truss in this application is its in-plane stiffness and stren
coupled with its low internal resistance to actuation. The sandw
plate offers more internal resistance than the isolated Kag
plane. Nevertheless, an actuated plate designed to carry sp
loads can achieve a wide variety of shapes with relatively l
expenditure of energy to overcome the internal resistance c
pared to the work expended in raising the loads. It remains to
seen from prototypes that are currently under construction, as
as from further theoretical work, just how large the actuated a
plitudes can be and the range of modes shapes that can be
duced. This is especially true for double curvature mod
that require greater expenditure of energy to overcome inte
resistance.
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Appendix

Periodic Displacement Boundary Conditions. Consider a
periodic structure such as that shown in Fig. A1. With A as
reference periodic cell andr ( i ) the vector from the origin in A to
the ith node in A, we denote the displacements of the nodes i
as

uA
~ i !5u0

~ i ! . (A1)

Let B, C, and D be neighboring periodic cells, as shown in F
A1. We denote the displacements at the nodes in those cells

uB
~ i !5u0

~ i !1uBA1vBA3r ~ i ! (A2)

uC
~ i !5u0

~ i !1uCA1vCA3r ~ i ! (A3)

uD
~ i !5uC

~ i !1uBA1vBA3r ~ i ! (A4)

uD
~ i !5uB

~ i !1uCA1vCA3r ~ i !. (A5)

Combining~A4! with ~A3! or ~A5! with ~A2! yields
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uD
~ i !5u0

~ i !1uBA1uCA1~vBA1vCA!3r ~ i !. (A6)

Now consider the rotations at each node in A. Denote these a

fA
~ i !5f0

~ i ! . (A7)

Similarly for B, C, and D:

fB
~ i !5f0

~ i !1vBA (A8)

fC
~ i !5f0

~ i !1vCA (A9)

fD
~ i !5f0

~ i !1vBA1vCA . (A10)

Now consider the edge joining cell A and cell B. With the di
placements of the nodes along the top of A equal to the displa
ments of the nodes along the bottom of B:

u0
~ I !5u0

~ i !1uBA1vBA3r ~ i !. (A11)

Here,~I! is along the top of A and~i! along the bottom of B.
We can writer (I )5r ( i )1Lheh , whereLh is the length of the

periodic cell in theeh direction.
Now, equate the displacements along the edge joining C an

u0
~ I !1uCA1vCA3r ~ I !5u0

~ i !1uCA1uBA1~vBA1vCA!3r ~ i !.
(A12)

Rearranging and simplifying~A12! leads to:

u0
~ I !2u0

~ i !5uBA1vBA3r ~ i !2vCA3Lheh (A13)

Comparison of~A13! with ~A11! above yields:

vCA3Lheh50⇒vCA5vCAeh (A14)

Now equate the displacements of nodes along the edge betw
cells A and C:

u0
~J!5u0

~ j !1uCA1vCA3r ~ j ! (A15)

Here,~J! is along the right of A and~j! along the left of C.
Now we can writer (J)5r ( j )1Lzez , whereLz is the length of

the periodic cell in theez direction.
Equating displacements of nodes along the edge between

B and D yields

u0
~J!1uBA1vBA3~r ~ j !1Lzez!

5u0
~ j !1uCA1uBA1~vBA1vCA!3r ~ j !. (A16)

Rearranging and simplifying~A16! yields:

u0
~J!2u0

~ j !5uCA1vCA3r ~ j !2vBA3Lzez . (A17)

Fig. A1 A periodic structure. A, B, C, D are equivalent periodic
cells. The dots correspond to nodes along the edges of the
periodic cells. ez and eh are unit vectors sligned with the edges
of the periodic cells.
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Comparison of~A17! with ~A15! with above yields

vBA3Lzez50⇒vBA5vBAez . (A18)

So, for edges parallel toez , displacements are related by

u0
~ I !2u0

~ i !5uBA1vBAez3r ~ i !. (A19)

Now, write r ( i )5z ( i )ez1z( i )k and note thatk is perpendicular to
ez andeh .

Thus, we can write

u0
~ I !2u0

~ i !5uBA1vBAz~ i !ec3k. (A20)

Thus, for all pairs of points the same distance above the refere
plane

u0
~ I !2u0

~ i !5uBA5u0
~ I 1m!2u0

~ i 1m! . (A21)

Similar along the edges parallel toeh :

u0
~J!2u0

~ j !5uCA5u0
~J1m!2u0

~ j 1m! . (A22)

Now, compare the rotations. Setting equal the rotations at no
along the edge joining cells A and B:

f0
~ I !5f0

~ i !1vBA5f0
~ i !1vBAez . (A23)

Equating rotations at nodes along the edge joining cells C and
662 Õ Vol. 71, SEPTEMBER 2004
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D:

f0
~ I !1vCA5f0

~ i !1vBA1vCA ~same as~A23!!. (A24)

Finally, equating rotations at nodes along the edge joining cel
and C:

f0
~J!5f0

~ j !1vCA5f0
~ j !1vCAeh . (A25)
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Size-Dependent Eshelby’s Tensor
for Embedded Nano-Inclusions
Incorporating Surface/Interface
Energies
The classical formulation of Eshelby (Proc. Royal Society,A241, p. 376, 1957) for em-
bedded inclusions is revisited and modified by incorporating the previously excl
surface/interface stresses, tension and energies. The latter effects come into promine
inclusion sizes in the nanometer range. Unlike the classical result, our modified fo
lation renders the elastic state of an embedded inclusion size-dependent making po
the extension of Eshelby’s original formalism to nano-inclusions. We present closed
expressions of the modified Eshelby’s tensor for spherical and cylindrical inclus
Eshelby’s original conjecture that only inclusions of the ellipsoid family admit unifo
elastic state under uniform stress-free transformation strains must be modified in
context of coupled surface/interface-bulk elasticity. We reach an interesting conclusi
that only inclusions with a constant curvature admit a uniform elastic state, thus res
ing this remarkable property only to spherical and cylindrical inclusions. As an immed
consequence of the derivation of modified size-dependent Eshelby tensor for
inclusions, we also formulate the overall size-dependent bulk modulus of a comp
containing such inclusions. Further applications are illustrated for size-dependent s
concentrations on voids and opto-electronic properties of embedded qua
dots. @DOI: 10.1115/1.1781177#
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1 Introduction
Eshelby’s linear elastic solution of an embedded inclusion,@1#,

has a distinguished place in the history of mechanics, mate
science, and solid-state physics. Characterized by its insigh
thought experiments, Eshelby’s classic solution of the embed
inclusion has been fruitfully used in diverse areas and problem
physical sciences, e.g., localized thermal heating, residual str
dislocation-induced plastic strains, phase transformations, ov
or effective elastic, plastic and viscoplastic properties of comp
ites, damage in heterogeneous materials, quantum dots, m
structural evolution; to name just a few. In this work, we seek
modify the classical elasticity original solution of an embedd
inclusion to include surface/interface energies, tension
stresses. In the following we will simply use the word ‘‘surfac
to signify both the free surface of a void in a material or t
interface of a solid inclusion with that of the surrounding ho
matrix. As has been done tacitly in most elastic problems,
original elastic solution of the embedded inclusion ignored surf
energies of the inclusion—for fairly good reasons. Surface e
gies only enter physics when surface to volume ratio beco
appreciable. For most technological problems~until recently! in-
clusions were of the order of microns and rarely were one c
cerned with nano-inclusions or related size effects. At the mic
and higher length scales, the surface-to-volume ratios are n
gible and indeed Eshelby’s original assumptions hold true and
does his solution. In short, in the present work we seek to de
Eshelby’s tensor in the context of coupled surface-bulk elasti
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that then can be utilized to capture at least part of the length s
effects likely to be prominent for embedded nano-inclusions.

The literature on Eshelby’s tensor and related problems is
deed rich and extensive. While we can hardly do justice in
review of all pertaining work, attempt is made in Section 2
identify some pertinent literature. To make this article se
contained, a brief description of Eshelby’s main conclusions in
classical elasticity context are also reviewed. In Section 3,
formulate the general problem of an embedded inclusion incor
rating surface energy and related terms. Some simple closed-
expressions can be obtained for inclusions of constant curva
~i.e., spherical and cylindrical shapes!. That is the object of Sec-
tion 4. The inhomogeneity problem is briefly discussed in Sect
5 after which several applications of this work are presented
Section 6 closing finally with summary and conclusions in Sect
7.

2 Background
By way of introduction, consider a localized arbitrarily shap

region ~V! in a material undergoing a stress-free inelastic def
mation. Such strains are referred to as either transforma
strains,@1#, or eigenstrains,@2#. Various physical examples of suc
strains are thermal expansion, dislocation mediated inela
strain, swelling strain, magnetomechanical strains, lattice m
match, and so forth. If the inclusion is removed from the mate
and allowed to relax~thus enacting the eigenstrain!, no stress is
generated. However, due to the presence of the matrix or
rounding material, the final relaxed elastic state of the inclus
admits a state of stress. When the material properties of the in
sion and the matrix are the same, the problem of determining
elastic state is often referred to as Eshelby’s first problem. T
scenario where the inclusion elastic properties are different t
those of the matrix is Eshelby’s second problem~in which case
the inclusion is referred to as an ‘‘inhomogeneity’’!. This nomen-
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clature was introduced by Mura@2#. Eshelby’s interior or exterior
tensor~S or D! relates the eigenstrain («!) to the actual strain~«!
in and out of the inclusion,@1,3,4#:

«~X!5S~X!:«!~X! XPV (1a)

«~X!5D~X!:«!~X! X¹V (1b)

Both boldfaced and index notation will be used as convenie
Eshelby’s tensor, in classical elasticity context, depends solely
shape ~i.e., aspect ratios! of the inclusions and is thus size
independent. Furthermore, for the family of ellipsoidal shaped
clusions ~including spheres, cylinders, spheroids!, this tensor is
uniform within the interior of the inclusion. The latter fact great
facilitates, for example, the calculation of effective properties
composites containing ellipsoidal inhomogeneities. For the s
of completeness, some additional details on classical Eshe
tensor are recorded in Appendix A while an exhaustive acco
can be found in Refs.@1–4#. For nonuniform eigenstrains th
Eshelby tensors are integral operators while for uniform eig
strains numerical values can be established either analyticall
numerically ~depending upon the geometrical and material sy
metry complications!.

Since the original appearance of Eshelby’s paper@1# several
works have extended, modified and applied the concept of Es
by’s tensor to a diverse set of physical problems. There exist
tensive reviews of this subject hence only selected represent
papers are cited to establish appropriate context. We will, h
ever, allude to some review articles; the references of which m
or less contain an updated account of this topic:

~1! Anisotropicity: Several works have modified the class
~originally isotropic! formulation to incorporate anisotropic be
havior. Progress has largely been made only in the plane case
excellent, but somewhat dated, account of these aspects is giv
the now classic monograph by Mura@2#. Some more recen
works, which also contain extensive list of references on this s
ject, are: Ru@5# who discusses arbitrary shaped inclusions in
isotropic half and full plane, Li and Dunn@6# address coupled
field anisotropic inclusion problems, Pan and Yang@7# who
present a semi-analytical method for application to embed
quantum dots and Faux and Pearson@8# who have also applied an
anisotropic formulation to quantum dots.

~2! Inclusion shapes: Chiu@9# has considered parallelepipe
inclusion. Rodin@10# considers the general polyhedral inclusio
So do Nozaki and Taya@11#.

~3! Bonding conditions of inclusion: The original assumptio
in Eshelby’s work is that the inclusion is perfectly bonded to t
matrix, i.e., the normal tractions are continuous and so are
displacements. Under certain conditions these conditions mus
relaxed~e.g., grain boundary sliding, diffusive sliding, etc.!. Vari-
ous researchers have considered the imperfectly bonded inclu
e.g., Furuhashi et al.@12#, Ru and Schiavone@13#, Zhong and
Meguid @14#, Qu @15,16# and Kouris et al.@17# to name a few.

~4! Coated inclusions: Frequently for technological reasons
clusions are embedded in a matrix with a coating~or which may
be developed due chemical interaction with the matrix!. A few
representative works in this area are: Walpole@18#, Luo and Weng
@19#, Cherkaoui et al.@20#, among many others.

~5! Coupled problems: Due to possible applications in sen
and actuator technology, a large body of work has focused
coupled problems, e.g., magnetorestrictive inclusions, piezoe
tric media, etc. See, for example, the works by Taya@21#, Ru @22#,
Deng and Meguid@23#, Mikata @24#, Li and Dunn@6#, and Pan
@25,26#.

~6! Nonuniform eigenstrains: Sendeckyj@27# and Moschovidis
@28# considered general polynomial eigenstrains. Their work
useful for both nonuniform loadings as well as for taking in
account interactions between inhomogeneities. Asaro and Ba
@29# and Mura and Kinoshita@30# addressed polynomial eigen
strains in an anisotropic media. Note also must be made of
664 Õ Vol. 71, SEPTEMBER 2004
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recent work of Rahman@31# who presents simplified calculation
of Eshelby type tensors for polynomial eigenstrains.

~7! Enriched elasticity: the classical theory of elasticity itse
has been modified in several ways. Micromorphic elasticity ta
into account additional microdegrees-of-freedom such as inde
dent rotations, dilations, and shears. An extensive account of t
theories can be found in Eringen@32#. As far as inclusion problem
are concerned, it appears that the only two solutions that exis
due to Cheng and He@33,34# who, respectively, solve the spher
cal and cylindrical inclusion problem. Based on the latter wo
Sharma and Dasgupta@35# have formulated the overall propertie
of micropolar composites.

In addition to the aforementioned group of papers, several o
works exist in the context of nonlinear behavior and of course
application areas~such as effective medium theories, phase tra
formations, stability, among others.!. A review of those works is
beyond the scope of this paper. The following monographs,
view articles, books and references therein are recommende
the interested reader: Mura@2#, Nemat-Nasser and Hori@36#, and
Markov and Preziosi@37#, Weng et al.@38#, Bilby et al. @39#, and
Mura et al.@40#.

3 The General Size-Dependent Inclusion Problem in
Coupled Bulk-Surface Elasticity

Consider, for now, an arbitrary shaped inclusion~V! embedded
in an infinite amount of material. By definition of an inclusion, w
suppose a prescribed stress-free transformation strain within
domain of the inclusion~Fig. 1!. Consider the eigenstrain to b
uniform. As a departure from the classical solution, we now
quire that the interface of the inclusion and the matrix be endow
with a deformation-dependent interfacial energy,G. The interfa-
cial or surface energy is positive definite. This quantity is distin
from the bulk deformation-dependent energy due to the differ
coordination number of the surface/interface atoms, different b
lengths, angles, and a different charge distribution,@41#. Within
the assumptions of infinitesimal deformations and a continu
field theory, the concept of surface stress and surface tension
be clarified by the following relation between interface/surfa
stress tensor,ss, and the deformation-dependent surface ener
G(«s) by

ss5toI21
]G

]«s . (2)

Where applicable, superscriptsB andS indicate bulk and surface
respectively. Here,«s is the 232 strain tensor for surfaces o
interfaces,I2 represents the identity tensor for surfaces whileto is

Fig. 1 Schematic of the problem
Transactions of the ASME
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the deformation-independent surface/interfacial tension. It
worth pointing out that the concepts of surface tension, surf
stress, and surface energy are often confused and used
changeably. Only for liquids are all three the same. For sol
they are vastly different and must be carefully distinguished. S
for example, the excellent review article by Ibach@41#. A further
source of confusion often is the sign of the surface stress.
latter can be negative but not the surface energy. Conceptual
takes abound if one equates the surface stress to the surfac
ergy. The determination of the surface tension and the sur
elastic constants is often nontrivial and a discussion on this ca
found elsewhere, e.g., Ibach@41#, Miller and Shenoy@42#, and
Gurtin and Murdoch@43#. Some brief comments on this are als
provided in Appendix C where the properties used in subseq
numerical calculations are listed.

Having introduced the essential concept of surface elasti
the governing linearized isotropic equations can be written follo
ing Gurtin and co-workers,@44,45# who ~along with previous
works! can be credited for setting the theory of surface elastic
on a rational mechanics footing. The equilibrium and isotro
constitutive equations of bulk elasticity are written as usual:

div sB50 (3a)

sB5lI3Tr~«!12m«. (3b)

At the interface, the concept of surface or interface elasticity,@43–
45#, is introduced which is excluded in the classical elastic
formulation:

@sB.n#1divs sS50 (4a)

sS5toI212~ms2to!«S1~ls1to!Tr~«S!I2. (4b)

Here, l and m are the Lame’ constants for the isotropic bu
material. Isotropic interfaces or surfaces can be characterize
surface Lame’ constantsls, ms and surface tension,to . n is the
normal vector on the interface. It is to be noted that only cert
strain components appear within the constitutive law for surfa
due to the 232 nature of the surface stress tensor~i.e., strains
normal to the surface are excluded!. Thus, I2 represents the 2
32 identity tensor whileI3 represents the same for bulk 2nd ra
tensor. Tr indicates the trace operation. The square brackets in
~4a! indicate the jump of the field quantities across the interfa
In absence of surface terms, Eq.~4! reduce to the usual norma
traction continuity equations of classical elasticity. ‘‘divs’’ repre-
sent the surface divergence. To define this further and well as
role of surface identity tensorI2 ~i.e., the 232 nature of surface
tensors!, it would be convenient to first recall certain projectio
tensors (Ps) employed by Gurtin et al.@44#:

Ps5I2n^ n. (5)

Here I is the three-dimensional identity tensor and we ha
dropped the superscript ‘‘3.’’ This surface projection tensor ma
tensor fields from bulk to surface and vice versa. For example,
surface strain tensor projected into such a tangent space wou
written as«s5Ps«Ps. This notion of projection tensor~and related
tensor machinery of superficial and tangential tensors! elegantly
allows one to mix bulk and surface tensors in the same equati
To clarify the notion of surface divergence, consider a vectov.
The surface gradient and surface divergence, then, take the
lowing form, @44#:

“sv5“vPs

(6)
divs~v!5Tr~“sv!.

Noting that the transformation strain is only nonzero within t
inclusion domain (xPV), we can write the bulk-constitutive law
for the inclusion-matrix as follows:

sB5C:$«2«!H~z~x!!%. (7)
Journal of Applied Mechanics
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Here ‘‘H’’ is the Heaviside function andC is the classic fourth-
order stiffness tensor. We definez(x) to be of the form

$z~x!.0uxPV%

$z~x!,0ux¹V%. (8)

Taking the divergence of Eq.~7! we obtain

(9)

It can be readily seen that the eigenstrain and the underl
term appear as a body force. Note that in classical elasticity
last underlined expression in Eq.~9!, i.e., @sB.n# is typically
omitted since the jump in the normal tractions is zero.d~.! is the
Dirac delta function whilez̄(x)50 defines the interface. How
ever, taking cognizance of Eq.~4a!, i.e., coupling interface elas
ticity with bulk elasticity, we must rewrite Equation~9! as

(10)

Using the underlined term as representing a body force in c
junction with the elastic Green’s function, we can write the d
placement field due to both the eigenstrain and the surface e
as

(11)

A more rigorous treatment of the interface conditions in Eq.~9!–
~11! is provided in Appendix A. HereG is the Green’s tensor for
isotropic classical elasticity~Appendix B!. The underlined term
indicates the extra surface terms that we have incorporated in
present work. The first integral in Eq.~11! is simply the classical
part. As customary,@1,36#, we make use of Gauss theorem to ca
Eq. ~11! in a more attractive form:

(12)

Here we have also used the rule that,¹xG(y2x)52¹yG(y2x).
Invoking the linearized strain-displacement law:«5sym$¹ ^ u%,
we can then write

(13)

Here we have invoked the definition of the classical siz
independent Eshelby tensor,@1,2#, based on which the first~non-
underlined! integral in Eq.~12! reduces to the classical expressio
in Eq. ~1!. The notation, sym$.%, represents the symmetric part of
second-order tensor,A, e.g.,

sym$A%5
1
2 $A1AT%.

Further simplification does not appear feasible without ad
tional assumptions regarding inclusion shape. Note now that
~13! implicitly gives the modified Eshelby’s tensor for inclusion
incorporating surface energies. This relation is implicit since
SEPTEMBER 2004, Vol. 71 Õ 665
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surface stress depends on the surface strain, which in turn is
projection of the conventional strain~«! on the tangent plane o
the inclusion-matrix interface. In the next section, using Eq.~13!
we will derive explicit expressions for cylindrical and spheric
inclusions. For now, however, it is worth noting some gene
features of the new Eshelby tensor.

In terms of the surface projection tensor the surface diverge
of the surface stress tensor can be written as

divs ss5divs$C
sPs«Ps1toPs%. (14)

The surface divergence of surface stress tensor can only be
form if the classical ‘‘bulk’’ strain aswell as the projection tenso
is uniform over the inclusion surface. Consider that,@44#:

divs Ps52kn. (15)

Herek is the mean curvature of the inclusion. For a general el
soid the curvature is nonuniform and varies depending upon
location at the surface. Only for the special cases of spherical
cylindrical shape is the mean curvature uniform hence leading
to conclude the following:
PROPOSITION: Eshelby’s original conjecture that only inclusions
the ellipsoid family admit uniform elastic state under unifor
eigenstrains must be modified in the context of coupled surf
interface-bulk elasticity. Only inclusions that are of a consta
curvature admit a uniform elastic state, thus restricting this
markable property to spherical and cylindrical inclusions.

4 Inclusions With Constant Curvature „Spheres and
Cylinders…

Spherical and cylindrical inclusions are endowed with a c
stant curvature and thus according to the previous section m
admit a uniform elastic state in coupled bulk-surface elastic
The new Eshelby’s tensor will, of course, be size-dependent
cause of the presence of curvature terms.

Due to the constant curvature, Eq.~13! can be simplified con-
siderably. The surface divergence of the surface stress can be
ply taken out of the differential and integral operators. The surf
integral is converted into a volume integral and we can then wr

(16)

where scalar ‘‘s’’ is defined from the relation:

ss5sPs

⇒s5to1~ls1ms!Tr~Ps«Ps! (17)

In the underlined integral term we have multiplied and divided
the elastic stiffness tensor to conveniently cast the term enclo
in the curly brackets in terms of the classical Eshelby ten
Additionally we have used the surface constitutive law~Eq. 4~b!!.
We can rewrite Eq.~16! in the following simpler form:

«5S:«!2~2ks!C21:~S:I !. (18)

Equation~18! can be made more explicit by noting that an isotr
pic fourth tensor,A, displaying the symmetries characteristic
the elastic stiffness tensor can be written in terms of two sca
a1 and a2 as: Ai jkl 5a1d i j dkl1a2(d ikd j l 1d i l d jk). It is then
straightforward to show that,A:I5(3a112a2)I which, after sub-
stituting C21:I5(1/3K)I in Eq. ~18! directly leads to the follow-
ing for spherical inclusions:

«5S:«!2
Ks

3KRo
~S:I !Tr~Ps«Ps!2

2to

3KRo
~S:I !. (19)
666 Õ Vol. 71, SEPTEMBER 2004
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Here we have used the fact thatk51/Ro for spheres whereRo is
the radius.Ks is defined by us to be the surface elastic modu
and is given as 2(ls1ms) while K is the usual hydrostatic modu
lus, l12m/3.

For an infinite circular cylindrical inclusion, in addition to th
plane-strain conditions we havek as 1/2Ro hence

«5S:«!2
K8s

3K8Ro
~S:I !Tr~Ps«Ps!2

to

3K8Ro
~S:I !. (20)

HereK8s is the plane-strain surface modulus,ls12ms while K8
is 2(l1m)/3. Note that for the interior solution, Eshelby’s inte
rior tensor~S! must be used while for exterior solution the corr
sponding exterior version~D! is required.

Substituting the well-known components of the classical E
helby tensors for both spherical and cylindrical shapes,@2#, we
obtain the following simple expressions for spherical and cyl
drical inclusions subjected to a dilatational eigenstrain,«11* 5«22*
5«33* 5«* .
Spherical inclusion~in spherical polar coordinates!:

« rr ~r !5«uu~r !5«ff~r !5
3KM«* 22to /Ro

4mM13KM12Ks/Ro
Ur ,Ro

(21a)

« rr ~r !5F 3KM«* 22to /Ro

4mM13KM12Ks/Ro
G Ro

3

r 3 Ur .Ro (21b)

«uu~r !5«ff~r !52F 3KM«* 22to /Ro

4mM13KM12Ks/Ro
G 2Ro

3

r 3 Ur .Ro .

(21c)

Cylindrical inclusion~in cylindrical polar coordinates!:

« rr ~r !5«uu~r !5
3K8M«* 2to /Ro

2mM13K8M1K8s/Ro
Ur ,Ro (22a)

« rr ~r !5F 3K8M«* 2to /Ro

2mM13K8M1K8s/Ro
G Ro

2

r 2 Ur .Ro (22b)

«uu~r !52F 3K8M«* 2to /Ro

2mM13K8M1K8s/Ro
G Ro

2

r 2 Ur .Ro (22c)

«zz~r !50. (22d)

Wherever applicable, superscriptsH andM will be used to repre-
sent inhomogeneity and matrix properties, respectively. The
pressions~21!–~22! are exceptionally simple but clearly illustrat
that elastic state is now size-dependent. The surface/interface
sion is a residual strain-type term which, for example, should
impact the effective properties of composite. The effect of surf
elasticity appears throughKs which ~as shall be seen in Sectio
6~b!!, leads to a size-dependent change in overall hydrost
properties of a composite. By making the radius of the inclus
large we can trivially retrieve the known classical solution. Int
estingly, although their treatment of a spherical precipitate w
much more specialized, we can make contact with the result
Cahn and Larche@46#. Using an assumed displacement ty
method they~only taking into account surface tension! presented
exactly the expression in Eq.~21a! with the surface elasticity
effect (Ks) set to zero.

5 A Note on the Eshelby’s 2nd Problem„Inhomogene-
ity …

Since the classical result for the strain within the inclusion
uniform for ellipsoids, Eshelby@1# was able to devise an elegan
method to mimic an inhomogeneity by an inclusion containing
fictitious eigenstrain. The so-called equivalent inclusion meth
Transactions of the ASME
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Fig. 2 Stress concentration as a function of surface properties and void radius. „a… Solution
with surface modulus Ä2K s, Al †1 0 0‡. „b… Solution with surface modulus Änominal K s for Al †1
0 0‡. „c… Classical solution without surface effects, i.e., K sÄ0. „d… Solution with surface
modulus Ä2K s Al †1 1 1‡. „e… Solution with surface modulus Änominal K s, Al †1 1 1‡.
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simply entails equating the elastic state of an inhomogeneity
that of an inclusion albeit with the aforementioned fictitio
eigenstrain, i.e.,

CM:$«`1«2«!%5CH:$«`1«% (23a)

«5S:«!. (23b)

«` is the externally applied strain. Since for spherical and cy
drical shapes the modified Eshelby’s tensor with surface effec
also uniform, the equivalent inclusion method embodied in E
23~a,b! can be easily applied to study the size-dependent ela
state of inhomogeneities. Unlike the classical case, this fortuity
was seen in Section 3, does not extend to ellipsoids. As an
ample, for a cylindricalinhomogeneityfree of any external load-
ing but containing a dilatational eigenstrain, the interior rad
stress can be reduced to

s rr 52~mH1lH!
22mM«* 2K8s«* /Ro2to /Ro

2~mM1mH1lH!1K8s/Ro
. (24)

6 Applications
The incorporation of surface size effects in the inclusion pr

lem automatically reopens all the existing application areas
Eshelby tensor now extendable to the nanoscale. In the pre
paper we discuss three application areas: the first two are
demic although classic in mechanics while the third is, curren
of immense technological importance.

„a… Size-Dependent Stress Concentration at a Spherica
Void. Consider a spherical void under an applied hydrosta
tension. Based upon the preceding expressions~using Eshelby’s
exterior tensor and equivalent inclusion method!, the stress con-
centration can then be derived to be
ied Mechanics
to
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in-
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S.C.5
suu

s`
U

r 5Ro

511
1

2 S 122Ks/3KMRo

11Ks/2mMRo
D . (25)

In this section we have setto50, to study the effect of surface
elastic constant,Ks. Results can then also be presented indep
dent of loading conditions since the surface tension is a resid
stress type of effect. Note that Eq.~25! trivially gives 1.5 as the
stress concentration for the classical elasticity case when e
surface modulus is small or void radius is relatively lar
(typically.25 nm). The numerical results are presented for A
minum using free-surface properties computed by previous
searchers~@42#—using molecular dynamics simulations!. The sur-
face properties are highly dependent upon crystallograp
direction while ours is an isotropic formulation. The object of th
section, however, is to simply use some realistic values to ill
trate the physical effect. The stress concentration of the sphe
cavity under hydrostatic tension is plotted as a function of
cavity radiusRo in Fig. 2 for two different set of surface prope
ties ~corresponding to@1 0 0# Al and @1 1 1# Al !. To investigate
a broader range of surface properties, curves of surface mod
twice that of Al @1 0 0# and Al @1 1 1# are also shown.
The parameters as obtained from manipulation of data fr
Miller and Shenoy @42# are: @1 0 0#, ls53.48912 N/m,
ms526.2178 N/m⇒Ks525.457 N/m, while for@1 1 1#, they
are: ls56.842 N/m, ms520.3755 N/m⇒Ks512.932 N/m. As
depicted in Fig. 2, surface effects cause the stress concentrati
reduce ~increase! with decreasing pore size whenKs.0 (Ks

,0). The classical case~without surface effects! corresponds to
Ks50 and is, as expected, independent of pore size. Belo
critical void radius the void will sinter. This effect is closely re
lated to the residual surface tension and is not investigated h
SEPTEMBER 2004, Vol. 71 Õ 667
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Fig. 3 Size-dependent effective hydrostatic modulus with surface effects versus void radius
normalized with the matrix bulk modulus: „a… solution with surface modulus Ä2K s, Al †1 0 0‡;
„b… solution with surface modulus Änominal K s for Al †1 0 0‡; „c… classical solution without
surface effects, i.e., K sÄ0; „d… solution with surface modulus Ä2K s Al †1 1 1‡; „e… solution with
surface modulus Änominal K s, Al †1 1 1‡
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„b… Size-Dependent Overall Properties of Composites
One of the applications of this work is that surface effects c
now be easily included in the determination of effective elas
properties of a composite. Here, as an example, a nanocomp
of Aluminum populated with a finite volume fraction of spheric
voids is considered. Let the volume fraction of the inhomoge
ities be denoted by ‘‘c.’’ To take into account interactions betwee
various inhomogeneities, we embed the single inhomogen
~void! in a concentric spherical volume of matrix material wi
finite radius ‘‘RM.Ro . ’’ Then, ‘‘ c’’ is simply Ro

3/RM
3 . This is

nothing but the classical spherical assemblage system,@36#. Using
the interior and exterior Eshelby’s tensor we can compute
displacement fields to be

u5H Pr, 0<r<Ro

Q1
T

r 2 , Ro<r<RM

Q5
s`~4mM13KH!

3KM~4mM13KH!24cmM@3DK12Ks/Ro#
(26)

DK5KM2KH, T5
3DKRo

3

4mM13KH Q, P5Q1T/Ro
3.

Here we have used the kinematical relations (« rr 5]u/]r ;«uu
5«ff5u/r ). The overall applied stress is related to the to
average strain via the effective bulk modulus as

s`5Keff^«&. (27)

As is well known, @36#, the average strain can be complete
determined through the surface integral of the displacement on
boundary of sphereRM , i.e.,
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Here, n is the normal vector on the outer surface. The avera
strain field is obtained as

^«&53S Q1
3KM

4mM Q2
1

4mM Ds` (29)

from which the effective hydrostatic modulus is deduced to be

Keff5
1

3S Q1
3KM

4mM Q2
1

4mM D . (30)

The overall hydrostatic modulus of the composite is size a
surface-property-dependent~via ‘‘ Q’’ which in turn depends on ‘‘
Ks’’ weighted by the inhomogeneity curvature!. The size effect is
illustrated in Fig. 3, where the normalized effective hydrosta
modulus is plotted against the void radius for a constant volu
fraction ofc50.5. The effective hydrostatic modulus with surfa
effects, shown in Fig. 3, is normalized by the hydrostatic modu
of the matrix material without voids. As can be observed, at sm
length scales, the size of inhomogeneities~at constant volume
fraction! can cause a change in the macroscopic behavior o
composite. Asymptotically, as the inhomogeneity~void! size is
increased, the surfaces effects begin to diminish and the nor
ized modulus approaches the classical solution.

„c… Size-Dependent Strain and Emission Wavelength in
Quantum Dots. Quantum dots~QDs! have recently been the
focus of several experimental and theoretical researchers du
the promise of improved and new opto-electronic properties,@47#.
QDs are typically embedded in another semiconductor mate
Transactions of the ASME
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with differing elastic constants and lattice parameter. The ensu
elastic relaxation within the QD is well known to impact the
opto-electronic properties. Several works, of varying sophist
tion ~both analytical and numerical!, have focused on the calcula
tion of the strain state in buried quantum dots and the subseq
impact on opto-electronic properties~see, for example, the follow
ing works appearing in the mechanics literature:@48,49#!. It would
be of interest to see how much error~in strain and electronic
o

o

b
s

-
s

a
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ing
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properties! is incurred when surface effects are neglected con
ering that quantum dots are often ‘‘fabricated’’ in the sub 10-n
regime. An electronic property of interest in quantum dots is
bandgap, which in turn affects its emission wavelength. Usin
simple effective mass theory, the deformation potential theo
@50#, and the size effects from the present work, the shift in qu
tum dot emission wavelength due to surface effects can be wr
as
Dl5
hc~ac1av!@«cl2«s~Ro!#

S Eg
`1

h2~me
!mlh

! !

8p2Ro
2~me

!1mlh
! !

1~ac1av!«s~Ro! D S Eg
`1

h2~me
!mlh

! !

8p2Ro
2~me

!1mlh
! !

1~ac1av!«clD . (31)
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Here,h is Planck’s constant whilem! is the effective mass of the
carriers~‘‘ e’’ is electron and ‘‘lh’’ is light hole!. Eg

` is the bulk
band gap of the material while (ac1av) represents the dilatationa
deformation potential.«cl is the classical strain and«s(Ro) is the
size-dependent strain from the present work that includes sur
effects. Note that for the purposes of band structure calculati
the eigenstrain must be subtracted from the compatible strain.
second term on the denominator of Eq.~31! is the usual quantum
confinement effect,@51#. As an example, we have used a
In32GaN quantum dot system embedded in a GaN matrix. T
error in wavelength calculation is shown in Fig. 4. Numeric
constants are listed in Appendix C. We have used a simple fi
order approximation~Eq. ~31!! to capture the wavelength shift an
while a more sophisticated treatment is possible~following, say,
Ref. @49#! the present expression in Eq.~31! suffices to provide a
measure of the severity of surface effects on the opto-electr
properties.

As patent from Fig. 4 the error in wavelength calculation
neglecting the surface size effect is appreciable in certain
ranges. For large QD size, as expected, the classical and the
results are indistinguishable. For very small QD sizes, while s
face effects are appreciable so are the quantum confinemen
fects ~which scale as 1/R2) and hence dominate. In the ‘‘mid
regime’’ ~still at the nanoscale!, surface effects have the mo
impact. To be specific, in this particular material system, a ma
mum wavelength shift of;40 nm ~for a diameter of;3 nm! is
observed which is large enough to cause a shift of colors
indeed exceeds the strict optoelectronic design tolerances.

Fig. 4 Size-dependent wavelength shift due to surface elastic-
ity effects
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7 Summary and Conclusions
To summarize, we have modified Eshelby’s classical appro

towards inclusions and inhomogeneities to incorporate the ef
of surface energies via the continuum field formulation of surfa
elasticity. As a consequence, the elastic state of inclusions is
dered size-dependent making possible the establishment of sc
laws that are valid at the nanoscale. Eshelby’s original conjec
that only inclusions of the ellipsoid family admit uniform elast
state under uniform eigenstrains must be modified in the con
of coupled surface/interface-bulk elasticity. Only inclusions th
are of a constant curvature admit a uniform elastic state, t
restricting this remarkable property only to spherical and cylind
cal inclusions. The modified size-dependent Eshelby tensor for
spherical and circular cylindrical shape is explicitly calculated
the present work.

Apart from the formal contribution, by way of illustration, th
size-dependent stress concentration on a spherical void was
onstrated. Taking advantage of the fact that the modified Esh
tensor is uniform for the spherical shape, we are also able
derive the exact size-dependent hydrostatic modulus of a he
geneous solid. Perhaps the most technologically important ap
cation of the present work lies in arena of quantum dots and wi
While physicists routinely take into account the impact of stra
on band structure and opto-electronic properties, the strain ca
lations are typically based upon classical elasticity and are s
independent. In the present work, a first-order calculation cle
shows that large errors in both the band structure and the em
wavelength can be incurred if the surface size effects
neglected.

There are several limitations of the present work and a few
worth mentioning. They point naturally to future extensions:

~1! Isotropic behavior was assumed throughout. This is a ra
dubious assumption when one is concerned with surfaces an
terfaces. Unfortunately, matters are unlikely to be analytica
tractable once the assumption of isotropy is abandoned. Num
cal formulation of the coupled-surface bulk elasticity may be n
essary to remove this restriction.

~2! Analytical formulas were restricted to the spherical and c
lindrical shape. This limits our ability to study the effect of sha
on the size-dependent elastic state of nano-inclusions. Deriva
of the modified Eshelby tensor for the general ellipsoid~which
surely must proceed numerically! would be a useful extension o
the present work.

~3! It would be also of interest to see the behavior of non
mooth inclusion shapes, e.g., parallelepipeds. Polyhedral in
sions with vertices essentially possess zero curvature everyw
except at the corners where singularities exist.

~4! Slip, twist, and wrinkling of surfaces/interfaces were i
nored. One can expect some interesting physics to emerge
inclusion of such effects. Slip and twist of elastic interfaces w
SEPTEMBER 2004, Vol. 71 Õ 669
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recently included by Gurtin et al.@44# to supplement the origina
formulation,@45#. These notions are closely linked to the conce
of coherency-incoherency and their discussion in relation to
helby’s problems is relegated to a future work.
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Appendix A

Interfacial Conditions in Equations „9…–„11…. The form of
the underlined term in Eq.~9!, i.e., the jump in traction across th
inclusion-matrix interface, can be justified by considering t
stress balance law in the following form:

div s5E
S
f ~y!d~x2y!dSy50 (32)

Equation~32! defines a stress field perturbed by a force spr
over the interface. An arbitrary trial functionw~x! is introduced.
Upon multiplication of this trial function with Eq.~32!, integra-
tion over the volume and subsequent use of Gauss theorem y

E
S
$@s~x!#.n%.w~x!dSx2E

V
$div s~x!%.w~x!dSx

1E
S
f~y!.w~y!dSy50. (33)

Since,w~x! is completely arbitrary, Eq.~33! implies ~a! the usual
balance law within the bulk of the continuum, divs50 and~b!
the identification of the interface force with the jump in the no
mal tractions, i.e.,f52@s#.n.

Table 1 Numerical values used in Fig. 4

Property Value

Eg
` (eV) 1.94 @52#

me* 0.18 @53#*

mlh* 0.8 @54#*
ac1av (eV) 8.3 Chin et al.@55#*

mM ~Gpa! 67
KM ~Gpa! 102
KH ~Gpa! 168
mH ~Gpa! 95
Ks ~J/m2! 161.73'

to ~J/m2! 1.33;

*Linearly interpolated between InN and GaN using proportion of In concentrati
'Estimated approximately using Gurtin and Murdoch’s@43,45# analogy to mem-
brane theory of Tiersten@56#. A transition from bulk constants to interface/surfac
properties can be made by the following transformation:$ms,ls%→$mh,2lmh/(l
1m)%. Here,h is the thickness over which surface/interface elasticity behavior
fers from the bulk. Our molecular dynamics simulations indicate that such beha
is typically confined to about 1–2 lattice spacing. For the interface, we have assu
this value to be 5 Angstroms.
;Interfacial tension for this material combination is not known. Conventional EA
potentials are not useful for Nitride structures~especially for surface property evalu
ation!. Generally, however, it is well known that depending upon the degree
coherency the interfacial tension varies from 0.7 J/m2 to 2 J/m2. Our estimation
proceeded as follows. For an indium concentration of zero, the interfacial tensi
also zero while it should be the maximum for 100% In~which is completely inco-
herent with respect to GaN!. Assuming tentatively a maximum interfacial tension
2 J/m2 for 100% In, we obtain 1.33 J/m2 by simple proportion for the current com
position of 32%.
670 Õ Vol. 71, SEPTEMBER 2004
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Appendix B

Green’s Function for Elasticity and Eshelby’s Classical Ten-
sor. The Green’s function for elasticityG(y2x) is the funda-
mental solution to the Kelvin’s solution of a point load in a
infinite solid. It is given by~for isotropic materials!

G~y2x!5
1

16pm~12v !uy2xu H ~324v !d1
~y2x! ^ ~y2x!

uy2xu2 J .

(34)

Substituting this expression in the first integral of Eq.~12! yields,
@2#:

« i j ~x!5
1

8p~12v !
@Ckl,kli j 22vFkk,i j 22~12v !~F ik,k j

1F jk,ki!# (35)

where c and F are biharmonic and harmonic potentials of th
inclusion shape~V!. They are given as

C i j ~x!5E
V

ux2yu« i j
! ~y!d3y (36)

F i j ~x!5E
V

1

ux2yu
« i j

! ~y!d3y (37)

Equation~35! can then be cast into the more familiar express
of Eq. ~1a,b!

«~x!5S~x!:«! xPV
(38)

«~x!5D~x!:«! x¹V.

Mura’s book @2# contains detailed listing ofS and D tensor for
various inclusion shapes~spheres, cylinders, ellipsoids, an
cuboids!.

Appendix C

Numerical Constants for Wavelength Shift Calculation
The numerical values used in the calculation of Fig. 4 are listed
Table 1.
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Defect Green’s Function of
Multiple Point-Like
Inhomogeneities in a
Multilayered Anisotropic Elastic
Solid
Defect Green’s function (GF) of multiple point-like inhomogeneities in a multilaye
solid has been derived within the theory of linear anisotropic elasticity. It is related to
(reference) GF of the multilayered matrix excluding the inhomogeneities through
continuum Dyson’s equation. While the reference GF is available, the defect GF ca
solved. The expressions are first analytically reduced by realizing the point-likeness
inhomogeneities. The subsequent procedure involves the solution of the response
individual inhomogeneity to a far-field straining in the multilayered matrix and a ma
inversion on the order of the number of inhomogeneities. Furthermore, the defect G
applied to derive the field induced by inhomogeneous substitutions in a multilayered
Numerical results are reported for arrays of cubic and semispherical Ge inclusions
Si/Ge superlattice. The numerical results have demonstrated the validity and efficien
the present formulation.@DOI: 10.1115/1.1781179#
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1 Introduction
Multilayered materials have been the focal research are

structural composites for decades,@1#. Recently, such a materia
setting has drawn refreshed attention in the field of semicondu
micro/nanodevices,@2#. In both cases, the composites may cont
various ‘‘defects,’’ such as cavities and reinforcing particles in
structural case, and dislocations, vacancies and impurities in
micro/nanoscale case. Some of these defects may be model
inclusions with eigenstrain, introduced by, for instance, a ther
expansion mismatch or a lattice-constant mismatch. The ot
should be modeled as inhomogeneous inclusions, exhibiting
elastic and eigenstrain mismatches with matrices,@3#. Due to the
small size and large quantity of such defects~in real cases!, the
Green’s function~GF! method is often the first choice, sometim
the only one, to investigate the problems. However, the metho
limited to the cases of certain materials property and geome
where the GF is available and can be evaluated efficiently.

In the theory of~three-dimensional! linear elasticity, various
GFs have been derived for infinite-space, half-space, bimater
trimaterials, and multilayers,@3–9#. The GFs have been directl
applied to solve the eigenstrain problem of defects in these st
tures. The defects are modeled as inclusions, taking into acc
their eigenstrain mismatch, but ignoring their elastic mismat
with these matrices@3,10,11#. Recently, Yang and Tewary@12#
introduced the continuum Dyson’s equation and defect GF i
generally heterogeneous anisotropic solid. The Dyson’s equa
links the point-force responses of two systems of identical ge
etry and~homogeneous! boundary condition but of different me
dia. Given the GF of either system~called a reference!, the GF of
the other~called a defect system with ‘‘defect’’ change of mate
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, August 28, 20
final revision, April 15, 2004. Associate Editor: Z. Suo. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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als properties relative to the reference! can be obtained by solving
this equation. The defect GF can then be applied directly to so
the problem of inhomogeneous inclusions, taking into account
elastic mismatch as well as the eigenstrain mismatch between
defects and matrix. This defect GF method is ideal for treat
localized defect spaces. In the present work, we derive the de
GF for multiple point-like inhomogeneities, and apply it to deriv
the induced field by point-like inhomogeneous inclusions in
multilayered solid.

In Section 2, the Green’s function problem is formulated f
multiple inhomogeneities in a multilayered anisotropic and l
early elastic solid subjected to a point force. It is solved by re
ing the defect GF to the reference GF in the absence of the in
mogeneities through the continuum Dyson’s equation,@12#. The
expressions are analytically reduced to the case of point-
inhomogeneities before the final numerical solution. In Section
the defect GF is used to derive the induced field by inhomo
neous inclusions in a multilayered solid. In Section 4, numeri
results are reported for arrays of cubic and semi-spherical
substitutions~namely, GE quantum dots~QD!! in a Si/Ge super-
lattice. The present solution of cubic QDs is compared with tha
finite-size QDs by a boundary element~BE! method,@13#. The
agreement has demonstrated the validity of the present form
tion. The solution of more than 100 semisherical QDs has a
demonstrated the efficiency of the present formulation. In Sec
5, conclusions are drawn.

2 Defect Green’s Function of Point-Like Inhomogene-
ities

Consider a multilayered substrate occupying domainV. It is
filled with N particles occupying subdomainsDn (n
51,2, . . . ,N), as schematically shown in Fig. 1~a!. A Cartesian
coordinate frame, (x1 ,x2 ,x3) is attached to the system, with th
x3-axis being perpendicular to the substrate surface and poin
inward the substrate. The substrate and particles are modele
anisotropic and linearly elastic materials. The particles and
parts of substrate that are substituted by the particles have ge
ally different elastic stiffness. Thus, these particles are term

3;
per
lied
sity
pted
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inhomogeneities in the substrate,@3#. The interfaces between th
substrate and particles and between adjacent layers of the
strate are perfectly bonded. A unit point force is applied to
body along one of the axes, for example, along thepth direction,
at X. In addition, a homogeneous boundary condition is impo
along the substrate surface]V. The point force and all particles
are remote to each other. Thus, the particles are treated as p
like ~in size!. Meanwhile, they may hold arbitrary shape, whic
can play a significant role in determining the induced elas
fields.

The constitutive law of the multilayered substrate~before filling
particles! is given by

s i j ~x!5Ci jkl ~x!«kl~x!, (1)

where s i j is the stress component,«kl([1/2(ui , j1uj ,i)) is the
infinitesimal strain component,Ci jkl is the elastic stiffness com
ponent, and the repeated subscripts imply the conventional s
mation over their range. In the definition of«, u is the displace-
ment vector, and the comma in the subscript indicates the pa
derivative with respect to the coordinate that follows. The con
tutive law of the multilayered substrate after filling particles
given by

s i j ~x!5Ci jkl* ~x!«kl~x!, (2)

with

Ci jkl* ~x!5H Ci jkl
~n! ~x! xPDn

Ci jkl ~x! xPV2(
n

Dn
, (3)

where the superscriptn in the bracket indicates the attachment
the nth particle.

The equilibrium of the multilayered substrate filled with pa
ticles requires

@Ci jkl* ~x!Gpk,l* ~X,x!# , j1dpid~x2X!50, (4)

whereGpi* (X,x) is theith displacement component atx due to the
unit point force applied along thepth direction atX, d~x2X! is
the Dirac delta function, anddpi is the Kronecker delta function
The homogeneous boundary condition is given by

Gpi* ~X,x!50 or Spi j* ~X,x!nj~x!50, xP]V, (5)

on each componenti, where Spi j* (X,x)[Ci jkl* (x)Gpk,l* (X,x).
Thus,Gpi* (X,x) andSpi j* (X,x) are, respectively, the Green’s dis
placement and stress that satisfy Eqs.~4! and ~5!. Through the
text, indicesp, q, s, andt are used to indicate a component of t
source point,X ~i.e., the first variable of the GFs!, and indicesg,
h, i, j, k, and l to indicate a component of the field point,x ~i.e.,
the second variable of the GFs!. Indices m and n are used to
number the particles.

Fig. 1 „a… A multilayered solid embedded with multiple inho-
mogeneities; „b… a ‘‘clean’’ multilayered solid as reference to
„a…. Both structures are subjected to a unit point force along
one of the axes at X. A global coordinate system is established
with the x 3-axis being perpendicular to the top surface and
pointing inward the substrate.
Journal of Applied Mechanics
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The above~defect! GF,G* can be related to the~reference! GF,
G of the multilayered substrate before filling the particles~Fig.
1~b!! by, @12#

Gpi* ~X,x!5Gpi~X,x!

2E
V

@Gp j ,k* ~X,x8!DCjksh~x8!# ,hGsi~x8,x!dV~x8!,

(6)

whereDCjksh(x)[Cjksh(x)2Cjksh* (x). The GF,G is defined by

@Cjikl ~x!Gpk,l~X,x!# , j1dpid~x2X!50, (7)

under the same homogeneous boundary condition as given in
~5! for G* . Equation~6! is called the continuum Dyson’s equa
tion, the continuum counterpart of the Dyson’s equation in
lattice-statics theory,@14#. It links the point-force response of th
defect system of multilayered materials filled with inhomog
neous particles to that of the reference system of ‘‘clean’’ mu
layered matrix under the same interfacial and boundary co
tions. Given the reference GF,G, of which an efficient evaluation
scheme has been developed recently,@9#, the defect GF,G* can be
obtained by solving this equation.

In the case of embedded particles,DCi jkl is localized inside the
subdomainsDn . Applying the Gauss divergence theorem, t
above Dyson’s Eq.~6! can be reduced to

Gpi* ~X,x!5Gpi~X,x!1(
n
E

Dn

Gpk, j* ~X,x8!

DCjkst
~n! ~x8!Gsi,t~x8,x!dV~x8!, (8a)

Taking derivative of Eq.~8a! with respect tox yields

Gpi,l* ~X,x!5Gpi,l~X,x!1(
n
E

Dn

Gpk, j* ~X,x8!

DCjkst
~n! ~x8!Gsi,l t~x8,x!dV~x8!. (8b)

In the above derivation from Eqs.~1! to ~8!, we have not used
the property of point-likeness of the particles. The last Eqs.~8a,b!
are applicable to embedded particles of any size, shape, and
tic property. In the following, we shall analytically reduce th
integral by realizing the property of point-likeness of the particl
Although in Eqs.~8a,b! the distance betweenX and anyx8 is
large, it is generally invalid to takeGpk, j* (X,x8) out of the integral
by approximating it as constant within each particle. It may va
significantly inside a particle—it may be singular if the partic
has an asterisk shape, for example. However, one may expec
the field at the location of a particle is regular if that particle
excluded and filled with the original matrix material. This leads
to write the defect GFGpk, j* (X,x) as follows:

Gp j ,k* ~X,x!5Gpg,h* ~2n!~X,x!sgh jk
~n! ~x!, (9)

whereGpg,h* (2n)(X,x) is the ~less! defect GF in the presence of a
but thenth particles, andsgh jk

(n) (x) is a forth-rank tensor that trans
formsGpg,h* (2n)(X,x) into Gpk, j* (X,x) upon the inclusion of thenth
particle. It is a function of locationx, different for particles of
different shape and material property. Substituting Eq.~9! in Eqs.
~8a,b! yields

Gpi* ~X,x!5Gpi~X,x!1(
n
E

Dn

Gpg,h* ~2n!~X,x8!sgh jk
~n! ~x8!

DCjkst
~n! ~x8!Gsi,t~x8,x!dV~x8!, (10a)

Gpi,l* ~X,x!5Gpi,l~X,x!1(
n
E

Dn

Gpg,h* ~2n!~X,x8!sgh jk
~n! ~x8!

DCjkst
~n! ~x8!Gsi,l t~x8,x!dV~x8!. (10b)
SEPTEMBER 2004, Vol. 71 Õ 673
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If both X andx are remote to all particles, Eqs.~10a,b! can be
reduced to

Gpi* ~X,x!5Gpi~X,x!1(
n

Gpg,h* ~2n!~X,x~n!!Tghst
~n! Gsi,t~x~n!,x!,

(11a)

Gpi,l* ~X,x!5Gpi,l~X,x!1(
n

Gpg,h* ~2n!~X,x~n!!Tghst
~n! Gsi,l t~x~n!,x!,

(11b)

with

Tghst
~n! 5E

Dn

sghk j
~n! ~x!DCjkst

~n! ~x!dV~x!, (12)

wherex(n) represents the location of thenth particle and may be
chosen arbitrarily inside the particle with minimal effect on t
final solution. Thus, givenGpg,h* (2n)(X,x(n)) and Tghst

(n) for all par-
ticles, the defect GF,Gpi,l* (X,x) can be evaluated by using Eq
~11a,b!.

In order to findTghst
(n) , we consider the multilayered matrix wit

only the nth particle. Since the above derivation applies to t
special case, we have

Gpi,l* ~n!~X,x!5Gpi,l~X,x!1E
Dn

Gp j ,k* ~n!~X,x8!

DCjkst
~n! ~x8!Gsi,l t~x8,x!dV~x8!, (13)

Gp j ,k* ~n!~X,x!5Gpg,h~X,x!sgh jk
~n! ~x!. (14)

Substituting Eq.~14! in Eq. ~13! and approximatingGpg,h(X,x8)
as constant forx8PDn yield

Gpg,h~X,x!sghil
~n! ~x!5Gpi,l~X,x!1Gpg,h~X,x~n!!E

Dn

sgh jk
~n! ~x8!

DCjkst
~n! ~x8!Gsi,l t~x8,x!dV~x8!. (15)

SettingxPDn and eliminatingGpg,h(X,x) result in

sghil
~n! ~x!5dgidhl1E

Dn

sgh jk
~n! ~x8!DCjkst

~n! ~x8!Gsi,l t~x8,x!dV~x8!.

(16)

The above integral equation can be used to numerically solve
thes tensor~as a function of locationx!. To do so, the domainDn

is discretized into a number of elements. The fieldsghil
(n) (x) is

approximated by interpolating the nodal values of each elem
Substituting the approximated field in Eq.~16!, and assigningx to
be the location of each node, a closed set of algebraic equatio
obtained. It can be solved for the nodal values ofsghil

(n) . Finally,
the nodal values ofsghil

(n) are surrendered in Eq.~12! for approxi-
mate evaluation ofTghst

(n) .
In order to findGpg,h* (2n)(X,x(n)), we set onlyX to be remote to

all particles andx to be atx(m), location of themth particle in Eq.
~10b!. It results in

Gpg,h* ~2m!~X,x~m!!sghil
~m! ~x~m!!5Gpi,l~X,x~m!!

1 (
nÞm

Gpg,h* ~2n!(X,x~n!)Tghst
~n! Gsi,l t

3~x~n!,x~m!!1Gpg,h* ~2m!~X,x~m!!

3E
Dm

sgh jk
~m! (x8)

DCjkst
~m! (x8)Gsi,l t~x8,x~m!!dV~x8!. (17)
674 Õ Vol. 71, SEPTEMBER 2004
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Applying Eq. ~16! of the mth particle in the above equation an
rearranging yield

Gpi,l* ~2m!~X,x~m!!5Gpi,l~X,x~m!!1 (
nÞm

Gpg,h* ~2n!

3~X,x~n!!Tghst
~n! Gsi,l t~x~n!,x~m!!. (18)

Equation~18! offersN equations withN unknownsGpg,h* (2n) . Thus,
provided thatG and T(n) are known, the above system of equ
tions can be solved for allGpg,h* (2n) .

In summary, given the reference GF,G ~and its derivatives! of
the multilayered matrix in Fig. 1~b!, one may first solve Eq.~16!
for s(n) and consequentlyT(n) of each individual particle. Then
Eq. ~18! is solved forGpg,h* (2n) of all particles. Finally, Eqs.~11a,b!
are taken to computeGp j ,k* between anyX and x remote to all
particles. Often the derivatives ofGp j* and Gp j ,k* with respect to
source coordinateX, i.e., Gp j ,q* andGp j ,kq* , are desired. They are
the Green’s fields due to a force dipole. Their solution proced
is very similar to the preceding one forGp j* and Gp j ,k* . For the
sake of brevity, it is not repeated here.

3 Application to EigenstrainÕEigenstress Problem
Often embedded particles~i.e., defects! exhibit thermal-

expansion/lattice-constant mismatch as well as elastic mism
with the matrix. The elastic mismatch has been accounted
above by developing the defect GF based on the continuum D
on’s equation. The thermal-expansion/lattice-constant misma
may be modeled as eigenstrain within the particles. Such parti
with both elastic and eigenstrain mismatches are termed inho
geneous inclusions,@3#. The constitutive law of the layered soli
embedded with inhomogeneous inclusions is given by

s i j ~x!5Ci jkl* ~x!~«kl~x!2«kl
0 ~x!!, (19)

with Ci jkl* (x) given by Eq.~3! and eigenstrain field given by

«kl
0 ~x!5H «kl

0~n!~x! xPDn

0 xPV2(
n

Dn
. (20)

Within the defect GF formulation, we can derive the~equilib-
rium! displacement field induced by the inhomogeneous inc
sions in the multilayered structure as,@12#,

up~X!5(
n
E

Dn

Gpi, j* ~X,x!s i j
0 ~x!dV~x!, (21)

whereGpi, j* (X,x) is the defect GF of the multilayered structu
including the inhomogeneities as described in the previous
tion, ands i j

0 ([Ci jkl* «kl
0 ) is the eigenstress. If the eigenstress

uniform within each particle, Eq.~21! is reduced to

up~X!5(
n

Gpi, j* ~2n!~X,x~n!!Si jkl
~n! skl

0~n! , (22)

with

Si jkl
~n! 5E

Dn

si jkl
~n! ~x!dV~x!. (23)

The S tensor is essentially the Eshelby’s tensor,@3#. Taking de-
rivative of Eq.~22! with respect toX and applying the definition
of strain, the induced strain is obtained as

«pq~X!5(
n

1

2
~Gpi, jq* ~2n!~X,x~n!!1Gqi, jp* ~2n!~X,x~n!!!Si jkl

~n! skl
0~n! .

(24)
Transactions of the ASME
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4 Numerical Examples
In this section, we apply the previous theory to solve the pr

lem of Ge-QDs in a semiconductor superlattice with alternat
Si/Ge layers on a half-space Si substrate. The problem h
strong technological interest owing to its potential application
novel nanodevices,@2#. The superlattice consists of five Si laye
and five Ge layers. The layers have the same thickness,t. Both
materials are cubic anisotropic. The elastic constants for Si
C115165.8, C12563.9 and C44579.6, and for Ge areC11
5128.5, C12548.3, C44566.8 (GPa), in their crystallographi
base axes,@15#. The layers are aligned with their crystallograph
orientations, respectively, parallel to the global axes (x1 ,x2 ,x3).
The Ge-QDs hold a hydrostatic eigenstrain of magnitude equa
0.04, i.e.,«kl

0 5«0dkl , and«050.04, relative to the Si matrix. Two
examples are considered. In the first example, three cubic Ge-
are buried in the middle plane of the first Si layer, as shown in F
2~a!. They are aligned in thex1-direction and separated in a dis
tance of 0.5t. In the second example, a square array of 11311
semispherical Ge-QDs are embedded at the bottom of the fir
layer—right above the interface, as shown in Fig. 2~b!. The array
is aligned with the globalx1 and x2-axes. The distance betwee
the centers of nearest neighbors ist. The reference GF,G of the
multilayered substrate is evaluated by using the efficient sch
recently developed by Yang and Pan@9#.

In the first example~Fig. 2~a!!, the induced strain is evaluate
along (x1,0,0) on the top surface. The corresponding solution
finite-sized QDs is also obtained for comparison by using the
method,@13#. The nonzero components of the normalized stra

Fig. 3 Variation of „nonzero … normalized strain components
along the line, „x 1 , x 2Ä0, x 3Ä0… on the top surface induced by
the three buried cubic QDs as shown in Fig. 2 „a…. The solid
lines indicate the present solution of point-like QDs, and the
dashed lines with symbols indicate the BE solution of finite-
size QDs with the size as indicated.

Fig. 2 A Si ÕGe superlattice with „a… 3 cubic Ge-QDs and „b…
11Ã11 semispherical QDs
Journal of Applied Mechanics
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3/«0V, whereV is the volume of a QD, are plotted in Fig. 3

It can be seen that the finite-size solution converges toward
present solution of point-like QDs as the size decreases. The
vergence has demonstrated the validity of the present formula

In the second example~Fig. 2~b!!, the induced field of hydro-
static strain«kk(5«111«221«33) is evaluated in a square area o
the top surface. It is normalized by«kkt

3/«0V, and plotted in
contour in Fig. 4. The variation along the diagonal line fro
~23,23! to ~3,3! is also plotted in Fig. 5. It can be seen that
minimum hydrostatic strain occurs above each QD. In betw
every four adjacent QDs, a maximum hydrostatic strain occ
The average magnitude of«kk increases away from the central Q
in this case. The solution of this example of 11311 QDs in a
ten-layer superlattice on a semi-infinite substrate has dem
strated the efficiency of the present formulation.

Fig. 4 Contour plot of the normalized hydrostatic strain «kk on
the top surface in the case of 11 Ã11 array of semispherical QDs
as shown in Fig. 2 „b…. The magnitude of the contours can be
read from the next Fig. 5.

Fig. 5 Diagonal variation of the normalized hydrostatic strain
«kk from „À3,À3… to „3,3… in Fig. 4, showing the magnitude and
maximum and minimum locations
SEPTEMBER 2004, Vol. 71 Õ 675
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5 Conclusion
We have developed a defect GF for multiple point-like inhom

geneities in a multilayered solid within the theory of linear anis
tropic elasticity. The defect GF is related to the reference GF
the multilayered matrix through the continuum Dyson’s equati
Since the reference GF is available, the defect GF can be so
In the present case of point-like inhomogeneities, the continu
Dyson’s equation is analytically reduced, and the final numer
treatment involves the solution of a fourth-rank tensor of ea
individual particle and a matrix inversion on the order of the nu
ber of inhomogeneities. The fourth-rank tensor reserves the in
mation of particle shape while the particles are treated as po
like in size—the size effect is neglected. Furthermore, the de
GF is applied to derive the field induced by multiple inhomog
neous inclusions that exhibit both elastic and eigenstrain m
matches with matrix. Numerical results are reported for the arr
of cubic and semispherical Ge-QDs in a Si/Ge superlattice.
numerical results have demonstrated the validity and efficienc
the present formulation.
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The Maximal Lyapunov Exponent
for a Three-Dimensional
Stochastic System
This paper examines the almost-sure asymptotic stability condition of a linear mul
cative stochastic system, which is a linear part of a co-dimension two-bifurcation sy
that is on a three-dimensional central manifold and subjected to parametric excitatio
an ergodic real noise. The excitation is assumed to be an integrable function o
n-dimensional Ornstein-Uhlenbeck vector process which is the output of a linear
system, while both the detailed balance condition and the strong mixing condition
removed. Through a perturbation method and the spectrum representations of the F
Planck operator and its adjoint operator of the linear filter system, the explicit asymp
expressions of the maximal Lyapunov exponent for three case studies, in which di
forms of the coefficient matrix included in the noise excitation term are assumed
obtained.@DOI: 10.1115/1.1782648#
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1 Introduction
The investigation of the maximal Lyapunov exponent for d

namical systems which are excited by stochastic processes i
primary research focus in the fields of random dynamical syst
and stochastic bifurcation. This is mainly attributed to the fact t
for a linear stochastic system, the Lyapunov exponent is an
gous to the real part of the eigenvalue, and this Lyapunov ex
nent characterizes the exponential rate of change of the resp
of a random system. Therefore, the sample or the almost-
stability of the stationary solution of a random dynamical probl
depends on the sign of the maximal Lyapunov exponent.

A general method for exact evaluation of the maxim
Lyapunov exponent of a linear Ito stochastic differential equat
was first presented by Khasminskii@1#. The main idea for this
method is such that by projecting the system in spaceRn onto the
surface of ann-dimensional unit sphere, on which the stochas
differential equation for the variabler5logixi can be expressed
explicitly in terms of then21 independent angle processe
which constitute themselves a (n21)-dimensional diffusion pro-
cess, the maximal Lyapunov exponent for this system can the
obtained. This method was then successfully employed by Mi
ell and Kozin@2#, Nishioka @3#, and Ariaratnam and Xie@4# and
Xie @5# to a two-dimensional Ito system. Among the works r
ported to date, limited results pertain to the cases of ergodic
nonwhite noise processes. In Arnold et al.@6#, a perturbation
method for asymptotic analysis was presented and employe
construct the asymptotic expansion of the maximal Lyapunov
ponent of a two-dimensional system under a real noise excita
To keep the solution tractable, the infinitesimal generator ass
ated with the noise process was assumed to be a self-adjoin
liptic diffusion operator with an isolated simple zero eigenvalu

Utilizing the method of stochastic averaging, the asympto
expansions for the maximal Lyapunov exponents for two coup
oscillators with a real noise were obtained by Ariaratnam and
@4#. Instead of the stochastic averaging method, the same sy
and subsequently a more general four-dimensional linear stoc
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tic system were also investigated by Namachchivaya and Roe
@7# and Doyle and Namachchivaya@8# by using the perturbation
method.

For a linear multiplicative stochastic system, which was a lin
part of a co-dimension two-bifurcation system that was driven
a parametric excitation of a real noise with a small intens
Namachchivaya and Talwar@9# obtained an analytical expressio
of maximal Lyapunov exponent for the case where a diago
matrix involved in the real noise excitation term. The c
dimension two-bifurcation system considered was on a thr
dimensional central manifold and possesses one zero eigenv
and a pair of pure imaginary eigenvalues, meanwhile the exc
tion was assumed to be a real noise that satisfied the strong m
condition. The stochastic averaging method was employed to
rive a set of approximated Ito equations for the (r ,f,z) process
which was the first approximation of the original linear multip
cative stochastic system.

For the case that the stochastic excitation was given as the
component of an output of a linear filter system and conformed
the detailed balance condition@10#, Liu and Liew@11,12# obtained
the asymptotical expansions of the top Lyapunov exponents
their works, a model of enhanced generality was considered
which they removed the strong mixing condition which is t
prerequisite of the stochastic averaging method. Instead the s
trum representation of the Fokker Planck operator of the lin
filter system,@10,13#, were employed in the construction of th
asymptotic expansions of the stationary probability density fu
tions and the top Lyapunov exponents for the relevant system

The present study attempts to obtain an asymptotic expan
of the maximal Lyapunov exponent for the linear multiplicativ
stochastic system, which is a further extension of the work in
and Liew @11,12#. For the excitation, both the detailed balan
condition and the strong mixing condition are removed and
excitation itself is assumed to be an integrable function of
n-dimensional Ornstein-Uhlenbeck process. It is well known t
the asymptotic expression of the top Lyapunov exponent depe
on the form of matrixB, which is included in the noise excitatio
term. In this paper, a general form of matrixB is considered and
furthermore, for the special cases of three different matricesB in
which the complexity of the singular points of a one-dimensio
phase diffusion process arises, we investigate the phenomena
ing from these singular points and discuss in detail our findin

This paper is organized as follows. Section 2 details the form
lation of the problem. In Section 3, we recall the research res
of Karlin and Taylor@14#, Roy @13#, and Liberzon and Brocket
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@15# concerning the spectrum representation of the Fokker Pla
operator and its adjoint of the linear filter system. In Section
and 5, the asymptotical analysis is applied to obtain the expan
of the stationary probabilistic density function. The top Lyapun
exponents for three cases, in which the singularity of the diffus
coefficient arises, are evaluated in Section 6. The conclusions
drawn in Section 7.

2 Formulation
Consider a typical deterministic co-dimension two-bifurcati

system which is on a three-dimensional central manifold and p
sesses one zero-eigenvalue and a pair of pure imaginary eige
ues,@16#,

ṙ 5m1r 1a1rz1~a2r 31a3r 2z!1O~ ur ,zu4!

ż5m2z1c1r 22z21~c2r 2z1c3z3!1O~ ur ,zu4! (1)

Q̇5v1O~ ur ,zu2!

wherem1 andm2 are the unfolding parameters, anda1 , a2 , a3 ,
c1 , c2 , c3 , andv are real constants. This normalized form aris
in the classic fluid dynamic stability study of Couette flow,@16#.
In the vicinity of equilibrium point (r ,z,Q)5(0,0,vt), via the
transformation ofr 5@x1

21x2
2#1/2, Q5arctan@x2 /x1#, z5x3 , the

model of the linearization of the original system~1!, which is
subjected to a stochastic parametric perturbation, is obtained

ẋ5A0x2«2A1x1« f ~u!Bx (2)

where

A05F 0 v 0

2v 0 0

0 0 0
G , A15F d1 0 0

0 d1 0

0 0 d2

G ,

(3)

B5F b11 b12 b13

b21 b22 b23

b31 b32 b33

G
and the parametersm1 , m2 have been rescaled such that

m152«2d1 , m252«2d2

f (u) is a scalar stochastic function ofu(t), which is a real noise
and defined as

u̇~ t !5Au~ t !1Ẇ~ t ! (4)

whereA5(aij!n3n ; aij are real or complex numbers.Ẇ(t) is an
n-dimensional zero-mean Gaussian white noise withE(Ẇ(t
1t)Ẇ(t))5Vd(t), V5(vij!n3n is a symmetric, non-negative de
fined constant matrix, andu5(u1 ,u2 , . . . ,un!

T is an Ornstein-
Uhlenbeck vector process, which is in fact a zero-mean station
Gaussian diffusion process. The matrixA is assumed to have
complete set of eigenvaluesa1 , . . . ,an along with the corre-
sponding set of eigenvectorse1 , . . . ,en , which means thata i
Þa j•( iÞ j ). Furthermore, as in Liberzon and Brockett@15#, the
following two conditions are assumed in the present paper, i.

~a! each eigenvaluea i is assumed to possess a negative r
part, i.e.,R(a i),0 (i 51,2, . . . ,n).

~b! ~A,Ṽ! is a controllable pair, i.e., rank(Ṽ,AṼ , . . . ,An21Ṽ)
5n, whereV5ṼṼT.

In fact the first condition ensures that the equilibrium solutio
u50, for the relevant deterministic system is Lyapunov asym
totically stable.

The following spherical polar transformation from (x1 ,x2 ,x3)
to ~r,u,f!
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x15R cosu sinf, x25R cosu cosf, x35R sinu

r5 ln R, f~ t !5vt1w~ t !

uPF2
p

2
,
p

2 G , f, wP@0,2p#

yields a set of equations of the arguments ofr, u, f and the noise
processu, i.e.,

ṙ5r« , u̇5u« , ḟ5f« (5)

where

r«5«2r21« f ~u!r1

u«5«2u21« f ~u!u1 (6)

f«5v1« f ~u!f1

and

r252d1 cos2 u2d2 sin2 u

r15
1
2 ~ f r21 f z1!sin 2u1 f r1 cos2 u1 f z2 sin2 u

u25
1
2 ~d12d2!sin 2u

u15
1
2 ~ f z22 f r1!sin 2u1~ f z1 cos2 u2 f r2 sin2 u!

f15 f f11tanu f f2 (7)

f r15
1
2 @k11k2 cos 2f1k3 sin 2f#, f r25b13 sinf1b23 cosf

f f15
1
2 @k41k3 cos 2f2k2 sin 2f#, f f25b13 cosf2b23 sinf

f z15b31 sinf1b32 cosf, f z25b33

k15b221b11, k25b222b11, k35b121b21, k45b122b21.

Since the phase processesu andf are independent of the vari
able r, these together with the diffusion process,u(t), which is
defined in Eq. ~4!, form a vector diffusion process
(u(t),f(t),u(t)) on @2p/2,p/2#3@0,2p#3Rn of dimension (n
12) with the following generator

L«* 5L0* 1«L1* 1«2L2* (8)

L0* 5Lu* 1v
]

]f
, L1* 5 f ~u!f1

]

]f
1 f ~u!u1

]

]u
, L2* 5u2

]

]u

and the adjoint operator.

L«5L01«L11«2L2

L052v
]

]f
1Lu , L152 f ~u!

]

]u
u12 f ~u!

]

]f
f1 , (9)

L252
]

]u
u2

where Lu* and Lu are, respectively, the differential generat
~backward Kolmogorov operator! and the Fokker-Planck operato
for the diffusion processu(t), which are defined in Eq.~10!,
respectively.

3 The Spectral Analysis for a Linear Filter System
In this section, we mainly recall the existing results for t

spectral analysis of ann-dimensional linear filter system.
For System~4!, the stationary probability density function o

u~t! is

ps~u!5N exp@2
1
2 uTKu

21u#, N5~2p!2n/2@detKu#
1/2

whereN is the normalization constant, andKu5^u(t)(u(t))T& is
the covariance matrix, which is the solution of the steady-st
variance equation
Transactions of the ASME
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U5(e1 ,e2 , . . . ,en) is assumed to be the relevant eigenmatrix
A, which leads toD5U21AU5diag@a1,a2, . . . ,an#.

In the present formulation, for then-dimensional Ornstein-
Uhlenbeck process, the assumption of the detailed balance co
tion is removed.

For the diffusion processu(t), the differential generator~back-
ward Kolmogorov operator! Lu* and its adjoint, the Fokker-Planc
operator,Lu are, respectively, given by

Lu* 5ai j uj

]

]ui
1

1

2
v i j

]2

]ui]uj
, Lu52

]

]ui
@ai j uj #1

1

2
v i j

]2

]ui]uj
(10)

where the repeated indices indicate the usual summation. Ei
value problems corresponding to the two operators arise in
form
n

-

i

s

.
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Lu* cl8
* ~u!5l8cl8

* ~u!, Lucl~u!5lcl~u!. (11)

It can be verified that the spectrum of the operatorsLu andLu* are
discrete and they possess the same set of eigenvalues.

For the case of a one-dimensional Ornstein-Uhlenbeck proc
the results of the spectral representation of the transition proba
ity density function have been presented in@14# ~p. 333!. For the
system considered in that reference, the drift and diffusion par
eters were selected asm(x)52x, s2(x)51, i.e., a11521, v11

51. The differential generator and the relevant backward K
mogonov equation can be written as
L* 52x
]

]x
1

1

2

]2

]x2
, H ]

]t
p~y,tux!5F2x

]

]x
1

1

2

]2

]x2Gp~y,tux!, t>0, x,yP~2`,1`!

p~y,0ux!5d~x2y!.

(12)
nd
al
Solving Eq.~12! by the direct integration, we obtain

p~y,tux!5
e2y2

ApA12e22t
expF2

~x21y2!e22t

12e22t GexpF 2xye2t

12e22tG .

(13)

The associated eigenfunctions for the backward Kolmogonov
erator satisfy

1

2

d2w

dx2
2x

dw

dx
52lw~x!, xP~2`,`!

and are subject to the integrability condition

*2`
` e2x2

@w(x)#2dx,`. It is easy for us to check that the solu
tions to Eq.~12! can be selected as the classical Hermite poly
mials

Hn~x!5~21!nex2 d

dxn
~e2x2

!

with the relevant eigenvaluesln52n, respectively. We can sub
sequently obtain the spectral representation for the transition p
ability density function as

p~y,tux!5e2y2(
n50

`

e2ntHn~x!Hn~y!pn (14)

wherepn
215 bAp2nn! c. Based on that presented in@14# ~p. 333!,

by virtue of a classical formula for the sum of the series, we fi
that Eq.~14! reduces to Eq.~13!.

For then-dimensional Ornstein-Uhlenbeck process, accord
to @13#, the solutions to the associated eigenvalue problem of
backward Kolmogorov operatorLu* possess two characteristic
namely

~i! Each of the eigenvalues can be expressed aslm5m1a1
1¯1mnan , where m5(m1 ,m2 , . . .mn); m5m11m2
1 . . . 1mn , m1 ( i 51,2, . . . ,n) are non-negative integers

~ii ! The corresponding eigenfunction is found to be an elem
of the set of multivariate Hermite polynomials, i.e.,
op-

s

-
o-

rob-

nd

ng
the
,

ent

cm* ~u!5Gm~v!5~21!m expF1

2
vTCvG ]m

]w1
m1]w2

m2 . . . ]wn
mn

3expF2
1

2
vTCvG

where

v5U21u, C5UTKu
21U5K v

21, w5UTKu
21u.

It has also been shown in@13# that if system~4! satisfies the
condition of detailed balance, i.e.,

p~u8,tuu,0!ps~u!5p~«u,tu«u8,0!ps~u8!, ps~u!5ps~«u!

where«5diag(«1,«2, . . . ,«n), « i51(« i521) for an even~odd!
variableu1 , corresponding to the same eigenvaluelm , cm(u) is
the eigenfunction ofLu , which can be expressed as

cm~«u!5c0~u!cm* ~u!5~21!m
]m

]w1
m1 . . . ]wn

mn
c0~u!

(15)

c0~u!5c0~«u!5N exp@2
1
2 uTKu

21u#5N exp@2
1
2 vTK v

21v#

5N exp@2
1
2 wTK vw#.

In fact, cm(u) can also be expressed as

cm~u!5c0~u!)
i 51

n

~ui
21u!mi (16)

whereui
21 is the ith row vector ofU21, which is the inverse of

the matrixU.
In this work, the condition of detailed balance is removed a

Eq. ~15! and Eq.~16! are thus not tenable. Therefore addition
results for the solutions to the second equation in Eq.~13! are
required here.

From @15#, we know that under the conditions of~a! and ~b!
defined earlier, corresponding to each eigenvaluelm , the associ-
ated eigenfunctioncm(u) of the Fokker Planck operator,Lu can
be expressed as
SEPTEMBER 2004, Vol. 71 Õ 679
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cm~u!5c0~u!)
i 51

n

~ui
Tu!mi

whereui
T is theith row vector ofUT, which is the transpose of th

matrix U. With this result, it can easily be checked that if th
system matrixA is a real and symmetrical, then without the co
dition of detailed balance, Eq.~16! is also tenable.

As in Caughey@17#, we introduce a new operatorL̃u

L̃uc̃m~u!5@c0~u!#21Lu~c0~u!cm~u!!

c̃m~u!5@c0~u!#21cm~u!

which is the adjoint operator ofLu* with respect to the following
inner product

^c̃m~u!,cm* ~u!&E5E
Rn

c0~u!c̃m~u!cm* ~u!du5E~ c̃m~u!cm* ~u!!

the expectation ofc̃m(u)cm* (u), from which, one can easily
check thatc̃m(u) andcm* (u) are bi-orthogonal normal, i.e.,

^c̃m1~u!,cm2* ~u!&E5dm1,m25H 1, m15m2

0, m1Þm2.

Then the transition probability density of the processu(t) can be
written as

p~u,tuu8!5c0~u! (
m150,̄ ,mn50

`

exp@lmt#c̃m~u!cm* ~u8!, t>0.

(17)

Via Eq. ~17!, we obtain the covariance matrixRu(t)

Ru~t!5E
Rn

duE
Rn

du8@uTu8p~u,tuu8!ps~u8!#

5 (
m150,̄ ,mn50

`

@^u,c̃m~u!&E#T^u,cm* ~u!&E exp@lmt#

from which we obtain the spectral density function matrices, i

Su~v!52E
0

`

Ru~t!cos~vt!dt

52 (
m150,̄ ,mn50

`

@^u,c̃m~u!&E#T^u,cm* ~u!&E

2lm

lm
2 1v2

Fu~v!52E
0

`

Ru~t!sin~vt!dt

52 (
m150,̄ ,mn50

`

@^u,c̃m~u!&E#T^u,cm* ~u!&E

2v

lm
2 1v2

.

For a scalar stochastic functionf (u), which is integrable function
of u in the sense that*Rn@ f (u)#2c0(u)du,1` and

E@ f ~u!#5E
Rn

f ~u!c0~u!du50

the covariance and the spectral density function forf (u) are ob-
tained as

Rf~t!5E
Rn

duE
Rn

du8@ f ~u! f ~u8!p~u,tuu8!ps~u8!#

5 (
m150,̄ ,mn50

`

^ f ~u!,c̃m~u!&E^ f ~u!,cm* ~u!&E exp@lmt#
680 Õ Vol. 71, SEPTEMBER 2004
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Sf~v!52E
0

`

Rf~t!cos~vt!dt52 (
m150,̄ ,mn50

`

^ f ~u!,c̃m~u!&E

3^ f ~u!,cm* ~u!&E

2lm

lm
2 1v2

(18)

F f~v!52E
0

`

Rf~t!sin~vt!dt52 (
m150,̄ ,mn50

`

^ f ~u!,c̃m~u!&E

3^ f ~u!,cm* ~u!&E

2v

lm
2 1v2

.

4 Asymptotic Analysis
Corresponding to the Fokker Planck operatorL« , defined in

Eq. ~9!, the invariant probability density functionp«(u,f,u) sat-
isfies the following FPK equation:

L«p«5~L01«L11«2L2!p«~u,f,u!50. (19)

In the present paper,u(t) is assumed to be an ergodic Marko
process onRn, and according to the multiplicative ergodic the
rem of Oseledec, the top Lyapunov exponent for system~5! is

l«5^r« ,p«&5E
0

2p

dfE
2p/2

p/2

duE
Rn

du@r«~u,f,u!p«~u,f,u!#

(20)

For the present work, the assumption«!1 holds and we do not
need the exact solutionp«(u,f,u) of the FPK equation. A formal
expansion of

p«~u,f,u!5p0~u,f,u!1«p1~u,f,u!1¯1«NpN~u,f,u!1¯

(21)

can be constructed such that

L0p050 (22)

L0p152L1p0 (23)

L0p252L1p12L2p0 ,¯ (24)

and hence the top Lyapunov exponent for system~5! may possess
an asymptotic expansion as follows:

^r« ,p«&5^r0 ,p0&1«@^r1 ,p0&1^r0 ,p1&#1«2@^r2 ,p0&

1^r1 ,p1&1^r0 ,p2&#1¯ (25)

of which the proof of the validity is required.
To show that Eq.~25! is correct, as in@6#, we construct an

adjoint expansion

L«* F«5r«2~ f 01« f 11¯1«Nf N!1«N11~L1* FN1L2* FN21!

1«N12~L2* FN! (26)

with

F«~u,f,u!5F0~u,f,u!1«F1~u,f,u!1¯1«NFN~u,f,u!

where f 0 , f 1 , . . . ,f N are functions which do not depend on th
variablesu andf, but only onu(t)PRn, which are chosen such
that the sequence of the following problems obtained from
~26!

L0* F05r02 f 0 , L0* F15r12 f 12L1* F0

L0* F25r22 f 22L2* F02L1* F1

L0* F352 f 32L2* F12L1* F2

¯

L0* FN1L1* FN211L2* FN2252 f N

is solvable.
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For a fixed N, we introduce p«
(N)5p01«p11«2p21 . . .

1«NpN , as the truncated density function ofp« , and f «
(N)5( f 0

1« f 11 . . . 1«Nf N). As «→0, it is easy to verify that the differ-
ence betweenp« and p«

(N) is of the order of«N11, and is ex-
pressed as«N11(dP).

With the foregoing preparation, one can arrive at the followi
equation:

^r« ,p«&2^r« ,p«&N52«N11$^L1* FN1L2* FN21 ,p«&2^L1* FN

1L2* FN21 ,p«
~N!&1^F« ,L1pN1L2pN21&

2^ f «
~N! ,dp&2^r1 ,pN&2^r2 ,pN21&%

2«N12$^L2* FN ,p«&1^F« ,L2pN&

2^L2* FN ,p«
~N!&2^r2 ,pN&% (27)

where

^r« ,p«&N5^r0 ,p0&1«@^r1 ,p0&1^r0 ,p1&#1«2@^r2 ,p0&

1^r1 ,p1&1^r0 ,p2&#1¯1«N@^r2 ,pN22&

1^r1 ,pN21&1^r0 ,pN&#.

To furnish expression~27!, the following relationship is employed

L«p«
~N!5«N11@L2pN211L1pN#1«N12L2pN .

In addition, in the present work,r050. According to Theorem 3.1
in Section 3 of@6#, supposeN>0 is fixed, p0 , p1 , p2 , . . . ,pN
andF1 , F2 , . . . ,FN are such that the inner products on the rig
side of Eq.~27! are well defined, and

sup
f,u

uL1* FN1L2* FN21u<C1,`, sup
f,u

uL2* FNu<C2,`.

Then the asymptotic expansion~25! for the top Lyapunov expo-
nent of system~5! is tenable.

In Eq. ~21!, all the functionsp«(u,f,u), p0(u,f,u), . . . are
required to be 2p-periodic in variablef, i.e.,

p«~u,f,u!5p«~u,f12p,u!

p0~u,f,u!5p0~u,f12p,u! (28)

p1~u,f,u!5p1~u,f12p,u!,¯

The normalization condition of the probabilistic density functi
p«(u,f,u) then yields

E
0

2p

dfE
2p/2

p/2

duE
Rn

du@p0~u,f,u!#51

(29)

E
0

2p

dfE
2p/2

p/2

duE
Rn

du@p1~u,f,u!#

5E
0

2p

dfE
2p/2

p/2

duE
Rn

du@p2~u,f,u!#50, . . . .

In general, each equation with the formL0p5q must satisfy the
following solvability condition, i.e.,

^q,q* &50, ;q* PKer~L0* !5$q* uL0* q* 50% (30)

where^•,•& refers to the general scalar product, which is defined
Eq. ~20!, andL0* is the adjoint operator ofL0 , i.e.,

L0* 5v
]

]f
1Lu* .

Then via the definition of the scalar product^•,•&, the solvability
condition can be expressed as
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^q,q* &5E
0

2p

dfE
2p/2

p/2

duE
Rn

du@q* q#

5E
0

2p

dfE
2p/2

p/2

duE
Rn

du@pL0* q* #50, ;q* PKer~L0* !.

(31)

To examine in detail eachq* PKer(L0* ), we expand it as a serie
in terms of the eigenfunctionscm* (u) of Lu* , i.e.,

q* ~u,f,u!5 (
m150,̄ ,mn50

`

qm* ~u,f!cm* ~u!. (32)

From Eq.~31!, we know that each coefficient satisfies the follow
ing equation:

Fv
]

]f
1lmGqm* ~u,f!50.

The conditionv.0 along with the assumption that the real part
each eigenvaluelm except forl050, to which the associated
eigenfunctionc0* (u)51, is less than zero leads to the fact that
Eq. ~32! there exists only one non-zero periodic coefficient, i.e

qm* ~u,f!5H q0* ~u!, m50

0, mÞ0.

From the above, we can conclude that each element in the s
Ker(L0* ) is an arbitrary integrable function of the variableu.
Hence, for the present problem, the solvability condition~30! re-
duces to

E
0

2p

dfE
Rn

duq~u,f,u!50. (33)

5 Expansion of Stationary Probability Density
Function

To obtain the perturbation solution~21! to the FPK Eq.~19!, a
study on the recurrence Eqs.~22!–~24! will be conducted in the
subsequent context.

5.1 FPK Equation of Order «0. Since the set of the eigen
functionscm(u) of Lu forms a complete set, then for Eq.~22!, the
solutionp0(u,f,u) is sought in the form

p0~u,f,u!5 (
m150,̄ ,mn50

`

pm
~0!~u,f!cm~u! (34)

which leads to the fact that each of the coefficientspm
(0)(u,f) is,

respectively, the solution to

F2v
]

]f
1lmGpm

~0!~u,f!50. (35)

By solving Eq.~35!, we know that there exists only one nonze
periodic solution,p0

(0)(u,f)5p0
(0)(u), which corresponding to

the eigenvaluel050. Furthermore, via the normalization cond
tion ~29!, we finally obtain

p0~u,f,u!5
1

2p
F~u!c0~u! (36)

whereF(u) is a function ofu yet to be determined by the solv
ability condition of Eq.~24!.

5.2 FPK Equation of Order «. Now we consider Eq.~23!.
Substitution of Eq.~36! into the right side of~23! yields
SEPTEMBER 2004, Vol. 71 Õ 681



L0p1~u,f,u!5
f ~u!c0~u!

2p Fu1

]F~u!

]u
1F]u1

]u
1

]f1

]f GF~u!G
5

f ~u!c0~u!

2p
@M01M2

~1! cos 2f1M2
~2! sin 2f

1M1
~1! cosf1M1

~2! sinf# (37)

where

M05
1
4 ~2b332k1!L0 , L05

d

du
@F~u!sin 2u#

M2
~1!52k2L2 , M2

~2!52k3L2 , L25F~u!1
1
4 L0

M1
~1!52b23L121b32L11, M1

~2!52b13L121b31L11

L115
d

du
@F~u!cos2 u#, L125

d

du
@F~u!sin2 u#1F~u!tanu.

In order for the problem to be tractable, the functionf (u)c0(u),
which arises in Eq.~37!, is expressed as a series expansion alo
the eigenfunctionscm(u), i.e.,
t

t

q
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f ~u!c0~u!5 (
m150,m250, . . . ,mn50

`

^ f ~u!,cm* ~u!&Ecm~u! (38)

Similarly for p1(u,f,u)

p1~u,f,u!5 (
m150,m250, . . . ,mn50

`

pm
~1!~u,f!cm~u!. (39)

Substitution of Eqs.~38! and ~39! into Eq. ~37! leads to the fact
that each of the coefficientspm

(1)(u,f) is, respectively, governed
by

F2v
]

]f
1lmGpm

~1!~u,f!5
^ f ~u!,cm* ~u!&E

2p
$M01M2

~1! cos 2f

1M2
~2! sin 2f1M1

~1! cosf

1M1
~2! sinf%

to which the solution is
pm
~1!~u,f!5H 1

2p
p0

~1!~u!, m50

1

2p
^ f ~u!,cm* ~u!&E$Pm

~0!L01Pm
~2!L21Pm

~11!L111Pm
~12!L12%, mÞ0

(40)
where

Pm
~0!5

1

am

1

4
~2b332k1!

Pm
~11!5

$@b32lm1b31v#cosf1@b31lm2b32v#sinf%

v21am
2

Pm
~12!52

$@b23lm1b13v#cosf1@b13lm2b23v#sinf%

v21am
2

Pm
~2!52

$@k2lm12k3v#cos 2f1@k3lm22k2v#sin 2f%

4v21am
2

.

Finally, by synthesizing the foregoing results, we find th
p1(u,f,u) takes on the following expression:

p1~u,f,u!5
1

2p
p0

~1!~u!c0~u!1 (
m150,m250, . . . ,mn50

mÞ1

`

pm
~1!

3~u,f!cm~u! (41)

where p0
(1)(u) is a function to be determined by the solvabili

condition of the recurrence equation of order«3, which satisfies
the normalization condition, i.e.,*0

2pp0
(1)(u)du50. Therefore by

evaluating the asymptotic expansion for the maximal Lyapun
exponent, we find thatp0

(1)(u) has no contribution to the maxima
Lyapunov exponent. In addition, eachpm

(1)(u,f)(mÞ0) contains
the functionF(u), which are to be determined by the solvabili
condition of Eq.~24!.

5.3 Solvability Condition and FPK Equation. To deter-
mine F(u) in Eqs.~36! and ~41!, the solvability condition of Eq.
~24! will be investigated. Since the solvability condition of E
~24! is
at

y

ov
l

y

.

2E
0

2p

dfE
Rn

du@L1p11L2p0#50. (42)

Substitution of Eqs.~36! and ~41! into Eq. ~42! yields

2E
Rn

duE
0

2p

L1p1df5 (
m1 ,m2 , . . . ,mn50

`

I 3
~m!I 4

~m!5I 1I 2

1 (
m1 ,m2 , . . . ,mn50

mÞ0

`

I 3
~m!I 4

~m!

where

I 15E
Rn

du@ f ~u!c0~u!#5E
Rn

du@ f ~u!ps~u!#50

I 3
~m!5E

Rn
du@ f ~u!cm~u!#5^ f ~u!,c̃m~u!&E ,

I 4
~m!5

]

]u F E
0

2p

u1pm
~1!dfG .

Then via computation, we know
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2E
0

2p

dfE
Rn

L1p1du

52
1

8
b1F d2

du2
@sin2~2u!F~u!#2

d

du
@sin~4u!F~u!#G

2
1

16
b2F d

du
@sin~2u!F~u!#1

1

4

d2

du2
@sin2~2u!F~u!#

2
1

4

d

du
@sin~4u!F~u!#G2

3

8
k0

d

du
@sin~2u!F~u!#

2
1

16

d2

du2
@~k1 cos2~2u!22k2 cos~2u!1k3!F~u!#

2
1

16

d

du
@~k1 sin~4u!22k4 sin~2u!14k5 tan~u!!F~u!#

(43)

where

b15Sf~0!Fb332
1

2
k1G2

b25Sf~2v!@k2
21k3

2#

k05@2b13b321b23b31#F f~v!

k15@~b131b31!
21~b231b32!

2#Sf~v!

k25@~b13
2 2b31

2 !1~b23
2 2b32

2 !#Sf~v!

k35@~b132b31!
21~b232b32!

2#Sf~v!

k45@~b131b31!~2b132b31!1~b231b32!~2b232b32!#Sf~v!

k55@b13
2 1b23

2 #Sf~v!.

Evaluation of the second term of the left side of Eq.~38! leads
to

2E
0

2p

dfE
Rn

du@L2p0#52E
0

2p

dfE
Rn

duFc0~u!

2p

]@u2F~u!#

]u G
5

d12d2

2

d@F~u!sin 2u#

du
. (44)

Finally, by synthesizing the results of Eqs.~43! and~44!, we find
that the solvability condition~38! is equivalent to the following
standard FPK equation:

1

2

d2

du2
@s2~u!F~u!#2

d

du
@m~u!F~u!#50, uPF2

p

2
,
p

2 G
(45)

in which the relevant diffusion coefficient and drift coefficient a
respectively,

s2~u!5F4b11
1

2
b2Gsin2 2u12k1 cos2 2u24k2 cos 2u12k3

(46)

m~u!5H F2b11
1

4
b2G2k1J sin 4u1$8~d12d2!12k42b2

26k0%sin 2u24k5 tanu.

It should be noted that in Eq.~46!, the parameterk5 is positive.
In view of the FPK Eq.~45!, the process ofu(t) can be treated

as a diffusion process on interval@2p/2,p/2# with the relevant
drift parameterm~u! and the diffusion parameters2(u), respec-
tively. In order to determine the solution to Eq.~45!, the diffusion
Journal of Applied Mechanics
e,

behaviors of such a process at the boundaries ofu56p/2 and
other singular points within@2p/2,p/2# should be investigated a
priori.

The details of the definition and classification of singular poi
for one-dimensional diffusion processes can be found in Lin a
Cai @18#, from which we know that the first kind of singular point
is the one at whichs2(u) vanishes, and the second kind is that
which m~u! goes to infinity. With these definitions, we can co
clude that on the interval@2p/2,p/2#, u56p/2 are the singular
points of the second kind.

For the singular boundaryxs (xl and xr represent the left and
right boundaries, respectively! of the second kind, the diffusion
exponentas, the drift exponentbs and the character numbercs
are introduced

s2~x!5O~ ux2xsu2as!, as>0, x→xs

m~x!5O~ ux2xsu2bs!, bs>0, x→xs (47)

cl5 lim
x→xl

1

2m~x!@x2xl #
b l2a l

s2~x!
, cr52 lim

x→xr
2

2m~x!@xr2x#br2ar

s2~x!
.

On @2p/2,p/2#, we consider only the situation ofu5p/2, for the
case ofu52p/2, the result is similar, while foru→p/2, we obtain

tanu5
sinu

cosu
5

sinu

sinFp

2
2uG }

1

Fp

2
2uG .

Equation~47! then leads to

a r50, b r51, cr51 (48)

which are, respectively, the diffusion, drift exponents, and char
ter value atu5p/2. After comparing these results with the term
in Table 4.53 in@18# ~p. 135!, which gives a detailed classificatio
of the singular boundaries of the second kind, we know thatp/2 is
an entrance of@2p/2,p/2# and the result is the same as that f
u52p/2, i.e.,u52p/2 is another entrance.

For the diffusion processu, its scale and speed densities a
defined, respectively, as~@14# ~pp. 191–204!!

s~u!5exp@2E~u!#, m~u!5
1

s2~u!s~u!

E~u!5E @2m~u!s22~u!#du

and in addition, the relevant scale and speed measures are

S~u!5E u

s~x!dx, M ~u!5E u

m~x!dx. (49)

For Eq.~45!, its solution can be represented as

F~u!5m~u!@C1S~u!1C#, uPF2
p

2
,
p

2 G (50)

whereC1 and C are constants, which will be determined by th
normality and boundary conditions atu56p/2.

For Eq. ~45!, since the two boundariesu56p/2 are both en-
trances, it is well known thatC150 ~@14# ~p. 241!!.

Via direct integration

E~u!52 log cosu1
3
4 log F2~u!1

1
2 c1 arctanh@F1~u!#

where

F1~u!5
~k12b!cos 2u2k2

Ab22b~k12k3!24k6
2

F2~u!5~k12b!cos2 2u22k2 cos 2u1b1k3
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the
c15
28D1~b1b2!1~6k02k11k324k5!

Ab22b~k12k3!24k6
2

b52b11
1
4 b2 , k65@b13b322b23b31#Sf~v!, D5d12d2 .

Then the solution to Eq.~45! is

F~u!5
C

2 cos~u! F12F1~u!

11F1~u!G
1/4c1

@F2~u!#21/4 (51)

whereC is a constant which can be determined by the normal
tion condition ofF(u), i.e., *2p/2

p/2 F(u)du51.
Next, a rather simple case,b315b13, b235b32, which leads to

k05k25k350
(52)

k154k5 , k452k5

is considered. Then Eq.~46! is reduced to

s2~u!5A1 sin2 2u1A2 cos2 2u
(53)

m~u!5B1 sin 4u1B2 sin 2u1B3 tanu

where

A152b, A258k5

B15b24k5 , B258D14k52b2 , B3524k5 .

Since the two boundariesu56p/2 are both singular points, via
the same evaluation as in Eq.~48!, we obtain, for the two bound
aries,as52, bs51, cs51, from which we learn thatu56p/2 are
both entrances.

To obtain the solution to Eq.~45!, the two cases ofA1.A2 and
A1,A2 , with the exception thatA15A2 , which will be studied in
the following section, should be investigated, respectively. For
first caseA1.A2 , we know that

E~u!5E~1!1E~2!1E~3!

E~1!5
1
2 log@12~12t1!cos2 2u#

E~2!52
B2

A1

1

A12t1

arctanh@A12t1 cos 2u# (54)

E~3!5 log cosu2
1
4 log@12~12t1!cos2 2u#

2
1
2 A12t1arctanh@A12t1 cos 2u#

0,t15
A2

A1
5

4k5

b
,1.

For the other case ofA1,A2 (t1.1), the corresponding result
are

E~1!5
1
2 log@11~t121!cos2 2u#

E~2!52
B2

A1

1

At121
arctan@At121 cos 2u# (55)

E~3!5 log cosu2
1
4 log@11~t121!cos2 2u#

1
1
2 At121 arctan@At121 cos 2u#.

Synthesizing Eq.~54! and Eq.~55! leads to

F~u!5C5
1

2b
cosu

@12A12t1 cos 2u#1/2h123/4

@11A12t1 cos 2u#1/2h113/4
, t1,1

1

2b
cosu

exp@2h1 arctan@At121 cos 2u##

@11~t121!cos2 2u#3/4
, t1.1

(56)
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where

h155
B11B2

A1A12t1

5
8D1b2b2

2bA12t1

, t1,1

B11B2

A1At121
5

8D1b2b2

2bAt121
, t1.1

andC can be determined by the normalization condition.

5.4 Three Special Cases. From Eqs. ~51! and ~56!, we
know that it is impossible to obtain analytical results for the ma
mal Lyapunov exponent. Furthermore, the expressions of max
Lyapunov exponents depend on the forms of the matrixB. There-
fore in this work, three special cases for the coefficient matrixB
in Eq. ~3! are considered, i.e.,

Case I. b135b2350, which leads to

B5F b11 b12 0

b21 b22 0

b31 b32 b33

G , k05k55k650, k15k25k352k4 .

(57)

Case II. b315b13, b235b32 and in addition,A15A25A,
which imply that

4Sf~v!@b13
2 1b23

2 #52Sf~0!@2b332b112b22#
21Sf~2v!@~b22

2b11!
21~b121b21!

2#. (58)

For the case of white noise excitation, withb335b225b11,
b215b12, the condition expression~58! is equivalent tob12

2

54@b13
2 1b23

2 #.

Case III. b315b13, b235b32, b2152b12, b335b225b11,
from which we deduce that

B5F b11 b12 b13

2b12 b11 b23

b13 b23 b11

G , b15b250. (59)

In the subsequent procedure, for each case, we will investi
the stationary solution to the FPK Eq.~45!.

For the first case, the associated diffusion and drift coefficie
are, respectively,

s2~u!58~b sin2 u1k1 cos2 u!cos2 u
(60)

m~u!5~b2k1!sin 4u1@8D22k12b2#sin 2u.

In order to obtain the solution to Eq.~45! on the interval@2p/
2,p/2#, the diffusion behaviors of the diffusion processu at the
boundaries and the singular points within the interval should
investigated a priori. On@2p/2,p/2#, since atu56p/2 s2(u)
5m(u)50, it is easy for us to ascertain that there are no ot
singular points except these two boundaries, which are both
singular points of the first kind.

For the singular boundaryxs of the first kind, the diffusion
exponentas, the drift exponentbs and the character numbercs
are defined as

s2~x!5O~ ux2xsuas!, as>0, x→xs

m~x!5O~ ux2xsubs!, bs>0, x→xs (61)

cl5 lim
x→xl

1

2m~x!@x2xl #
a l2b l

s2~x!
, cr52 lim

x→xr

2m~x!@xr2x#ar2br

s2~x!
.

Then at the left boundaryu52p/2, the evaluation in Eq.~61!
leads to
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Fig. 1 Boundary diffusion behaviors of the intervals †ÀpÕ2,0‡ and †0,pÕ2‡
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and atu5p/2, the result is the same.
According to@18# ~p. 132!, we know that a stationary solutio

to a FPK equation does not exist, if each of the two boundarie
either an exit, or attractively natural boundary~ANB!, or strictly
natural boundary~SNB!. From this, we observe that under th
condition of cs<bs51 (s5 l or r!, the two boundaries are bot
SNBs or ANBs, and therefore the invariant measure does not
ist. In this work, the solution to Eq.~45! will be investigated only
under the condition ofcs.bs51, i.e., d12d2,b2/8, in which
case the two boundaries are both repulsively natural bounda
~RNBs! and the nontrivial stationary solution to Eq.~45! does
exist. Since the two boundaries are both RNBs, an additio
boundary condition is required to determine the solution. For
problem to be tractable, we assume that at the two boundaries
probability current vanishes~@18# ~pp. 169–173!!, i.e.,

Guu52p/25Guu5p/250

G5m~u!F~u!2
1

2

]

]u
@s2~u!F~u!#.

Then via direct integration, the solution to Eq.~45! is

F~u!5
C

8
@cosu#1/2@~22b28D1b2!/b#@b2b cos2 u

1k1 cos2 u#1/4@~22b28D1b2!/b# (62)

whereC can be determined by the normalization condition.
For the second case, which is under the condition thats2(u)

5A, B150, and 2B352A, we can obtain

E~u!5
2B2

A
sin2 u1 log cosu, uPF2

p

2
,
p

2 G
s~u!5secu exp@2a sin2 u#

(63)

m~u!5
1

A
cosu exp@a sin2 u#

a5
2B2

A
512

b2

4k5
1

2D

k5
.

For the problem to be tractable, we divide the interval@2p/2,p/2#
into two subsets as@2p/2,0# and~0,p/2#. Since the solution prob-
lem on @2p/2,0# is the same as that on~0,p/2#, we will only
investigate the solution problem on~0,p/2#. On both@2p/2,0# and
~0,p/2#, u50 is not a singular point. To investigate the diffusio
behavior atu50, we employ the concepts of the scale and sp
densities. As
Journal of Applied Mechanics
s is

e
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, the

n
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s~u!5secu exp@2a sin2 u#, uPS 0,
p

2 G
on ~0,p/2# and in the neighborhood ofu50, for the two cases of
a.0 anda<0, respectively,

e2a secu<s~u!<secu, a.0

e2a secu>s~u!>secu, a<0.

Then for the scale measureS(0,u#, the following two inequalities
are tenable:

2`,E
0

u

$@e2a#secx%dx<S~0,u#<E
0

u

secxdx,1`, a.0

(64)

2`,E
0

u

secxdx<S~0,u#<E
0

u

$@e2a#secx%dx,1`, a<0.

For the speed measureM (0,u#, via the definition expression~49!,
we obtain

M ~0,u#5E
0

sin u 1

A
$exp@ax2#%dx5

1

A
Erfi@sinu#, a.0

(65)

M ~0,u#5E
0

sin u 1

A
$exp@ax2#%dx5

1

A
Erf@sinu#, a<0

where Erfi and Erf are the error functions.
Equations~64! and ~65! tell us that the two measures are bo

finite. Thus according to the definition of a reflecting bounda
~@14# ~pp. 226–242!!, we know thatu50 is a reflecting boundary
for the two intervals, which is shown in Fig. 1. With this resu
we can conclude that the diffusion process evolves on@2p/2,0#
and ~0,p/2# separately, and the solution to Eq.~45! will be ana-
lyzed on the two intervals, respectively.

For Eq.~45! which is restricted on~0,p/2#, the solution is

F~u!55
2Aa

ApErf i @Aa#
cosu exp@a sin2 u#, a.0,

2A2a

ApErf@A2a#
cosu exp@a sin2 u#, a<0,

uPS 0,
p

2 G . (66)

We can then easily verify that on@2p/2,0#, the stationary prob-
ability density is of the same expression.

For the third case, assumption~59! leads to
SEPTEMBER 2004, Vol. 71 Õ 685
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Fig. 2 Boundary diffusion behavior of interval †ÀpÕ2,ÀpÕ4‡ for the cases of
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s2~u!58k5 cos2 2u
(67)

m~u!524k5 sin 4u1$8D14k5%sin 2u24k5 tanu.

Since atu56p/4, s2(u)50, thusu56p/4 are singular points of
the first kind, and at pointsu56p/2, m~u!52`, sou56p/2 are
singular points of the second kind. Due to the different diffusi
behaviors of the singular points, the interval@2p/2,p/2# should be
divided into three subintervals, i.e.,@2p/2,2p/4#, ~2p/4,p/4# and
~p/4,p/2#, of which the solutions to Eq.~45! should be investi-
gated, respectively. First we investigate the diffusion behavior
the singular points.

On @2p/2,2p/4#, according to the definition expressed in E
~47!, we know that at the left boundaryu52p/2, the diffusion
and the drift exponents, and the character value are

a l50, b r51, cr51

which, in view of Table 4.5.3 in@18#, leads to the deduction tha
u52p/2 is an entrance for interval@2p/2,2p/4#.

Since at2p/4,

s2~u!uu52p/450, m~u!uu52p/45H 28~d12d2!,0, d1.d2

28~d12d2!.0, d1,d2

0, d15d2

a r52, b r5H 0, d1Þd2

1, d15d2

the diffusion behaviors at such a boundary should be discusse
three cases. According to Table 4.5.2 in@18# ~p. 134!, which pro-
vides the classifications of singular boundaries of the first ki
we know that if d1.d2 , 2p/4 is an entrance, and ifd1,d2 ,
2p/4 is an exit instead. To determine the boundary type for
case ofd15d2 , the character value, which is defined as
MBER 2004
n

at

q.

t

for

d,

he

cr52 lim
u→2p1/2

F22m~u!Fu1
p

2 G120

@s2~u!#21G52
1

2
(68)

is required. By contrasting Eq.~68! with the relevant terms in
Table 4.5.2 of@18#, we find that2p/4 is an ANB. These results
are shown in Fig. 2.

Let us now consider the interval~2p/4,p/4#. It is easy for us to
verify the following facts:

If d1.d2 , 2p/4 is an exit andp/4 is an entrance; ifd1,d2 ,
instead,2p/4 is an entrance andp/4 is an exit. For the case o
d15d2 , 2p/4 andp/4 are both ANBs. The results are depicted
Fig. 3.

On ~p/4,p/2#, via the same procedure, we know: Ifd1.d2 , p/4
is an entrance, ifd1,d2 , p/4 is an exit and ifd15d2 , p/4 is an
ANB. The other boundaryp/2 is always an entrance on such a
interval. The various situations are summarized in Fig. 4.

As was stated in@18# ~p. 132!, a stationary solution to a FPK
equation does not exist, if each of the two boundaries is eithe
exit, attractively natural, or strictly natural, from which we fin
that under the conditions ofd1.d2 and d15d2 , the invariant
measures do not exist on~2p/4,p/4# and @2p/2,p/2#, respec-
tively. Thus in this study, the stationary solution to Eq.~45! will
be able to be investigated only under the condition ofd1,d2 .

Next, upon each sub-interval, we determine the solution to
~45!. First we consider the interval@2p/2,2p/4#. Sinceu52p/2
is an entrance whileu52p/4 is an exit, we know that on@2p/2,
2p/4#, the solution to Eq.~45! is a Dirac Delta function of the
following form:
Fig. 3 Boundary diffusion behavior of interval „ÀpÕ4,pÕ4‡ for the cases of „a… d1Ìd2 , „b… d1Ëd2 , „c… d1Äd2
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F~u!5CdS u1
p

4 D , uPF2
p

2
,2

p

4 G (69)

whereC is an integral constant which can be determined by
normalization condition ofF(u) on the whole interval@2p/2,p/
2#.

Similarly on interval~p/4,p/2#, the invariant measure is also
Dirac Delta function, i.e.,

F~u!5CdS u2
p

4 D , uPS p

4
,
p

2 G . (70)

On interval~2p/4,p/4#, since the two boundaries are both e
trances, the invariant measure is

F~u!5Cm~u!5
C

8k5
@sec 2u#3/2 cosu expF D

k5
sec 2uG ,

uPS 2
p

4
,
p

4 G . (71)

By synthesizing the results in Eqs.~69!–~71!, we obtain the solu-
tion to Eq.~45! upon the whole interval@2p/2,p/2#, i.e.,

F~u!

55
CdS u1

p

4 D , uPF2
p

2
,2

p

4 G
C

8k5
@sec 2u#3/2 cosu expF D

k5
sec 2uG , uPS 2

p

4
,
p

4 G
CdS u2

p

4 D , uPS p

4
,
p

2 G .
(72)

6 Asymptotic Expansion for Maximal Lyapunov Ex-
ponent

Under the assumption that the Fokker Planck operatorL« de-
fined by Eq.~9! is an ergodic operator, the maximal Lyapuno

Fig. 4 Boundary diffusion behavior of interval „pÕ4,pÕ2‡ for the
cases of „a… d1Ìd2 , „b… d1Ëd2 , „c… d1Äd2
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exponent on the domain@0,2p#3@2p/2,p/2#3Rn, for the sto-
chastic bifurcation system~5! is therefore given as

l«5^r« ,p«&5E
0

2p

dfE
2p/2

p/2

duE
Rn

du@r«p«# (73)

wherep«(u,f,u) is the stationary probability density which ad
mits the asymptotic expansion~21!, and r« has been defined in
Eq. ~6!. According to the discussion in Section 3, it can be eas
shown that the asymptotic expansion of the top Lyapunov ex
nent

^r« ,p0&5«^ f ~u!r1 ,p0&1«2@^r2 ,p0&1^r1 ,p1&#1¯

is reasonable. In addition, the assumption on the stochastic f
tion f (u) leads to

^ f ~u!r1~u,f!,p0&5
1

2p E
Rn

f ~u!c0~u!du

3E
0

2p

dfE
2p/2

p/2

r1~u,f!F~u!du50.

As a result, the asymptotic expansion of the relevant maxim
Lyapunov exponent for system~5! becomes

l«5«2@^r2 ,p0&1^ f ~u!r1 ,p1&#1o~«2!. (74)

In calculating the asymptotic expansion of the top Lyapunov
ponent, the computations of the solution functionspm

(1)(u,f) are
required.

6.1 Case I. For the first case, condition~57! leads to

M05
1
4 ~2b332k1!L0 , L05

d

du
@F~u!sin 2u#

M2
~1!52k2L2 , M2

~2!52k3L2 , L25F~u!1
1
4 L0

M1
~1!5b32L11, M1

~2!5b31L11, L115
d

du
@F~u!cos2 u#

(75)
pm
~1!~u,f!5H 1

2p
p0

~1!~u!, m50

1

2p
^ f ~u!,cm* ~u!&E$Pm

~0!L01Pm
~2!L21Pm

~11!L11%, mÞ0.
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Substitution of Eq.~75! into Eq. ~74! yields
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5
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b22

3

8

b2
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2
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2
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g1 ;12g2G

2
1

16
b2g1Ag2

g1g224g216

~61g1!~21g1!
FF3

2
,
3

2
1

1

4
g1 ;

5

2

1
1

4
g1 ;12g2G13b1Ag2

~g1g212!

~61g1!~21g1!

3FF5

2
,
3

2
1

1

4
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5

2
1

1

4
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(76)

^r2 ,p0&52d12
2Ag2D

~21g1!
FF3

2
,
1

2
1

1

4
g1 ;

3

2
1

1

4
g1 ;12g2G ,

0,b,2k1

where

g15
28D1b2

b
5

28~d12d2!1b2

b
, g25

b

k1
.

F@a,b;c;z# is the confluent hypergeometric function~@19# ~p. 41!!
which is defined as

F@a,b;c;z#

5(
n50

`
~a!n~b!n

n! ~c!n
zn

5(
n50

`
@a~a11!¯~a1n21!#@b~b11!¯~b1n21!#

n! @c~c11!¯~c1n21!#
zn.
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The convergence condition for this series isizi,1. Thus for the
confluent hypergeometric functions in Eq.~76!, the convergence
condition is 0,b,2k1 .

With these results, the asymptotic expansion of the maxim
Lyapunov exponent can be expressed as

l«5«2H 2d11
3

16
b22
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6.2 Case II. For the second case, based on the results of
~66!, we obtain

M05
1
4 ~2b332k1!L0 , L05

d

du
@F~u!sin 2u#

M2
~1!52k2L2 , M2

~2!52k3L2 , L25F~u!1
1
4 L0

M1
~1!5b23@L112L12#5b23L1 , M1

~2!5b13L1

L15
d

du
@F~u!cos 2u#2F~u!tanu (78)
pm
~1!~u,f!5H 1

2p
p0

~1!~u!, m50

1

2p
^ f ~u!,cm* ~u!&E$Pm

~0!L01Pm
~2!L21Pm

~11!L1%, mÞ0
hen
where

L05cosu@2113 cos 2u1a sin 2u#exp@a~sinu!2#

L15
1
2 @cosu#3@31a2a cos 2u#exp@a~sinu!2# (79)

L252 sinu@cosu#2@231a cos 2u#exp@a~sinu!2#.

Substitution of Eqs.~78! and ~79! into Eq. ~74! yields
^ f ~u!r1 ,p1&5
1

2 S k51
b2

4 D1
J2

2J0
S k52

b2

4 D

^r2 ,p0&52d11
J2

J0
D52d11

J2

J0
~d12d2! (80)

J05E
0

1

@exp~ax2!#dx, J25E
0

1

@x2 exp~ax2!#dx.

The asymptotic expansion of the top Lyapunov exponent is t
given as
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From Eq.~63!, we find that conditiona50 implies

d15d21@
1
8 Sf~2v!@k2

21k3
2#2

1
2 Sf~v!@b13

2 1b23
2 ##

from which the inequalities in Eq.~81! can be easily obtained.

6.3 Case III. For the third case, since

M05M2
~1!5M2

~2!50

M1
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~2!5b13L1

pm
~1!~u,f!5H 1

2p
p0

~1!~u!, m50

1

2p
^ f ~u!,cm* ~u!&EPm

~11!L1 , mÞ0

the terms in expression~74! can be evaluated as
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Then for the third case, the analytical expression of the maxi
Lyapunov exponent of system~5! is obtained as
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al

l«5«2H 2d11
k5
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1l2

~1!1l2
~2!J 1o~«2!

l2
~1!5

1

2 H F ~d22d1!2
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k5GR11k5R2J (83)

l2
~2!5CH ~d22d1!~R121!2k51
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k5~R122R2!J

where

R15
I 1

I 0
5ApAkek@12erf~Ak!#

R25
I 2

I 0
2k5

1

2
ApAkek@122k#@12erf~Ak!#.

7 Conclusions
In this paper, the explicit asymptotic expansions for the ma

mal Lyapunov exponent of a co-dimension two-bifurcation syst
driven by a small-intensity real noise process have been c
structed. To account for a sufficiently general model, the r
noise was assumed to be an integrable function of the output
linear filter system, viz., a zero-mean stationary Gaussian di
sion process. The strong mixed condition and the detailed bala
condition were removed in the present theoretical formulati
The method used in the present study involved the use of a
turbation method and the spectrum representations of the Fo
Planck operator and its adjoint operator of the linear filter syste
Three special cases, one of which the singularity of the diffus
coefficient arose, were considered. The associated max
Lyapunov exponents were evaluated accordingly.
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A General Solution for
Two-Dimensional Stress
Distributions in Thin Films
We present closed-form solutions for stresses in a thin film resulting from a purely
tational stress-free strain that can vary arbitrarily within the film. The solutions
specific to a two-dimensional thin film on a thick substrate geometry and are presente
both a welded and a perfectly slipping film/substrate interface. Variation of the stress
strain through the thickness of the film is considered to be either arbitrary or represe
by a Fourier integral, and solutions are presented in the form of a Fourier series in
lateral dimension x. The Fourier coefficients can be calculated rapidly using Fast Fou
Transforms. The method is applied to determine the stresses in the film and substr
three cases: (a) where the stress-free strain is a sinusoidal modulation in x, (b) whe
stress-free strain varies only through the thickness, and (c) where a rectangular inclu
is embedded within the film, and the calculated stresses match accurately with the
solutions for these cases.@DOI: 10.1115/1.1782649#
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1 Introduction
A variety of processes occurring in thin films generate intrin

strains. These include, for example, strains associated with
eroepitaxy, thermal expansion mismatch, defect incorporat
and compositional gradients. The residual stresses that devel
a result of the presence of these intrinsic strains can be obta
by solving a suitably formulated thermoelastic problem. Inde
thermal and compositional stresses have been analyzed in
way, @1,2#. A general approach to solving the thermoelastic pro
lem involves the use of the Goodier thermoelastic potential,@1#.
However, this potential can be obtained analytically for only ve
simple geometries. A configuration in which a film rests upon
much thicker substrate is very common in thin film microelectro
ics, thermally grown oxide scales on bulk metals, and sputte
coatings. Typically, the film thicknesses are much smaller t
any other dimension in the problem~i.e., much thinner than the
substrate or the lateral extent of the film!. If the intrinsic strain is
independent of one of the lateral dimensionsy, and there are no
externally imposed strains, plane-strain conditions apply. S
plane strain problems can be addressed using Airy stress f
tions, @1#. An extremely rapid method of solving for mechanic
equilibrium for simple geometries of this type involves the use
the Fourier series. Indeed, two-dimensional and three-dimensi
stress distributions have been calculated using this appro
@1,3–6#.

Glas considered a general modulation in the lattice param
parallel to the substrate–film interface~i.e., intrinsic strains are a
function of the lateral dimensionx only!, and analytically de-
scribed the resultant stresses in the form of a Fourier seriesx,
@7#. He also applied this approach to determine the stresses
capped film, in a film with steps at the film-substrate interface a
in a film with embedded inclusions that are of the same thickn
as the film,@8#. In all of these cases, the intrinsic strain does n
vary through the thickness of the film. This limitation is undu
restrictive since many thin film growth situations necessarily

1To whom correspondence should be addressed.
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volve the variation of composition or growth strains through t
film thickness. This leads to the variation of stress in t
z-direction. For example, a linear variation of stress along
growth direction was observed~using Raman spectroscopy! in
diamond films grown on metal substrates by chemical vapor de
sition, @9#. The observation that oxide films tend to curl on sep
ration from the metal substrate upon which they were grown s
gest the presence of such through thickness variations in gro
strains,@10#. The presence of strain gradients within such film
were confirmed by direct measurements,@11#. In the current work,
we present the solution for stresses, resulting from a genera
trinsic strain that varies both laterally and through the thicknes
the film. We follow the Eshelby procedure for obtaining residu
stresses to formulate the relaxation problem,@12#. Following
Glas’s approach, we represent the stress-free strain as a Fo
series inx, and solve for the Fourier coefficients that satisfy t
equilibrium equations and boundary conditions. While the int
face remains welded~i.e., continuity of tractions and displace
ments! for epitaxial deposition and growth, there are some
stances such as oxide growth at elevated temperatures, wher
interfacial diffusivity is high, and accordingly, the interface b
haves like a liquid and cannot support shear. This interface ma
better described as slipping~continuity of normal tractions and
displacements, zero shear tractions! @13#.

2 Problem Formulation
We consider a planar thin film of thicknessH resting on a

substrate that is semi-infinite and has the same elastic modulE
and poisson’s ration, as the film~see Fig. 1!. The film and the
substrate are infinite in the lateral directions,x and y, and the
displacement in they-direction is identically zero. We further as
sume that the stress-free strain in the film,«m, is purely dilata-
tional and is only a function ofx andz, i.e.,

«m5«m~x,z!. (1)

The stress-free strain could have different physical origins, s
as strains induced due to thermal mismatch, composition stra
growth strains, etc., depending on the actual problem of inter
We also assume that there are no stress-free strains in the
strate. These assumptions imply that a state of plane strain ap
for this system.

We follow Eshelby’s procedure for obtaining residual stres
to develop the equilibrium equations and boundary conditions
a general thermoelastic problem with a stress-free strain of
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form given in Eq.~1!, @12#. A schematic description of Eshelby’
procedure is shown in Fig. 2. The film is divided into infinitesim
cubes that are each removed from the film and allowed to fre
transform~i.e., undergo the stress-free strain«m). Now, we im-
pose external tractions on each of these infinitesimal elemen
counteract the stress-free strain in order to deform them bac
their original shape and size. These tractions,t i

1, are given by

t i
152

E

122n
«mni , (2)

where ni is the surface normal. The stresses corresponding
these tractions are

s i j
1 52

E

122n
«md i j , (3)

where d i j is the Kronecker delta function. These elements
reassembled to form the original solid. This creates no additio
stresses because the tractions on the cube surfaces are still pr
More formally, however, it is appropriate to replace these tracti
on the ‘‘surfaces’’ of the cubes that are now inside the homo
neous solid with equivalent body forces. These body forces,f i

1,
are

f i
15

E

122n
« ,i

m i 5x,z, (4)

where« ,i
m represents the derivative of the stress-free strain w

respect to the position coordinatei. At the film free surface,z
5H, the surface traction,tz

s1, is given by

Fig. 1 A schematic illustration of a thin film on a thick rigid
substrate. The coordinate axes in film thickness H are labeled.

Fig. 2 A schematic illustration of the steps involved in the
Eshelby procedure
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s152

E

122n
«m~x,z5H !. (5)

At the interface between the substrate and the film (z50), we
have body forces,f z

i1, given by

f z
i15

E

122n
«m~x,z50!d~z!. (6)

Now, we remove the surface tractions and body forces that w
externally imposed and let the system relax. This is achieved
imposing equal but opposite tractions and body forces~denoted
with superscripts 2!, to those in Eq.~2!–Eq. ~6!.

f i
252

E

122n
« ,i

m , (7)

tz
s25

E

122n
«m~x,z5H !, (8)

f z
i252

E

122n
«m~x,z50!d~z!. (9)

Mechanical equilibrium requires that

ds i j , j1 f i
250, 0,z,H,

(10)
ds i j , j50, z,0,

where Einstein convention for repeated indices is adopted
ds i j are the stresses induced by the relaxation and are relate
the total stresses in the system,s i j , by

s i j 5ds i j 1s i j
1 . (11)

Tractions will vanish at the free surface of the filmz5H, and
therefore,

szz50 or, equivalently, dszz5tz
s2,

(12)
sxz5dsxz50.

Continuity of tractions across the interfacez50 can be written as

dszz
sub2dszz5 f z

i2,
(13)

dsxz
sub2dsxz50,

where the superscript sub is used to denote fields in the subs
Deep into the substratez52`, displacement gradientsux,i and
uz,i , are expected to vanish, and accordingly

ux,i~z52`!5uz,i~z52`!50, i 5x,z. (14)

Boundary conditions can be easily formulated for two spec
types of film-substrate interfaces, namely, when the interfac
welded, and, when the interface is perfectly slipping. When
interface between the substrate and the film is welded, displ
ment fields are continuous across the interface, and hence

ux
sub5ux ,

(15)
uz

sub5uz .

These are supplemented by the traction boundary conditions
sented in Eq.~13!. When the interface between the substrate a
the film is perfectly slipping, normal tractions are continuo
across the interface while shear tractions at the interface are i
tically zero, and accordingly, we have

dszz
sub2dszz5 f z

i2,
(16)

dsxz
sub5dsxz50.

We also require that normal displacements be continuous ac
the interface~as in Eq. 15~b!!.

Equations~10!, ~12!, ~13!, ~14!, ~15!, ~16! along with the ap-
propriate compatibility condition for displacements must
Transactions of the ASME
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solved to determine the relaxation displacement and stress fi
For the two-dimensional plane-strain problem considered here
compatibility conditions can be combined with the mechani
equilibrium equations given in Eq.~10! to obtain the following
relation for the stresses@14#:

dsgg,aa1
1

12n
f a,a

2 50, g,a5x,z. (17)

Equation~17! also makes use of the stress-strain constitutive
lations valid for plane-strain elasticity:

eab5
11n

E
~s i j 2nsggdab! a5b5g5x,z, (18)

whereeab is the strain in the system. The stresses can be rel
to the Airy stress function,f, by

dsxx5f ,zz2V,

dszz5f ,xx2V, (19)

dsxz52f ,xz ,

where

V5
E

122n
«m. (20)

Accordingly, we can rewrite Eq.~17! as

f ,aagg1
E

12n
« ,gg

m 50. (21)

Equation~21! can be solved without the boundary conditions
obtain a particular solution. This solution can then be superpo
with the general solution of the homogeneous equation,

f ,aagg50. (22)

In the substrate, the stress-free strain is identically zero and
stress function satisfies the homogeneous equation. Equation~22!
is solved for both the film and the substrate with the bound
conditions presented in Eqs.~12!, ~13!, ~14!, ~15!, and~16!.

3 Solution Method

We represent the stress-free strain«m in the form of a Fourier
series inx, as

«m~x,z!5(
a

eiax«̄m~a,z!, (23)

where «̄m are the Fourier coefficients, anda52p/L. Equation
~23! represents a stress-free strain that is periodic inx with period
L. While the summation in Eq.~23! can be written as a Fourie
integral to represent any general function inx, Fourier integrals
can be computed analytically for only a limited set of function
Numerical computation of the Fourier integral uses the disc
Fourier transform which approximates the Fourier integral b
Fourier series. In accordance with Eq.~23!, we look for solutions
for the stress functionf that have the form

f5(
a

eiaxg~a,z!, (24)

whereg represent the Fourier coefficients off. Substituting, Eqs.
~23! and ~24! into ~21!, we find thatg satisfies the relation

g+22a2g91a4g1
E

12n
~«̄m92a2«̄m!50, (25)

where the superscript8 denotes differentiation with respect toz. A
particular solution of Eq.~25! is given by

g52
E

12n
eazI 2~a,z!, (26)
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whereI 2(a,z) is defined by the equations

I 1~a,z!5E eaz«̄m~a,z!dz,
(27)

I 2~a,z!5E e22azI 1~a,z!dz.

The integralsI 1 and I 2 can be easily evaluated if we know th
functional form of«̄m. For example, if«̄m, is given by a general
polynomial of degreeN with coefficientsan ,

«̄m5(
n50

N

anzn, (28)

the integralsI 1 and I 2 are given by

I 15(
n50

N
anzn

a
eaz(

j 50

n

~21! j
Cj

nj !

~az! j
,

(29)

I 25(
n50

N
anzn

a2
e2az(

j 50

n

~21! j 11Cj
nj !(

k50

n2 j
Ck

n2 j k!

~az! j 1k
,

whereCj
n represents the number of ways in whichj objects can be

distributed amongn locations. When the functional form of«m is
not known, we can replace the integralsI 1 and I 2 , by definite
integrals without any loss in generality and evaluate them num
cally. We adopt two approaches, namely, writing«̄m as a Fourier
integral in z and using Chebyshev polynomials to perform t
numerical integration. In the first approach, we write

«̄m~a,z!5E
2`

`

eibz«̃mdb. (30)

where«̃m is the Fourier transform~in z! of «̄m andb52p/H.
Particular solutions for stresses and strains can be obtaine

combining Eq.~26! and Eq.~19!. These are superposed with th
general solution of the homogeneous equation, i.e., Eq.~22!, to
obtain the complete solutions for the relaxation stresses and
placements. We seek solutions of Eq.~22! that are of the form
prescribed in Eq.~24!. They must satisfy the relation

g+22a2g91a4g50. (31)

The general solution to Eq.~31! is

g~a,z!5P1~a!coshaz1P2~a!sinhaz1P3~a!z coshaz

1P4~a!z sinhaz. (32)

In the substrate, the general solution is of a similar form:

g~a,z!5Q1~a!coshaz1Q2~a!sinhaz1Q3~a!z coshaz

1Q4~a!z sinhaz. (33)

The coefficientsP12P4 andQ12Q4 are obtained by substituting
Eqs. ~32! and ~33! in Eqs. ~12!, ~13!, ~14!, and ~15! when the
film–substrate interface is welded and into Eqs.~12!, ~14!, ~15b!,
and ~16! when the film–substrate interface is perfectly slippi
and solving the ensuing sets of linear equations. For impos
displacement continuity across the welded interface~Eq. ~15!!, we
follow the approach adopted by Glas@7#. Accordingly, continuity
of ux across the interfacez50 is ensured if the strainexx is
continuous across the interface, and continuity ofuz across the
interface is ensured ifduz /dx is continuous across the interfac
The resulting solutions for the coefficients for the welded film
substrate interface anda.0 are
SEPTEMBER 2004, Vol. 71 Õ 693



-

co-
P152HP31e22aHS D
G2

i

2a
2G1

HeaHD 2
D

2a
G2

i ,

P25P11
D

a
G2

i ,

P352De22aH~G2
i 2G2

HeaH!,

P45Q35Q45P3 , Q15Q25P11G1
i , (34)

and fora,0 are

P15~e2aHG1
i 2G1

HeaH!~122aH !1DH~e2aHG2
i 2G2

HeaH!

2G1
i 1

D

2a
G2

i ~12e2aH!,

P252P11S D

a
G2

i 22G1
i D ,

(35)

P352eaH~D~eaHG2
i 2G2

H!22a~eaHG1
i 2G1

H!!,

P452Q35Q452P3 , Q152Q25P11G1
i .

In Eqs.~34! and~35!, D5E/(12n) and the parametersG1
i , G2

i ,
G1

H andG2
H are functions ofa and are related to the values of th

integralsI 1 and I 2 at z50 andz5H by

G1
i 52DI 2~a,z50!, G2

i 5I 1~a,z50!,
(36)

G1
H52DeaHI 2~a,z5H !, G2

H5e2aHI 1~a,z5H !.

For a perfectly, slipping interface between the substrate and
film, the coefficients fora.0 are

P15S ~e3aH2eaH!~G1
H1DHG2

H!12aHeaHG1
H1

D

2a
G2

i ~1

1e4aH22e2aH!22a2H2e2aHG1
i D Y Np ,

P25P12
D

a
G2

i ~e4aH2e2aH12aHe2aH~12aH !!/Np ,

P352a~P21G1
i !1DG2

i ,
(37)

P45S a~eaH1e3aH!~G1
H1DHG2

H!12a2H~e2aHG1
i 2eaHG1

H!

22De3aHG2
H1e4aHS D

2
G2

i 2aG1
i D1~2D~12aH !G2

i

2aG1
i !e2aH2

D

2
G2

i D Y Np ,

Q15Q25P11G1
i , Q35Q452aQ1 ,

Np5e2aH~12e2aH22aH12a2H2!,

and fora,0 are

P15S ~eaH2e3aH!~G1
H1DHG2

H!1~e4aH11!S G1
i 2

D

2a
G2

i D
1e2aHS D

a
G2

i 22G1
i D22aHeaH~G1

H

1eaHaHG1
i ! D Y Nm ,
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P25~e3aH2eaH!~G1
H1DHG2

H!1S D

2a
G2

i 2G1
i D S e2aH~2aH

21!1e4aHD 1aH~2G1
HeaH1DHe2aHG2

i !/Nm1
D

a
G2

i

2G1
i ,

P352a~P21G1
i !1DG2

i ,

P45S a~e3aH2eaH!~G1
H1DHG2

H2eaHG1
i !12eaH~11aH !

3~D~G2
H2eaHG2

i !2a~G1
H2eaHG1

i !!

1
D

2
G2

i ~e4aH21! D Y Nm ,

Q152Q25P11G1
i , Q352Q45aQ1 ,

Nm5e2aH~112aH12a2H2!21. (38)

When we use Fourier integrals inz to represent the
z-dependence of«m, the coefficients depend on only two param
etersW1 andW2 , defined by

W1~a!5E
2`

` b

a21b2
«̃mdb,

(39)

W2~a!5E
2`

` «̃m

a21b2
db.

When the film–substrate interface is welded, the coefficientsPi
andQi for a.0 are

P152
De22aH

2a
~W2a~2122aH12eaH~11aH !1e2aH!

1 iW1~12e2aH12aH~12aH !!,

Q15Q25P11DW2 , P25Q12 i
DW1

a
,

(40)
P352De22aH~12aH !~W2a2 iW1!,

Q35Q45P45P3 ,

and fora,0 are

P152DW22
D

2
~eaH21!S W2~12eaH12aHeaH!

1 i
W1

a
~2aHeaH212eaH! D ,

Q15P11DW2 , P252Q12 i
D

a
W1 ,

(41)
P35DeaH~eaH21!~aW21 iW1!,

Q252Q1 , P45Q452Q352P3 .

When the film–substrate interface is perfectly slipping, the
efficients fora.0 are

P15RS W2~2e4aH22e3aH~11aH !12e2aH~112a2H2!

12eaH~12aH !21!1 i
W1

a
~e4aH12aHe3aH22e2aH

22aHeaH11! D ,
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P25RS W2~e4aH22e3aH~11aH !14aHe2aH12eaH~12aH !

21!1 i
W1

a
~2e4aH12aHe3aH24aHe2aH~12aH !

22aHeaH11! D ,

P352aP22 iDW1 ,
(42)

P45R~aW2~e2aH21!~e2aH2112~12aH !eaH!1 iW1~e4aH

22e3aH~22aH !14~12aH !e2aH12aHeaH21!!,

Q25Q15P11DW2 , Q35Q452aQ1 ,

R5
D

2e2aH~e2aH22a2H212aH21!
,

and for,a,0 are

P15Q12DW2 , P252
P3

a
2 i

D

a
W1 ,

P35R1~aW2~2e4aH12e3aH~11aH !24aHe2aH12eaH~aH

21!11!1 iW1~2e4aH22aHe3aH12e2aH12aHeaH

21!!,

P45R1~aW2~e4aH22e3aH~11aH !22e2aH12eaH~11aH !

11!1 iW1~e4aH12aHe3aH24e2aH~11aH !12eaH~aH

12!21!!, (43)

Q15
Q3

a
52

Q4

a
5P3 , Q252Q1 ,

R152
D

2e2aH~2aH1112a2H22e22aH!
.

The Fourier coefficients,g(a,z), of the stress functionf can
be obtained by substituting the coefficients given in Eqs.~34!–
~41! into Eqs.~33! and~32!, respectively. Equations~24! and~19!
can then be employed to determine the relaxation stresses d
oped in the substrate and the film. The total stresses in the sy
can be obtained by adding the externally imposed stresses giv
Eq. ~3! to the relaxation stresses,@1#.

4 Results
Stresses resulting from a general two-dimensional dilatatio

stress-free strain in a thin film have been described by closed-f
expressions. These are in the form of a Fourier series inx, where
the coefficients can be rapidly evaluated using fast fourier tra
forms ~FFT!. We now provide some simple examples to test
efficacy of our approach. Two extreme cases that lend themse
to easy comparison are the cases where the stress-free str
only a function of one variable, i.e., film–substrate«m5«m(x)
and«m5«m(z). The first case has been considered by Glas fo
welded film–substrate interface and, not surprisingly, the so
tions obtained using our approach for«m5e0 cos 2px and «m

5e0 sin 2px match exactly with his results,@7#. Figure 3 shows
both Glas’s and our results for the stresses forz50.005 and«m

50.1 cos 2px. In the second case, an exact solution for this
ometry issxx5syy52E«m/12n, with the other stresses ident
cally equal to zero. We have applied our procedure for the spe
case of«m5(z/H)32z/H. Our results again show an excelle
match with this exact solution, as seen in Fig. 4. In Figs. 4 an
the repeat distance alongx is L51, the film isH50.01 thick, and
E5100.
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We finally apply the method to a case where the stress-
strain«m varies with bothx andz. We consider a periodic array o
rectangular inclusions, that are infinite in extent in they-direction,
embedded in an otherwise homogeneous film. Exact solutions
this problem can be assembled using superposition from the s
tion given by Hu for a single inclusion embedded in a half-spa
@15#. As an illustration of the results, contours of constantsxx
within the film are shown in Fig. 5~a! for a mismatch of 0.0018
and an elastic modulus of 150 GPa. The film isH50.1 thick, the
period in thex-direction isL51 and an inclusion of size~1/8!
3~1/80! is embedded in the center of the film. The values for t
mismatch and the elastic modulus are from Hu’s calculations
stresses in SiO2 trenches in Si structures,@16#. Our solutions for
the stresses match well with Hu’s if we superpose the fields fr
several single inclusions~the calculations presented here are f
an infinite periodic array of inclusions!, as can be seen from Fig
5~b!.

5 Discussion and Conclusion
In summary, we have assumed a general form for the stress

strain«m(x,z) as represented by Eq.~23!, and obtained solutions
for the stress functionf that satisfy mechanical equilibrium an
compatibility. Two different traction transfer modes, namely, p
fectly slipping and welded, are assumed for the film–substr
interface. Solutions for the stress function are provided in term

Fig. 3 Exact and calculated results for a stress-free strain that
is sinusoidally modulated in x are shown at zÄ0.005

Fig. 4 Exact and calculated results for the in-plane stress for a
stress-free strain that is a function of z alone, i.e., «mÄ„zÕH…

3

ÀzÕH
SEPTEMBER 2004, Vol. 71 Õ 695



696 Õ Vo
Fig. 5 Stresses due to a thermally mismatched inclusion; „a… shows contours of constant sxx in the film
for a rectangular inclusion embedded in the center of the film and „b… is a comparison of the stresses
obtained using Hu’s formulas and those obtained from our calculations for zÄ0.025
a

s

l
o
e

r

w
n

t
f
o
l

nd

al-
ter,

r-
.,

in

he

ge-
.

ay-

r in

wn

al

R.

a

’’ J.

s

Fourier coefficients, for the cases where the functional dep
dence of«m on z is arbitrary or where«̄m can be represented by
Fourier integral.

The Fourier transform approach is particularly attractive a
enables the use of FFT for calculating the particular stresse
addition to the parametersW1 and W2 . However, the Fourier
integral may converge poorly near the edges, i.e., at the fi
substrate interface and the film free surface for certain functi
«̄m(z), @17#. As we demonstrated for a general polynomial dep
dence for«̄m(z), the particular solution and the coefficientsG1

i ,
G1

H , G2
i , andG2

H can be calculated exactly for a wide range
simple functions«̄m(z). When the functional form of«̄m(z) is not
known, numerical integration can be employed to obtain the
rametersG1

i , G1
H , G2

i , and G2
H . This method does not suffe

from the poor convergence problems of the Fourier transfo
method described above, however, the computation is some
slower. However, both methods are much faster than the fi
element techniques that are traditionally employed to solve
equilibrium equations. We envisage these methods to be par
larly useful for materials evolution problems, where the stress-
strain evolves along with another function such as the comp
tion or temperature field, and the stresses have to be calcu
from the equilibrium equations at each and every time step in
coupled temperature/composition–stress field calculation.
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Mechanical Response of a
Metallic Aortic Stent—Part I:
Pressure-Diameter Relationship
The mechanical response of a metallic stent is considered in this series of two pape
Part I, the development of a test method for the characterization of the mecha
response of a metallic aortic stent subjected to internal or external pressure, and a m
that captures the relationship between the pressure and diameter of the stent bas
slender rod theory are described. The axial and radial deformation of a bare-metal
were measured as the stent was subjected to loading ranging from an external press
about 80 mm of Hg to an internal pressure of about 160 mm of Hg. The pressure
applied using a polyethylene bag; the method of applying the pressure and measuri
strains was found to provide an accurate determination of the mechanical behavior o
stent. The stent was shown to exhibit two stiff limiting states corresponding to the
collapsed and fully expanded diameters and an intermediate range between the two
the stiffness was an order of magnitude smaller than the typical stiffness of an ao
complete mathematical characterization of the pressure-diameter response of the
stent was also developed; this model is a straightforward application of the theor
slender rods to the problem of the stent. Excellent agreement with the experimenta
surements is indicated, opening the possibility for modeling of the coupled response
stent and the vessel into which it is inserted. In Part II, we consider the effect of varia
of pressure over the length of the stent that introduce changes in the diameter alon
length of the stent which leads naturally to the formulation of the coupled problem o
stent within the blood vessel.@DOI: 10.1115/1.1782650#
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1 Introduction
Metallic stents and stent grafts are commonly used to treat

diovascular diseases such as occlusions and aneurysms. T
stents are delivered to the desired location with the aid of c
eters, and therefore collapsibility prior to deployment is an imp
tant factor in the design of the stent. On the other hand, the re
tance to collapse under external forces must be high in serv
especially in regions of hard occlusions in order for the stent to
effective. These considerations make the design of stents q
complicated, but also quite challenging. Two kinds of stents h
been used in clinical practice: a stiff stent expanded into posi
using a balloon or through shape memory properties of the m
rial, and a more compliant self-expanding stent made of brai
wire. The focus in our work is on the self-expanding braid
Wallstent®. Such bare metal stents have been inserted into an
ismal vessels,@1–3#; after deployment, a thin tissue layer deve
ops that prevents the blood flow across the wire mesh and the
starves the aneurysm of blood supply. The stent then experie
the full internal pressure of the blood and hence must pos
appropriate stiffness in order to contain the blood pressure. In
case, the stiffness of the stent in relation to the vessel into wh
it is to be embedded also plays a key role in the stresses
develop in the vessel wall, stresses that can lead to the deve
ment of endoleaks or other long term problems with the treatm
@4,5#.

Engineering analysis of the design of stents has been discu
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in the literature before, some based on approximate models~see,
for instance, Ref.@6#! and others based on empirical correlatio
with experiments,@7#. Rogers et al.@8# and Dumoulin and Coch-
elin @9# have recently analyzed the plastic deformation respons
the stiff stents by finite element analysis. Here we show tha
rigorous analysis of the self-expansion of the elastic stent is p
sible; the analysis is rigorous in the sense of the theory of m
chanics of slender rods. A number of experimental studies of
mechanical response of stents can also be found in the litera
@10–14#. However, in most of these studies, the loads on the ste
were not applied in a manner consistent with the pressure exp
enced in vivo. For example, Lossef et al.@11# applied a point load
on the stent and measured the resulting change in the stent d
eter to obtain a force vs diameter relationship. Flueckiger et
@10# applied point loads and circular loads similar to that used
Fallone et al.@7#. While such measurements might be quite su
able in ranking different stents~see, for example, Dyet et al.@14#!,
they do not provide the appropriate pressure-diameter relation
that is needed in analysis of the coupled problem of stent-ar
deformation for determination of arterial wall stresses, or in
analysis of the fluid flow through the stented artery,@15,16#.
Schrader and Beyer@13# developed an interesting apparatus
which the stent was inserted into a rubber tube and then subje
to external pressure. The diameter was measured using an u
sonic scheme. Reiu et al.@17# have also used a similar apparat
for applying external pressure on coronary stents. While b
groups of investigators implemented the apparatus only for ex
nal pressure, it is possible to redesign the apparatus for inte
pressure. However, a major drawback of the scheme for inte
pressure is that the stiffness of the rubber tube must be meas
and subtracted from each measurement of the stent. Since the
stents exhibit a changing stiffness with expansion this met
requires a rather complicated nonlinear inverse problem to
solved in order to determine the stiffness of the stent. The pre
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work is aimed at providing an accurate measurement of
pressure vs diameter relationship for stents without su
complications.

We report on the development of an experimental scheme
can provide an accurate measurement of the mechanical beh
of the stent in a mechanical environment close to that seen
vivo. Although the results presented here are for one type of s
expanding stent, the method is quite general and applicable t
types of stents. We then interpret these measurements in term
the mechanical response of the stent through a complete mod
the behavior of the helical spring. This model is, of course, limit
to the particular type of self-expanding helical stent. This mo
facilitates the formulation and solution of the problem of no
uniform pressure loading along the stent that is caused by
insertion of the stent into the blood vessel; these aspects as we
the inverse design problem—of determining the optimal stent
ometry for patient specific data—are described in Part II~Wang
and Ravi-Chandar@18#!.

The paper is organized as follows: in Section 2, we present
experimental method developed to apply internal and exte
pressure on the stent; issues related to the application of pres
as well as the measurement of the response are discussed.
scription of the experimental measurements follows in Section
Comparison of the stiffness of the stent to the stiffness of arte
is also presented. Recognizing that the deformation of the ste
governed by the theory of slender rods, we develop a mathem
cally rigorous model that describes the response of the Walls
in Section 4. Excellent comparison of the results of the mo
with the experimental measurements is demonstrated. Finally
close with a discussion of how the experimental method a
mathematical model could be used in addressing the problem
design of stents.

2 Experimental Methods
A bare metal Wallstent shown in Fig. 1 was used as a t

sample in order to develop the apparatus for evaluating
pressure-diameter relationship under both internal and exte
pressure. It was made of a wire wrapped into a helix and interw
ven into a simple-weave pattern; the wire-wire crossings are
bonded in any manner but held only by friction. This constructi
allows for easy analysis of the stent as discussed in Section 4.
stent consists of 36 wires each of diameter 170mm, woven into a
simple helical pattern with 18 right-handed and 18 left-hand

Fig. 1 A photograph and schematic diagram of the bare-metal
Wallstent indicating the positions at which the diameter and the
length of the stent was measured during the experiments under
internal pressure. The stent is shown in the unloaded condition
„zero pressure ….
698 Õ Vol. 71, SEPTEMBER 2004
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helices. The nominal diameter of the stent in the zero-press
state was 20 mm and the length of the cylindrical portion was
mm. The exact composition of the material is not known, but
the purpose of the mechanics analysis it was sufficient to kn
that it was a stainless steel with a modulus of elasticityE
5200 GPa. The defining parameters of the stent are listed
Table 1. Near the ends of the stent, the interweaving pattern
came loose with handling and the diameter of the stent expan
slightly. In vascular applications, this enlarged segment gets
bedded into the vessel wall and is considered to anchor the ste
the proper location. In our experiments, this segment of the s
was outside the tested region; external pressure was applied
over approximately 70 mm of the length of the stent and
length changes were measured only over the central region o
mm.

The range of internal and external pressures considered in
experiments was determined by the fact that the stent has
limiting states: a fully collapsed state and a fully expanded st
Measurements were made over this entire range; the pressur
perienced by the stent in vivo is contained within the range c
ered in these experiments. For the application of internal pres
on the stent, a polyethylene bag was squeezed inside the ste
shown in Fig. 2. In order to eliminate the resistance to inflat
from the polyethylene film, many wrinkles were introduced in
the film; upon inflation with internal pressure, the bag simp
expanded by eliminating the wrinkles without stretching the fil
In order to prevent friction between the polyethylene film and
stent as the stent expanded radially and contracted longitudin
long, thin strips of an acetate sheet were lubricated with gre
and inserted longitudinally between the stent and the polyethy
bag. Compressed air was introduced inside the bag through a
attached with a control valve and a pressure gage. A labora
compressed air supply line was used as the pressure source
pressure gage had a sensitivity of60.5 mm of Hg.

The end conditions must be controlled carefully on order
mimic the conditions in vivo. In the scheme shown in Fig. 2~a! the
stent is free to expand/contract radially and to contract/exp
axially. A variant of this end condition was also used: strings w
attached to the wire braid at the two ends of the stent and th
strings were collected together and fixed to a rigid post on one
and were taken over a pulley and attached to a weight on the o
end. This end condition enabled the stent to expand freely in
radial direction, but its axial shortening was restrained by
weight; this arrangement is shown in Fig. 2~b!. In practice, the
radial expansion and axial shortening of the stent are constra
by the arterial wall. Our experiments provide an upper bound
the axial force and radial displacements that will be generate
the stent.

The apparatus for application of external pressure consists
stiff cardboard tube inside which the stent is inserted, with
intervening gap filled by the polyethylene bag~see Fig. 3!. Infla-
tion of the bag results in the application of a uniform extern

Table 1 Parameters of the Wallstent

n Number of wires 36
E Modulus of elasticity

~assumed!
200 GPa

G Shear modulus~assumed! 77 GPa
d Diameter of the stent wire

~measured!
170 mm

a0 Pitch angle of the helix at
zero pressure~measured!

34°

r 0 Radius of the stent at zero
pressure~measured!

0.01 m

L Length of the stent
~measured!

0.08 m
Transactions of the ASME



Journal of App
Fig. 2 „a… Schematic representation of a stent under internal pressure produced by a com-
pressed air-filled polyethylene bag. „b… Same as „a…, with the ends restrained from axial move-
ment but not radial movement.
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pressure over the middle segment of the stent. Once again, the
was wrinkled in order to eliminate its stiffness and the lubrica
acetate sheets were placed between the polyethylene bag an
stent to minimize friction as in the case of the internal press
experiment.

Fig. 3 Schematic representation of a stent under external
pressure produced by a compressed air-filled polyethylene bag
lied Mechanics
bag
ed
d the
ure

In order to determine the pressure-diameter relationship,
necessary in these experiments to measure the diameter at d
ent pressure levels. This was accomplished in two different w
depending on whether the stent was under internal or exte
pressure. For the case of internal pressure, the procedure was
straightforward: the values of the pressure were read from
pressure meter. After the pressure stabilized at each given v
for about 3–5 minutes, a picture of the deformed stent was ta
using a Nikon CoolPix 950 digital camera with a 160
31200 pixel resolution. From measurements of the diamete
three points as indicated in Fig. 1, the average diameter at
pressure level was determined. For the wire stent, the axial c
traction corresponding to the radial expansion can be signific
So, the length change was measured between 13 nodes in
middle of the stent, about 42 mm apart initially. Correlating t
length and diameter changes with the applied pressure, the
chanical response was obtained. In contrast, under external
sure, the wire mesh grid points were not available for observat
therefore, the diameter changes were determined viewing ax
and measuring the visible opening. Length changes could no
monitored, but due to the coupling between the radial and a
deformation as discussed below, the measurements of the r
deformation was used to calculate the axial deformation. The
tual dimensional measurements were made in Adobe Photos
with the distance between two points obtained from the differe
of their coordinates shown by the cursor. With the help of hi
magnification images, a spatial accuracy of 25mm was obtained;
the accuracy was determined by photographing a standard rul
the apparatus and measuring the distance between two
marks.

Coupling between the radial and axial deformation: The cou-
pling between the radial and axial deformation can be determi
by assuming that under the small loads imposed on the stent
SEPTEMBER 2004, Vol. 71 Õ 699
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stretching of the wire is negligible. Suppose that the radius of
stent isr and the axial length~pitch of the helix! is l. Then the
total length of the wirel over a single pitch of the helix is

l 5Al214p2r 2. (1)

During deformation of the stent, the total length of the wire
mains unchanged and therefore changes in the radius of the
r , must be accommodated by changes in the pitch,l, according to
Eq. ~1!. Instead of usingr andl, one can also use radial and axi
strain measures; for the large deformations encountered in
experiments, the true radial straineR , and the true axial strain
ea , defined below were used as the appropriate measures

eR5 ln
r

r 0
, ea5 ln

l

l0
. (2)

Since the length and radius are related as indicated in Eq.~1!, the
axial strain can be written as

ea5
1

2
ln

l 224p2r 2

l 224p2r 0
2 . (3)

Therefore, from a measurement of the current radius,r , both the
radial strain and axial strain can be calculated from Eqs.~2! and
~3!. In the results described below, we demonstrate that this
cedure works well when compared with actual experiments un
internal pressure and then use it to calculate the axial deforma
under external pressure.
700 Õ Vol. 71, SEPTEMBER 2004
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3 Experimental Results
First, we show that the method works well in evaluating t

pressure-diameter relationship in stents. In Fig. 4, the meas
variation of the true radial strain with the pressure from five
peated trials is shown. A trendline is shown to act merely a
guide for the nonlinear response of the stent; the actual form
the relationship will be derived later. The scatter in the data
tween the repeated trials is indicative of the errors in the exp
mental measurement. The scatter arises primarily from the con
and measurement of pressure in the experiment; the data qu
could be improved significantly through the use of an automa
pressure regulator and monitor. Measurements were also t
during the decrease of the pressure from the maximum; the
loading behavior is also shown in Fig. 4 for one of the trials.
significant hysteresis was encountered with the diameter rem
ing almost constant until the pressure dropped to a very sm
value and then recovering its original dimensions with a ve
small change in pressure. We believe that this behavior is du
friction in the system; we have has been able to develop an
lytical model of the stent and the loading system and to isolate
source of the friction conclusively to the loading system. The
fore, in the present paper we refrain from discussing the result
unloading, noting that this issue may be quite different in t
coupled response of the stent and blood vessel.

In these trials with internal pressure, the axial deformation w
also obtained from the photographs. From measurements o
length l, the true axial strain was calculated as indicated in E
~2!. In Fig. 5, we show the measured values of the axial strain
a function of the measured values of the radial strain. The a
Fig. 4 Variation of the true radial strain, eR with internal pressure, p . A polynomial curve fit to the experimental data
is also shown simply to indicate the data trend. Data scatter is indicative of the errors encountered and is primarily
due to the measurement and control of the pressure.
Transactions of the ASME



Journ
Fig. 5 Variation of the true axial strain with the true radial strain. The data points represent direct measurements of
both the diameter and length. The line corresponds to a model of the axial strain from Eq. „4… with measured values
of the diameter.
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strain calculated from Eq.~3! is also plotted in this figure~iden-
tified as ‘‘Model’’!. The agreement between the two is quite go
and we conclude that the coupling between the radial and a
deformation can be calculated using the assumption of inexte
bility of the wire under the loads imposed in these experime
The main purpose of this demonstration is that in the experim
under external pressure, we can determine the axial deforma
from Eq. ~3! once the diameter has been measured. The non
earity of the relationship between the axial and radial strains
indicates that the small deformation approximation is not app
priate for characterizing the behavior of the stent.

The variation of the diameterD with the pressurep over the
complete range of pressures used in our experiments—intern
well as external—is shown in Fig. 6. The variation of the lengthl
with pressurep is shown in Fig. 7. In both of these figures, th
results of analytical models are also presented; we will disc
these in the next section. From the experimental results prese
here, it is clear that the loading scheme and the measurem
scheme described here are capable of evaluating the mecha
response of stents. While our demonstration was with a s
expanding Wallstent, this method will work with other designs
stents as long as the inflation pressures are not much larger
the range used here.

The response of the Wallstent shown in Figs. 6 and 7 sugg
that there are three regimes in the response of the stent—
limiting states and an intermediate state connecting the limi
states. The first limiting state corresponds to a fully collaps
condition, similar to what exists when the stent is inserted into
catheter; here the diameter is nearly zero and the length is ne
double the unstressed length. The other limiting state corresp
to the fully expanded condition when the length is a minimum
al of Applied Mechanics
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the maximum possible diameter. At both these limiting states,
stiffness of the stent is quite high, implying that a large change
pressure is required to cause a small to moderate change in
diameter. Connecting these two limiting states is an intermed
range where the siffness is quite small; here a very small cha
in the pressure could result in a significant change in the diame
It is instructive to compare the response of the stent to the na
properties of the vessel into which the stents are to be inser
The stiffness of the vessel wall and the stent can be quantified
the ‘‘pressure-strain modulus,’’Ep , defined as Peterson et al.@19#

Ep5
r 1

r 22r 1
Dp (4)

whereDp is the change in pressure causing radius to change f
r 1 to r 2 . The smallest stiffness exhibited by the stent is ab
8.7 kN/m2. In comparison, the stiffness for a normal aorta lies
the range of 40 to 140 kN/m2 and may be as large as 300 kN/m2

in an aorta susceptible to aneurysm,@20#. The comparatively small
stiffness of the stent must be a primary concern in sizing the s
for each insertion. In order to quantify this appropriately, it wou
be beneficial to have an analytical model of the stent. Theref
we discuss below an analytical model of the stent covering
entire range of its response based on an analysis of the stent
helical spring.

4 Analysis of the Response of the Stent
The Wallstent is a set of interwoven helical springs; the analy

of the mechanical response of a spring based on Kirchho
theory of slender rods is well established,@21#, and thus can be
drawn upon for this particular application. However, there ar
SEPTEMBER 2004, Vol. 71 Õ 701
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Fig. 6 Variation of the diameter of the stent with pressure. Internal pressure is indicated as positive and external
pressure as negative. The lines „-- without friction, with friction … are calculated using a helical spring model for
the deformation of the stent.

Fig. 7 Variation of the length of the stent with pressure. Internal pressure is indicated as positive and external
pressure as negative. The lines „-- without friction, with friction … are calculated using a helical spring model
for the deformation of the stent.
Õ Vol. 71, SEPTEMBER 2004 Transactions of the ASME
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few significant departures that need attention. First, the loading
the stent is not along the axis as in a spring but on the lateral s
where it contacts the tissue or the polyethylene bag in the
setup. This difference is easily taken into account by conside
the equilibrium of a spring under pressure on the lateral sid
Second, since there are many springs coiled together, the
likely to be frictional resistance—of as yet undetermin
magnitude—to the sliding of the wires past each other. In fact,
frictional contact dictates that the length of the coil over ea
pitch must remain constant as the pitch and the pitch angle ch
due to deformation of the stent. Enforcing this condition results
a geometric constraint:r /cosa5r0 /cosa0. Lastly, coiled springs
are usually plastically deformed into the helical shape; the W
stent is simply woven from straight filaments and the wires are
plastically deformed—upon removal of a filament from the ste
it straightens out by itself due to its elasticity, except at the br
crossover points. This has no impact on the deformation itself,
will affect stability of the deformation. In this section, we will firs
summarize the spring analysis, then show how this analysis ca
adapted to the stent, and finally compare the predictions of
model to the measurements.

Let us denote the initial radius of the helix byr 0 and the initial
pitch l0 . The initial principal curvature and the initial twist of th
spring are given by

k05
cos2 a0

r 0
, t05

sina0 cosa0

r 0
(5)

wherea05arctan(l0/2pr 0) is the angle of the helix. Under th

Fig. 8 Free-body diagram on one-half turn of one wire in the
stent. Components of forces and moments in the direction of
the tangent to the curve and normal to it are shown in the fig-
ure. q is the load per unit length along the wire that results
from the pressure p in the stent. r is the radius of the helix, and
a is the pitch angle.
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action of the axial force and the pressurep, the helix changes to a
new radius,r , and pitch,l. The corresponding curvature an
twist, denoted byk andt, are given by

k5
cos2 a

r
, t5

sina cosa

r
(6)

wherea5arctan(l/2pr ) is the current angle of the helix. Con
sider the equilibrium of a one-half turn section of one wire in t
stent as shown in Fig. 8. LetPa , Ps, MB , and Mt be the axial
force, shear force, bending moment, and twisting moment, resp
tively. We note that these are components resolved in the di
tions of the tangent and normal to the helix. The pressurep ~in-
ternal or external! in the stent is assigned to this segment of t
wire as an equivalent load distributed per unit length and deno
by q. It is calculated as follows: the pressure acts on an effect
area 2prl; this force, 2prlp, is carried in then wires that make
up the stent, each of lengthl . Therefore, the force per unit length
that each wire experiences is then

q5
2prl

nl
p5

2pr sina

n
p (7)

where sina5l/ l . In addition, letFz denote the external force
along the axis of the helix that is supplied by the end constrain
we note that this is zero if the stent is free to expand/contr
axially. Introducing a nonzeroFz will allow us to calculate the
axial force necessary if the stent is to be maintained at some fi
length due to end constraints. Equilibrium of forces and mome
result in the following equations

Pa cosa2Ps sina2
qr

cosa
50 (8)

Pa sina1Ps cosa5Fz (9)

r ~Pa sina1Ps cosa!1MB sina2Mt cosa2
qr2 sina

cos2 a
50.

(10)

The wires are considered to be slender and therefore their
sponse to the bending and twisting moments are given by
Bernoulli-Euler beam theory and Coulomb torsion theory:

Fig. 9 Correlation of the length and diameter of the stent. This
is a plot of Eq. „1…; the unloaded state is indicated by the dot.
SEPTEMBER 2004, Vol. 71 Õ 703
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Fig. 10 Comparison of the calculated and measured axial force Fz as a function of the internal pressure, p , when
the stent is free to expand radially, but is constrained to maintain its axial length
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MB5EI~k2k0!5EIS cos2 a

r
2

cos2 a0

r 0
D (11)

Mt5GIp~t2t0!5GIpS cosa sina

r
2

cosa0 sina0

r 0
D (12)

whereE is the modulus of elasticity,G is the shear modulus,I is
the second moment of the cross-sectional area andI p is the second
polar moment of the cross sectional area. Here, we consider w
of circular cross section and hence,I p52I 5pd4/32 whered is
the diameter of the wire. EliminatingPa , Ps , MB , andMt be-
tween Eqs.~8!–~12! results in an expression for the axial forceFz

Fz5
2pr 2 sin2 a

n cos2 a
p2

EI sina

r S cos2 a

r
2

cos2 a0

r 0
D

1
GIp cosa

r S cosa sina

r
2

cosa0 sina0

r 0
D . (13)

If the applied axial forceFz50, then the relationship between th
pressure and radius of the stent can be written as

p5
n cos2 a

2pr 2 sin2 a FEI sina

r S cos2 a

r
2

cos2 a0

r 0
D

2
GIp cosa

r S cosasina

r
2

cosa0 sina0

r 0
D G . (14)

As discussed above, we assume that the pitch and diam
change in such as way as to constrain the coil from unwind
upon deformation; this condition is expressed as:r /cosa
5r0 /cosa0.
Vol. 71, SEPTEMBER 2004
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The changes in the diameter as a function of pressure ca
determined from Eq.~14!; then the changes in the length of th
stent~pitch! can be calculated using the assumption of inexten
bility of the wire as in Eq.~1!. Note that there is an explici
dependence on the radius in this equation as well as an imp
dependence through the dependence onr of a. The predictions of
the model are shown in Figs. 6 and 7 by the dotted lines, identi
with the label ‘‘no friction.’’ In keeping with the experimenta
boundary condition,Fz was set equal to zero. Clearly, the sprin
model captures the essence of the behavior observed in the ex
ments. It must be borne in mind that there areno adjustable pa-
rameters or empirical constantsthat have been imposed on th
model; the model is an exact implementation of spring theo
Deviations between the predictions and the experimental meas
ments are observed only under conditions of high internal p
sure and can be attributed to friction effects that were neglecte
this simple analysis. It is possible to obtain a very simple estim
of the effect of friction on the experimental measurements as
scribed in the next paragraph.

Along the cylindrical surface, the wires of the stent are in co
tact with the polyethylene bag or the lubricated acetate sheet
must move in order to shorten or elongate as required by
applied pressure. If we assume that the frictional effects red
the effective axial force that the stent experiences, we can mo
Eq. ~14! appropriately. Assume that the frictional force,F f , op-
posing the axial elongation or contraction of the stent is prop
tional to the normal force; thenF f5mAp, wherem is the ~un-
known! friction coefficient, A52prl is the nominal area of
contact, andp is the applied pressure. Decreasing the axial fo
by this amount results in the following relationship between
applied pressure and the radius of the stent
Transactions of the ASME
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p5
n cos3 a0

2pr 0~r 0
2 sin2 a2mnlr cos2 a0!

FEI
sina

r
~cosa2cosa0!

2GIp

cosa

r
~sina2sina0!G . (15)

Note that whenm50, this equation reduces to Eq.~14!. The pre-
diction of the pressure-diameter relationship from Eq.~15! is also
shown in Figs. 6 and 7 and identified by the label ‘‘with friction
A very small friction coefficient (m50.000001) was sufficient to
make the model predictions agree with the experimental meas
ments. We note that the small value ofm arises from the fact tha
the actual contact area is significantly smaller than what we h
assumed. From these figures, it is evident that friction play
significant role only when the system is under a large inter
pressure, but more importantly that it can be taken into accoun
a proper model.

An important point to note in the behavior of the stent is t
coupling between the axial and radial deformations as show
Fig. 9. This figure is really a plot of Eq.~1! indicating the influ-
ence of the inextensibility of the helix. The unloaded state of
stent is identified in the figure by a dot. Clearly, a small change
the diameter must be accompanied by a large change in the
length of the stent. As the diameter changes one unit due to
pulsatile pressure cycle, the length must alter by almost se
units. If the stent is simply riding inside the vessel, this ax
deformation will result in the scraping of the inside of the vess
On the other hand, if the stent is firmly anchored in the blo
vessel, this axial deformation will be constrained and result i
large force at the points where the stent anchors into the tis
The magnitude of this force can be determined from Eq.~13! by
settingr 5r 0 and evaluatingFz as a function ofp. The axial force
necessary to keep the overall length of the stent fixed as a func
of internal pressure was measured using the variant of the
condition described earlier and is compared with the theoret
prediction in Fig. 10. If the stent is attached at the ends to a bl
vessel, this force will be exerted by the stent on the ves
Clearly, in the range of physiological pressures, the axial force
be quite large. We believe that the coupling of radial and a
deformations is an important consideration in the generation
endoleaks in the stents and for the conjectured remodeling o
stent in the vicinity of the anchoring site,@22#; the correspondence
of this stress to the dilation and endoleaks needs to be exam
further for this as well as other stent designs.

5 Conclusion
An experimental method for the evaluation of the mechan

response of stents has been developed; this method allow
both internal and external pressure to be applied on the stent
furthermore allows the measurements to be directly interprete
terms of the pressure-diameter relationship of the stent. We
that the method was demonstrated with a Wallstent, but is ap
cable to all stent constructions. For the Wallstent, an analyt
model based on the theory of slender rods was developed
predictions of the model were compared with the experiment
show excellent agreement. The model is appropriate over the
tire range of deformation of the stent—from fully collapsed
fully released. The observed response of the stent shows tha
stiffness of the stent varies dramatically with its radius and the
fore when confined inside an artery, the wall stress in the ar
due to the mismatch or ‘‘overexpansion’’ could be quite larg
calculation of this stress requires a model for the deformation
the artery and a model for the bending response of the stent.
latter is addressed in Part II with a beam-on-elastic founda
model.
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Mechanical Response of a
Metallic Aortic Stent—Part II: A
Beam-on-Elastic Foundation
Model
The main objective of the paper is to develop the mathematical analysis of the respo
a metallic stent subject to axisymmetric loads over its length and to different boun
conditions. These situations introduce bending stresses in the stent and cannot b
tured by a model of the stent that can be used to characterize the pressure-dia
relationship under axially uniform loading. The analysis presented here is based o
analogy between a thin-walled pressure vessel and a beam on elastic foundation;
present application, we derive an equivalent beam model for the bending respons
stent. Using this model, we evaluate the shape of the stent exiting the catheter as w
the variation of the diameter along the length of the stent constrained by stiff end
ports. This approach can be used to evaluate the coupled response of the stent a
blood vessel, if the mechanical properties of the blood vessel are known. The co
problem and its implications in the design of stents are discussed.
@DOI: 10.1115/1.1782912#
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1 Introduction
In Part I, @1#, we examined the response of a woven meta

stent to internal and external pressure. A mathematical mode
the pressure-diameter relationship was obtained based on
theory of slender rods and demonstrated to predict the resp
accurately. An experimental method was also developed for de
mining the pressure diameter relationship through appropr
tests. In the model as well as in the experiment, pressure
applied uniformly over the length of the stent. However, in viv
the stent experiences an axially varying pressure due to inte
tions with the vessel wall and hard occlusions or aneurysms.
example, as shown schematically in Fig. 1, a stent inserted in
vessel with an aneurysm will experience external pressure in
intact regions of the vessel wall towards the ends of the aneury
but experience internal pressure in the aneurysm~after a sealing
layer has formed!. While the response determined from unifor
pressure along the axis of the stent is essential in character
the stent, further analysis is required to determine the respons
the stent under the axially varying pressures described abov
terms of the mechanics of the problem, uniform pressure along
axis corresponds to a ‘‘membrane theory’’ of deformation wh
the spatially varying pressure corresponds to a ‘‘bending theo
of deformation. While there are a large number of evaluations
the pressure-diameter relationship of stents~see Part I for a review
of this work!, to our knowledge the problem of bending due
axial variations in the loading has not been modeled or exp
mentally measured by any of the investigators. Ormiston et al.@2#
used the three-point bend test to determine the overall longitud
flexibility of different stents; the objective was simply to provid
a quantitative comparison of the flexibility of stents. Others ha
used finite element analysis to determine the stresses genera

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, September
2003; final revision, March 24, 2004. Associate Editor: R. M. McMeeking. Disc
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Journal of Applied Mechanics, Department of Mechanical and Environmental E
neering, University of California–Santa Barbara, Santa Barbara, CA 93106-5
and will be accepted until four months after final publication in the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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the stents as a result of deployment or flexing,@3,4#. In this paper,
our goal is to consider the influence of variations in the loa
along the length of the stent on the deformation of the stent;
will enable determination of the shape of the stent as it exits
catheter, as well as allow the formulation of the problem
coupled response of the stent and the artery.

This paper is organized as follows: in Section 2 we describe
mechanical basis of the analogy between the stent deforma
and a beam-on elastic foundation; then we formulate the equa
governing the deflection of the stent. The numerical solution p
cedure adopted to solve the differential equation is describe
Section 3. Then, in Section 4, we describe how the model can
used to determine the shape of the stent~i! as it is pressurized with
stiff end constraints and~ii ! as it exits the catheter; in both case
good comparison to experiments are demonstrated. The pur
of these demonstrations is to really show that the model capt
the mechanics of the stent response. In Section 5, the proble
evaluation of the coupled response of the stent and the arte
formulated and the design issues that arise are discussed.

2 Analysis of the Response of the Stent—Beam-o
Elastic Foundation Model

The basic idea behind the analysis is the following: the st
can be considered to be a thin-walled pressure vessel, albeit
a nonlinear pressure-diameter relationship,p5 f (r ) that is charac-
teristic of the particular stent under consideration. The respons
a thin-walled pressure vessel to axisymmetric loading that res
in bending stresses may be determined by analogy of its resp
to that of an equivalent beam on an elastic foundation,@5#. This
equivalence is demonstrated schematically in the meridional
tion in Fig. 2~a!. Consider an axisymmetric loading on the stent
some point as indicated by the arrows in the figure; this load
changes the radius of the stent as a function of position along
axis, denoted byr (x). Equivalently, this can be represented by t
displacementv(x)5r (x)2r 0 , wherer 0 is the uniform initial ra-
dius of the stent without any load. Clearly, this loading introduc
a bending component to the problem. A free-body diagram o
segment of the stent is shown in Fig. 2~b!. At any pointx along
the stent, a circumferential forceFc is generated because of th
variation in the radius. These forces balance out in the circum
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ential direction, but provide a component in the radial directi
that opposes the radial displacement. This is how the stent is
to maintain its radius variation along the length. This force can
considered to be equivalent to the reaction from an elastic fo
dation. Since the relationship between the pressure and radius
general nonlinear~see Part I for a particular model!, we have a
nonlinear elastic foundation. Therefore the differential equat
for the bending of the equivalent beam on elastic foundation
unit width can be written as

EIeff

d4r

d4x
1 f ~r !5pa (1)

wherepa is the applied pressure in the stent andf (r ) is the resis-
tance of the equivalent elastic foundation. We note that for a ty
cal thin walled pressure vessel,E is usually replaced by its plane
strain equivalent due to the restraint provided against anticla
curvature; however, in our implementation, since the wires
allowed to act independently, we should not use the plane st
equivalent.I eff is the effective bending rigidity of the stent and
calculated easily. The equation for the calculation of the axisy
metric deformation is applicable for any stent design as as lon
I eff and f (r ) can be calculated or measured. We demonstrate
for one particular stent, the elastic, self-expanding Wallstent®

Fig. 1 Schematic diagram of a stent inside a blood vessel with
an aneurysm

Fig. 2 Stent as an equivalent thin-walled pressure vessel and
a beam on elastic foundation
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The stent geometry of the woven metallic stent is shown in F
1, inserted schematically into a blood vessel with an aneury
The stent consists of 36 wires each of diameter 170mm, woven
into a simple helical pattern with 18 right-handed and 18 le
handed helices; the geometric and material parameters of the
are given in Table 1 of Part I. The length of the stent is about
mm and its diameter is 21 mm. The exact material compositio
unknown, but it was sufficient to know that it was a stainless st
with a modulus of elasticityE5200 GPa. As can be seen from
Fig. 1, the stent will experience support conditions and press
differential that vary along its length, resulting in a bending of t
stent.

The pressure-diameter relationship for the woven metallic W
stent was derived in Part I~see Eq.~14!! and is reproduced below
for convenience.

p5
n cos2 a

2pr 2 sin2 a FEI sina

r S cos2 a

r
2

cos2 a0

r 0
D

2
GIp cosa

r S cosa sina

r
2

cosa0 sina0

r 0
D G[ f ~r ! (2)

wherer 0 andl0 are the initial radius and pitch of the helix,r and
l are the radius and pitch at a pressurep, a05arctan(l0/2pr 0)
anda5arctan(l/2pr ) are the initial and current pitch angle of th
helix, n is the number of coils in the stent,E is the modulus of
elasticity, G is the shear modulus, andI is the second moment
and I p is the second polar moment of the cross-sectional are
the wire. Here, we consider wires of circular cross section a
hence,I p52I 5pa4/2 wherea is the radius of the wire.

In Fig. 3~a!, the wire mesh of the stent is shown with the en
of the wires exaggerated by the dots; if we view the thin strip
Fig. 2(b) as a beam, per unit length there aren/2pr wires. Each
wire presents an elliptical cross section with semi-major and se
minor axes ofa/sina and a, respectively, dictated by the pitc
angle of the helix. The second moment of the beam per unit w
is then

I eff5
pa4

4 sina

n

2pr
5

na4

8r sina
. (3)

Substituting forI eff from Eq. ~3! and f (r ) from Eq. ~2! into Eq.
~1!, the governing differential equation for the radius of the ste
under applied pressurepa and any other axisymmetric loading i
obtained.

E
na4

8r sina

d4r

d4x
1

n cos2 a

2pr 2 sin2 a FEI sina

r S cos2 a

r
2

cos2 a0

r 0
D

2
GIp cosa

r S sina cosa

r
2

sina0 cosa0

r 0
D G5pa (4)
Fig. 3 Effective cross section of the stent that determines the bending rigidity
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This equation must be supplemented by appropriate boun
conditions indicating how the stent is supported at the ends.
governing differential equation can be written succinctly by c
lecting terms

d4r

d4x
5F@~r ~x!,p~x!!# (5)

where we have allowed for possible spatial variations of the
plied pressure as well. In general, boundary conditions are sp
fied at the support points of the stent. A number of possibilit
exist, depending on the problem of interest. We will consider th
possible boundary conditions—fixed, free, and compliant.

Case (i) At a fixedpoint on the beam, the appropriate boun
ary conditions are

r 5R,
dr

dx
50 (6)

whereR is a prescribed value of the radius. Note that a fixed po
need not be at an end of the beam, but can be anywhere along
long as external constraints are applied to maintain the cond
required by Eq.~6!.

Case (ii) At a free endpoint on the beam, the appropria
boundary conditions are that the forces and moments are z
therefore,

d3r

dx3 50,
d2r

dx2 50. (7)

Case (iii) A stent supported by a blood vessel will experience
compliant boundary condition where the deflection and slope
the stent should match those of the blood vessel. The boun
conditions must be posed as a matching condition. The appro
ate conditions are

r stent5r vessel,
dr

dxU
stent

5
dr

dxU
vessel

. (8)

Note that the deflection and slope at this point are not prescri
but obtained as part of a coupled solution of the deformation
the stent and the vessel. Furthermore, the response of the b
vessel must be modeled though an equation equivalent to Eq~4!,
but with modifications to take into account the appropriate pr
erties of the blood vessel.

In any application, appropriate boundary conditions are sele
from these choices. For example, as a completely collapsed
is pushed out of the catheter, the boundary condition at one en
free and at the other end is fixed~the radius is fixed at the value o
the inside radius of the catheter and the slope is set to zero as
ing that the stiffness of the catheter is much larger than that of
stent!. If the stent is supported between two rigid cylindric
blocks, as in the laboratory experiment described below, both e
of the stent experience fixed boundary conditions.

It should be noted that the above procedure for determinatio
the response under internal and external pressure is identica
c
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this braided wire stent. We illustrate the procedure through t
examples in the Section 4; in the first example, the shape of a s
exiting a catheter, and hence under nonuniform external press
is determined. The second example illustrates the applicatio
internal pressure on a stent fixed rigidly at both ends. It is imp
tant to observe that under external pressure there is no bucklin
there would be in a thin-walled pipe. This is because the exte
pressure is translated into a compressive force (Pa in Fig. 8 of
Part I! of small magnitude along the axis of the wires. There a
global bending and buckling modes for the entire stent, but th
are beyond the scope of the present work.

3 Numerical Solution of the Differential Equation
The differential equation governing the bending of the st

under axisymmetric loading~Eq. ~5!! is nonlinear and can only be
solved numerically. We begin with the explicit Adams-Bashfor
method,@6#, to obtain the solution. The procedure is describ
here briefly since the boundary conditions have to be hand
carefully. The whole length of the stent is partitioned intoN equal
segments of lengthh, with the N11 nodes labeled by
0,1,2 . . .k21, k, k11 . . .N. Thus the nodal positions arexk
5kh; nodal values of any quantity at thekth node is denoted with
a subscript—for example,Fk5F@r (xk),p(xk)#. Applying the
two-step explicit Adams-Bashforth method successively, we
tain

r k-5r 0-1Ck with Ck5H F0h k51

h(
j 50

k21

F j1
1

2
~Fk212F0!h k52¯N

(9a)

r k95r 091khr091Dk , with

Dk55
F0h2

2
k51

h(
j 51

k21

Cj1
1

2
Ck21h k52¯N

(9b)

r k85r 081khr091Gkr 0-h21Hk , with

Gk5H 1

2
k51

k221

2
k52¯N

and

Hk55
F0h3

6
k51

h(
j 51

k21

dj1
1

2
Dk21h k52¯N

(9c)
r k55 r 01hr081
1

2
h2r 091

1

6
h3r 0-1

1

24
F0h4 k51

r 01khr081
k221

2
h2r 091S (

j 51

k21

H j1
1

2
Hk21D h3r 0-1S (

j 51

k21

Gj1
1

2
Gk21D h k52¯N.

(9d)
ed in

Equation ~9d! is an explicit representation for the radiusr k in
termsr k21 for all k from 1 to N. Note that it involvesr and the
first three derivatives ofr at k50. However, as discussed in Se
 -

tion 2, boundary conditions—eitherr and r 8 or r 9 and r-—are
prescribed at each end. Suppose both ends of the stent are fix
the radial direction. Then
Transactions of the ASME
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Fig. 4 Experimental scheme for the measurement of the bending of the stent under a
fixed-fixed end condition
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r 05R, r 0850 r N5R rN8 50 (10)

whereR is a prescribed radius. Since two of the boundary con
tions are given atk5N, these two equations can be used in~~9c!
and ~9d!! to eliminate two of the unknowns atk50. This, how-
ever, destroys the explicit nature of Eq.~9d! by introducing nodal
values at all nodes on the right hand side; therefore the solu
cannot march fromk50 to k5N, but must be performed in an
iterative manner. Assume the initial radius everywhere of the s
under internal pressurepa is R; thus,r k

05R where the subscriptk
indicates the node number, and the superscript indicates the
tion number. AllFk are then calculated according to Eq.~2!, fol-
lowed by an estimation ofCk , Dk , Gk , andHk in Eqs.~9!. From
the boundary conditions in Eq.~10!, we have

r N5r 01Nhr081
N221

2
h2r 091S (

j 51

N21

H j1
1

2
HN21D h3r 0-

1S (
j 51

N21

Gj1
1

2
GN21D h

(11)

r N8 5r 081Nhr091GNh2r 0-1HN .

These are two linear equations for estimatingr 09 and r 0- ; after
determining these and introducing in Eq.~9d! the updater k

1 is
obtained. This process is repeated untilur k

M2r k
M21u,« for every

nodek from 0 toN. Thenr k
M are taken as the final solution of th

problem; «;1025 was used in our simulations. In all the ex
amples described in Section 4, the numerical procedure conve
within a few seconds on a Pentium III class computer. This
perhaps not the most elegant solution procedure, but is adeq
A shooting method can also be used to solve this problem; P
et al. @7# suggest that for two-point boundary value problems
the type described here, the shooting method is preferable. A
natively, a MATLAB script can also be generated to accompl
the solution.

4 Experimental Confirmation
In order to verify the beam-on-elastic foundation model of t

stent as well as the numerical evaluation, an experiment was
formed with a woven metallic stent shown in Fig. 1. The expe
mental arrangement is shown in Fig. 4. In this experiment, t
rigid cylindrical blocks were used to constrain the radial exp
d Mechanics
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ent
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sion of the stent at the two ends. In each of the blocks, a hole w
a given radius ofR, slightly smaller than the free radius of th
stent, was drilled. One block was held fixed with a clamp and
other was hung on a string so as to be at the same level; the s
also allowed the block to move freely in the axial direction. T
ends of the stent were inserted into the holes in the blocks,
two metallic tubes with proper outer diameter were inserted i
the holes with their external surface touching the stent, stric
enforcing the fixed end support condition. Finally, a polyethyle
bag was inserted into the stent, which when pumped with
provided internal pressure to the stent. A picture was taken w
the pressure reached 153 mm of Hg to evaluate the defor
shape; a Nikon CoolPix 950 digital camera at a resolution
160031200 pixels was used.

The image of the stent was imported into Adobe Photosh
software for quantitative measurements. On the lateral surfac
the stent, the radius was measured at 23 selected points bot
fore and after the pressure was applied. The measured final ra
normalized by the initial radius (r /r 0) is plotted as a function of
the position normalized by the length of the stent, (x/L) in Fig. 5.
The numerical solution of Eq.~5! for this stent is also shown in
the figure; the end conditions in Eq.~6! were used at both ends o
the stent. The parameters for the stent are as follows:r 0
510.6 mm, R59.9 mm, a0534°, a585 mm, E5200 GPa,G
577 GPa, andn536. From the comparison shown in Fig. 5, w
see that the beam-on-elastic foundation model has captured
complete response of the stent quite well. The measured m
mum radius and the calculated maximum radius differ by ab
2%, which is acceptable considering that we have used a hom
enized model for the bending stiffness of the wire mesh. When
stent is constrained at the ends from expanding radially, we
serve that the maximum expansion in the radius is on the orde
15%; in contrast, for the free stent, from Eq.~1! we found that at
the same pressure~153 mm of Hg!, the maximum expansion o
the radius is about 22%~we note that this depends critically on th
initial radius of the stent!. A somewhat counterintuitive aspect o
the deformation of the stent under this condition might be
appearance of maximum radial expansion away from the midp
if intuition is developed based on membrane deformation. T
fundamental difference in the nature of the deflection is due to
incorporation of bending in the current model. This feature of
solution is rather well known for cylindrical pressure vessels w
stiff end caps,@8#. We note that even if the length of the stent
long in comparison to the radius, the middle region will expe
SEPTEMBER 2004, Vol. 71 Õ 709



710 Õ Vol. 71,
Fig. 5 Variation of the radius of the stent with position along the stent. The experimental
measurements were obtained at a pressure of 153 mm of Hg; comparison to beam on elastic
foundation model is also shown as ‘‘numerical solution.’’
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ence a uniform expansion, but the maximum deflection will s
occur close to the fixed supports. Another important point to n
is that such variations in the stent diameter will influence
blood flow, and in particular the wall shear stress distribution; t
is considered to play a key role in the biochemical respons
formation of an endothelial layer, thrombus, etc.—and hence
coupled solid-fluid interaction problem should be of significa
interest.

As a second example, consider the release of a stent fro
catheter. A photograph of a stent partially pushed out from
catheter is shown in Fig. 6. The end of the stent outside the c
eter experiences a free boundary condition while the end in
the catheter experiences a fixed boundary condition, with the
dius equal to the internal radius of the catheter. In performin
numerical simulation with these boundary conditions, we be
with an initial guess for the shape that varied parabolically fr
the radius of the catheter to the free radius of the stent; the it
tive procedure is then turned on and a converged shape o
stent as it emerges from the catheter is predicted. It must be n
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that we have not introduced any axial deformation into the be
model, but the stent experiences an unrestrained axial contra
as it comes out of the catheter. The axial contraction is incor
rated in the model by simply mapping the nodal pointsxk to the
deformed positionXk given by the current radiusr k , and the
inextensibility condition of the stent wire~Eq. ~1! of Part I!. Thus,

Xk5Xk212
2r k~r k2r k21!

A~r 0 /cosa0!22r k
2

k51 . . .N (12)

and X05x0 . A comparison of the shape of the stent exiting t
catheter as predicted by the model with the shape measured
Fig. 6 is shown in Fig. 7. Clearly, the beam-on-elastic foundat
model provides a good representation of the deformability of
stent.
Fig. 6 Photograph showing the variation of the radius of the stent as it exits the catheter
Transactions of the ASME



n
i

r

a

e

d
a

y

e a
y as

ons
ince

the
an
ust

the

on

ile
the

on-
ed.
free

nt
flu-

ning
The
the

n of
in a

ure-
In
n a
sure
orm
for
ior,
and
onse
ery
to

s are
tent
been
iate

llic

T.,
-
ar-

of

1,
le-

02,
.

es of

, B.,
ter
5 The Design Problem
The two examples shown in Section 4 have demonstra

clearly that the mechanical response of the stent has been cap
by our two mathematical models—the first model based on
deformation of a slender rod provides the pressure-diameter r
tionship of the stent and the second model based on the beam
elastic foundation analysis models the bending of the stent un
axially varying, but axisymmetric loading. With these two mode
we believe that we can now look into the coupled response of
stent and the artery in most applications of these metallic ste
and evaluate design issues. Of course, before proceeding, a
propriate model describing the behavior of the artery into wh
the stent is to be inserted must be obtained. Several avenue
open to accomplish this; a common approach in the physiolog
literature is based on characterizing the pressure-diameter
tionship through direct measurements,@9,10#. This is commonly
used in coupled modeling of blood flow in distensible arterie
@11,12#. Constitutive equations based on the theory of finite def
mations have also been presented in the literature,@13,14#; the
strain energy density function is characterized in terms of
principal stretches, with model calibration provided from uniaxi
biaxial and tube-inflation experiments. While the framewo
based on finite deformation theory appears to be complete, de
tive experimental characterization of arterial properties is not
completely satisfactory~see Ref.@14# for a recent discussion!.
Nevertheless, from this analysis, one can obtain the nonlin
pressure-diameter relationship~see Eq.~7.50! in @14#!:

pA5 f A~r i ,r A! (13)

wherer i and r A are the inner and outer radii of the artery. No
that this assumes axially homogeneous deformations. While g
eral formulation of the axisymmetric problem is easily writte
down, there are very few attempts at solving these equatio
since much of the focus has been on membrane problems. F
element formulations of the problem are increasingly more acc
sible and may have to be relied upon for this problem. For
ample, Raghavan and Vorp@15# have recently evaluated the wa
stresses in an abdominal aortic aneurysm with a finite deforma
formulation and a generalized neo-Hookean constitutive mo
To our knowledge, however, the coupled problem of a stent
an artery has not been fully examined. Rogers et al.@16# have
performed finite element analysis to evaluate the developmen
stresses in the artery during placement of a balloon-expand
stent; however, they used a linearly elastic model for the arter
would appear that treating the artery as a nonlinear membr

Fig. 7 Comparison of the measured variation of the radius of
the stent with position along the stent as it exits the catheter
with the predictions of the beam on elastic foundation model
Journal of Applied Mechanics
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with an appropriate pressure-diameter relationship can provid
quick estimate of the magnitude of the stresses in the arter
well as the deformation of the stent itself.

Regardless of how the artery is modeled, interface conditi
must be enforced at contact between the stent and the artery. S
the fully expanded stent is always larger in diameter than
artery, the net effect of the stent on the artery will always be
internal pressure; thus, the radius and slope of the stent m
match that of the artery at every region of contact between
stent and the artery

r stent5r vessel,
dr

dxU
stent

5
dr

dxU
vessel

. (14)

Equation~13! must be solved simultaneously with the equati
for the stent Eq.~5! and with interface conditions in Eq.~14! in
order to determine the radius as a function of axial position. Wh
this is a formal statement of the coupled problem, estimates of
arterial properties and simultaneous imposition of matching c
ditions over the overlapping regions still remain to be elucidat
Clearly a number of parameters are open for selection: the
diameter of the stent, the stiffness of the stent~the general con-
struction of the stent!, the lengths of the overlap between the ste
and the artery in an aneurysm, etc; all of these parameters in
ence the radial force generated on the artery, the arterial ope
presented by the stent, the wall stresses on the artery, etc.
coupled problem posed here can then be used to optimize
design of the stent to achieve particular objectives. The solutio
the coupled problem of the stent and artery will be addressed
future contribution.

6 Conclusion
In Part I of this series, we developed an equivalent press

diameter relationship for a helically wound wire metallic stent.
this paper, Part II, we took advantage of an analogy betwee
beam on elastic foundation and a thin-walled tube under pres
to determine the shape of the stent under spatially non-unif
loading. While the analogy has traditionally been used only
small deflections, within the linear range of material behav
here we have extended it to account for large deformations
nonlinear pressure-diameter relationship that governs the resp
of the metallic stent. Predicted shapes of the stent for two v
different sets of boundary conditions were compared favorably
experimental measurements. We believe that these two model
now well suited for evaluating the coupled response of the s
and the aorta; a formal statement of the coupled problem has
posed, pointing the need for the generation of an appropr
pressure-diameter relationship for the artery.
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Characterization of Plastic
Deformation Induced by
Microscale Laser Shock Peening
Electron backscatter diffraction (EBSD) is used to investigate crystal lattice rota
caused by plastic deformation during high-strain rate laser shock peening in single
tal aluminum and copper sample on~11̄0! and (001) surfaces. New experimental me
odologies are employed which enable measurement of the in-plane lattice rotation
approximate plane-strain conditions. Crystal lattice rotation on and below the micros
laser shock peened sample surface was measured and compared with the simulation
obtained from FEM analysis, which account for single crystal plasticity. The lattice r
tion measurements directly complement measurements of residual strain/stress with
micro-diffraction using synchrotron light source and it also gives an indication of
extent of the plastic deformation induced by the microscale laser shock peening.
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1 Introduction
Shot peening is a process involving multiple and repea

impacts by bombarding a surface with relatively hard partic
with sufficient velocities to indent the surface,@1#. Shot peening
is widely used to improve the fatigue behavior of mechani
components by introducing compressive stress on the pe
surface.

Laser shock peening~LSP! has been studied since 1960s. A
shown in Fig. 1, it is a surface treatment wherein, laser-indu
shocks introduce compressive residual stresses relatively
within the material resulting in an increased resistance of
material to various forms of failure,@2#. In particular, LSP can
induce compressive residual stresses in the target surface
improve its fatigue life, which is important in applications such
turbine blades of aircraft engine. The potential benefits of la
peening over shot peening include a greater residual compre
stress depth and little change to either surface finish or shape.
the process parameters such as laser intensity and laser
duration are much easier to control than shot peening. Fin
it is possible to apply LSP to only selected regions of a com
nent, because of the ability to precisely dictate the position of
laser.

Recently, laser shock processing of polycrystalline alumin
and copper using a micron length scale laser beam has been
ied, @3–5#. It has been shown that microscale laser shock peen
~mLSP! can efficiently induce favorable residual stress distrib
tions in bulk metal targets as measured by X-ray diffraction w
micron-level spatial resolution,@6#, and calculated through finite
element analysis~FEM! simulations,@7#. Thus, microscale lase
shock peening~mLSP! is a technique that can be used to manip
late the residual stress distributions in metal structures over
gions as small as a few microns and thus improve the reliability
microdevices.

The mechanics of laser shock peening presents many exc
challenges, because it is a hybrid process involving many di
plines. Classical solid continuum mechanics has been very

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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cessful in describing shock-compression process for conventi
shot peening. However, for microscale laser shock peening, h
laser power intensity (4 GW/cm2) and short shock peening time
~laser pulse duration550 ns) introduce high strain rate plastic d
formation confined to the micron length scale. Micromechani
considerations of strain gradient plasticity, rate-dependent pla
ity and its relationship to crystal structure, crystal lattice orien
tion, dislocation and cell structure formation under shock wa
loading at the micron length scale require careful study. In ad
tion, there is a solid-fluid interaction, because the specimen
submerged in water during the LSP process.

In this paper, electron backscatter diffraction~EBSD! is used to
investigate crystal lattice rotation caused by high-strain rate
croscale laser shock peening in single crystal aluminum and c
per sample on (110̄) and~001! surfaces. For the first time, crysta
lattice rotation on and below the microscale laser shock pee
sample surface was measured; these are compared with
simulations based on single crystal plasticity. The experime
results provide useful insight into the high-strain rate shock pe
ing process at the microscale. Also the experiments provide
methodologies for characterizing the microstructure formation
distribution of plastic deformation for microscale laser sho
peening.

-
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gi-
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Fig. 1 Laser shock peening setup
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2 Material Preparation and Laser Shock Peening
Conditions

Face-centered-cubic~FCC! metals such as copper and alum
num are routinely used in microdevices due to their good m
chanical and electrical properties. Fully annealed single crystal
pure aluminum and copper~grown by the seeded Bridgman tech
nique! were used for microscale laser shock peening herein. L
X-ray diffraction was used to determine the crystal orientati
within 61° and the sample was cut to shape using a wire elec
cal discharge machine~EDM!. Regular mechanical polishing with
diamond grit sizes 6 and 1mm was used to remove the heat a
fected zone of the cutting surface and electrochemical polish
was applied for all samples to eliminate any remaining deform
material prior to shock peening.

It is known that a line loading parallel to a^110& direction in an
FCC crystal induces a state of plane deformation,@8#. Thus suc-
cessive shock peens were applied to the material along a
parallel to@110# direction in an attempt to achieve a final defo
mation state that approximates a plane deformation state. In o

Fig. 2 Sample geometry and laser shock peening condition;
„a… Al „11̄0… sample and Cu „11̄0… sample, „b… Al „001… sample
714 Õ Vol. 71, SEPTEMBER 2004
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to achieve a symmetric deformation field, the shock peens w
applied to either the (110̄) surfaces of Al and Cu or~001! surface
of Al.

The samples, shown in Fig. 2, have the dimensions of 15
310 mm35 mm. The coordinate systems used throughout t
paper are indicated in Fig. 2 and defined as follows:Z-axis is
parallel to the shock line which has direction of@110#, X-axis is
parallel to@001# direction andY-axis is parallel to@11̄0# normal
to the shocked Al(11̄0) and Cu(11̄0) surfaces. For the Al~001!
sample, theX-axis is parallel to@ 1̄10# andY is parallel to@001#
normal of the shocked surface, with theZ-axis again parallel to
the shocked line in direction of@110#.

In the laser shock peening, a frequency tripled Q-switch
neodymium: yttrium-aluminum-garnet~Nd:YAG! laser ~wave-
length 355 nm! in transverse electromagnetic modes 00 (TEM00)
mode was used. The pulse duration was 50 ns, spacing betw
consecutive pulses along a shock line was 25mm, and pulse num-
bers were three on each shocked location at 1 KHz pulse re
tion rate. Laser beam diameter was 12mm and laser intensity was
approximately 4 GW/cm2. A thin layer of high vacuum grease
~about 10 microns thick! was spread evenly on the polishe
sample surface, and a 16-mm thick polycrystalline aluminum foil,
chosen for its relatively low threshold of vaporization, was tigh
pressed onto the grease. The sample was placed in a shallow
tainer filled with distilled water around 5 mm above the sampl
top surface. After shock processing, the coating layer and
vacuum grease were manually removed. The induced deforma
is due to shock pressure and not due to thermal effects since
the coating is vaporized by the laser shock. Further details
microscale LSP setup are given in@3–5#.

3 Characterization of Laser Shock Peening
Several different experimental methods were employed to c

acterize the laser shock peening regions. Atomic force microsc
~AFM! was used to measure the deformation geometry on
shocked surfaces. Crystal lattice rotation was characterized
electron backscatter diffraction~EBSD! to measure crystallo-
graphic orientation as a function of position. Moreover, X-r
microdiffraction@6# was applied to measure crystal lattice rotati
on the shocked surface, as well as to measure shock-induce
sidual stress. The result from each of these methods are discu
in detail in this section.
Fig. 3 Measurement of shocked line geometry using AFM for Al „11̄0… sample „scan area Ä100Ã100 mm…; „a… three-dimensional
geometry, „b… cross section geometry at different positions „ line spacing Ä20 mm…
Transactions of the ASME



Fig. 4 EBSD automatic indexing map on top surface and on newly exposed cross section
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3.1 Sample Deformation Measured by AFM. A typical
three-dimensional geometry of the shocked region of Al~001!
sample measured using AFM~Digital Instruments Nanoscop
Inc.! is seen in Fig. 3~a!; the scan area is 1003100mm and 512
measurements were made along each direction. The scan dire
is set to parallel toZ-direction~i.e., along the shock direction! to
decrease the uncertainty of measurement. In order to check
deformation profiles at different location along the shocked li
detailed cross-section profiles at four different positions w
spacing520mm ~red lines 1–4 in Fig. 3~a!! are shown in Fig.
3(b). As is evident, the depth of the shock line is around 1.5mm
with width of 90 mm. It is clear that the shocked line is surpri
ingly uniform deformed along@110# direction in spite of the fact
that the laser shocks were created sequentially. The lateral e
of the AFM measurements was not sufficient to show pileup
the edges of the shock line. However, additional measuremen
be discussed in Section 4.3, shows evidence of pileup.

3.2 Lattice Orientation Measurement With EBSD „Elec-
tron Backscatter Diffraction …. From the work of Kysar and
Briant @9#, it is possible to measure the extent as well as chara
of the lattice rotation below the shocked surface by using elec
backscatter diffraction~EBSD! to measure crystallographic orien
tation as a function of position. EBSD is a diffraction techniq
for obtaining crystallographic orientation with submicron spat
resolution from bulk samples or thin layers in a scanning elect
microscope~SEM!, @10#.

The crystallographic orientation of the shock peened top s
face was collected using EBSD, which provided informati
about the lattice rotation on the shocked surface. After that
order to obtain the depth distribution and magnitude of latt
rotation below the shocked surface, the specimen was secti
via wire EDM to expose a~110! plane in a region which experi
enced an approximate plane-strain deformation state due tomLSP.
Journal of Applied Mechanics
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The newly exposed center surface was polished again after w
the crystal orientation of the sectioned surface was mapped u
EBSD, as indicated schematically in Fig. 4.

EBSD data was collected using a system supplied by H
Technology,@11#, and attached to a JEOL JSM 5600LV scanni
electron microscope. All data were acquired in the automa
mode, using external beam scanning and employing a 1-mm step
size. A typical scan area is 100mm3150mm on the shocked
surface and 200mm3100mm on the cross section as in Fig. 4
The EBSD results from each individual scan comprise data c
taining the positioncoordinates and the three Euler angles w
describe the orientation of the particular interaction volume of
crystal relative to the orientation of the specimen in the SEM. T
information allows the in-plane and the out-of-plane lattice ro
tions to be calculated relative to the known undeformed crysta
graphic orientation, which serves as the reference state.

3.2.1 Image Pole Figure From Sample Top Surface.Pole
figures or inverse pole figures are commonly used to analyze
tures based on information of lattice orientation obtained fr
EBSD. The orientation of the crystal at each measurement p
tion is represented by a point on the stereographic polar net,@12#.
Figure 5 shows the inverse pole figure from the shocked sur
for specimen Al~001! in whichZ ~@110#! is aligned with the shock
line direction. The scan area covers a region650mm in
X-direction across the shocked line and 100mm along the
Z-direction with spatial resolution of 1mm. It is clear from Fig. 5
that the @110# of the crystal remains closely aligned with th
Z-axis after deformation. On the other hand, the inverse pole
ures indicate a larger distribution of rotation of@ 1̄10# and @001#
relative to theX and Y-axes, respectively. Thus, both the AFM
and the EBSD results indicate that an approximate tw
Fig. 5 Inverse pole figure of sample surface under shock peening „Z-direction is shock direction, Y-direction is the sample
surface normal …
SEPTEMBER 2004, Vol. 71 Õ 715



Fig. 6 Lattice rotation contour map on sample surface „line 1–4: four cross section with spacing Ä20 mm…; „a… and „b…: Al „11̄0…
sample; „c… and „d…: Cu „11̄0… sample; „e… and „f …: Al „001… sample
716 Õ Vol. 71, SEPTEMBER 2004 Transactions of the ASME



Fig. 7 Lattice rotation contour at the cross section „a… Al „11̄0… sample; „b… Cu„11̄0… sample
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dimensional deformation state exists. We will appeal to this
parent two-dimensional deformation state when interpreting
other experimental data presented herein.

3.2.2 Lattice Rotation Measurement Results. Lattice rotat
measured from top surface across the shocked line. The lattice
rotation contour map on the shocked Al(110̄) sample’s surface is
shown in Fig. 6~a!. Figure 6~b! shows the spatial distribution o
lattice rotation along four lines across the shocked line w
spacing520mm. The red region corresponds to counterclockw
rotation about theZ-axis which is positive and the blue regio
corresponds to clockwise rotation which is negative. It is clea
see that the lattice rotation is zero~green region! far away from
the shocked line which corresponds to the shock-free reg
Again, the lattice rotation distribution along the shocked line
quite uniform which further suggests the approximate tw
dimensional deformation state mentioned before. The lattice r
tion value is63° between635mm from the center of shocked
line and the rotation direction is anti-symmetric on both side
shocked line.

Figure 6~c–d! shows the lattice orientation change on t
shocked Cu(11̄0) sample surface. It is clear that both aluminu
and copper shows the similar lattice rotation pattern. However,
region for lattice rotation in the copper sample is around620mm
from the center of shocked line and the maximum value is ab
1.5°, both of which are smaller than that of Al(110̄) sample.

In order to investigate the effect of crystal orientation on latt
rotation, an aluminum sample shocked on the~001! surface was
also studied. Figure 6~e–f ! shows the lattice rotation contour o
the shocked surface. Compared with result of Al(110̄), the gen-
eral trend of lattice rotation such as the rotation direction a
magnitude is the same, but the shocked region is somew
narrower.

Lattice rotation measured from cross section perpendicular
shocked line. From the measurement mentioned above, we
tained the lattice rotation result on the laser shock peened sur
In order to measure the lattice rotation below the sample sur
and study the spatial distribution in the depth direction, the sam
was sectioned via wire EDM and the crystallographic orientat
of the newly exposed surface was mapped using EBSD. Then
in-plane lattice rotations beneath the laser shocked surface
measured via EBSD. Here we use the term ‘‘in-plane’’ because
experimental results indicate an approximate two-dimensional
formation state.

Figure 7~a! shows the lattice rotation in the cross section of t
Al(11̄0) sample. The lattice rotation varies between63° in the
region up to 40mm below the sample surface. In the center
Journal of Applied Mechanics
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shocked line, the lattice rotation is nearly zero~green! and rotation
direction reversed across the shocked line, which is consis
with the result from sample surface. The maximum lattice rotat
occurs near the sample surface and the value decays as d
increases. Figure 7~b! shows the lattice rotation of on the cros
section for the Cu(11̄0) sample. The rotation distribution is simi
lar in character to the Al sample, but the affected region in t
depth direction is around 15mm below the sample surface
smaller than that of Al sample. Also the total rotation angle var
between61.5°, rather than63°.

3.3 Lattice Rotation Measured by X-Ray Microdiffraction
Spatially resolved residual stress/strain can be measured on
laser shock peened surface using X-ray microdiffraction from s
chrotron radiation sources,@6#. It is also possible to determine
lattice orientation on the shocked surface as a byproduct of
X-ray strain/stress measurement.

As discussed in@6# and illustrated in Fig. 8, two rotations,u
scan andx scan were applied in the experiment by rotating t
specimen until the maximum intensity is located in the detecto
order to properly align the specimen in the X-ray apparatus. Thu
scan ensures that the mean beam vector of incident X-ray, and
any other, is at the proper angle with respect to the surface
consequently, the proper diffraction angle is recorded by the
tector arm. Thex scan ensures that the normal vector of the d
fracting plane is contained in the same geometrical plane as
incoming and diffracted X-ray beams. These two scans app

Fig. 8 Scan scheme of X-ray microdiffraction
SEPTEMBER 2004, Vol. 71 Õ 717



Fig. 9 „a… In-plane lattice rotation on shock peened surface of Al „11̄0… sample. „b… Out-of-plane lattice rotation on shock peened
surface of Al „11̄0… sample. „c… In-plane lattice rotation on shock peened surface of Cu „11̄0… sample. „d… Out-of-plane lattice
rotation on shock peened surface of Cu „11̄0… sample.
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iteratively optimize the integrated intensity of the relevant refl
tion during alignment. In essence, the sample is rotated abou
Z-axis to perform theu scan, and about itsX-axis to perform the
x scan. Therefore, the in-plane and out-plane lattice rotation
be obtained from theu andx scans as shown in Fig. 8.

Results of these measurements in Fig. 9~a! indicate that the
spatial distribution of in-plane lattice rotation for the Al(110̄)
sample is very similar to the EBSD results in Fig. 6~a! and 6~b!.
The maximum rotation angle is around63° at position nearly
630mm away from the center of shock line. While the variatio
of out-of-plane lattice rotation in Fig. 9~b! is only 60.1° which is
quite small relative to in-plane lattice rotation. So this measu
lattice rotation under shock peening is consistent with the unifo
AFM profile along shock direction and two-dimensional in-pla
lattice rotation assumption. Figures 9~c! and ~d! shows similar
results for Cu(11̄0) sample. Thus, the lattice rotation measu
ments directly complement the material residual strain/stress m
surements. Moreover, it also gives an indication of the exten
the plastic deformation induced by the microscale laser sh
peening. Lattice rotation measured by X-ray microdiffraction
apparently more uniform than that from EBSD measureme
probably because X-rays penetrate deeper~20–30mm!, @13#, than
the electron beam used in EBSD~a few microns! and thus average
the orientation over a large volume of material. The residual st
measurements that resulted from these experiments are disc
in detail in @6#.

4 Theoretical Explanation and Simulations
In this section, we present results of elementary simulation

microscale laser-shock peening. Since the surface deforma
718 Õ Vol. 71, SEPTEMBER 2004
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and lattice rotation under laser shock peening indicate that
approximate two-dimensional deformation state exists, we w
assume that the induced deformation state is strictly tw
dimensional, which may be greatly oversimplified. However,
turns out that such an approach can shed significant insight
the mechanics of deformation which will be useful when the f
three dimensional problem is addressed in future studies. Sim
tions of LSP pose many challenges because of the high trans
pressures, fluid-solid interaction and high strain rates in a sin
crystal at the micrometer length scale which raises the possib
of the necessity to account for strain gradient effects. Given

Fig. 10 Plastic deformation in single crystal plasticity
Transactions of the ASME



Fig. 11 Lattice rotation field on cross section of after laser shock peening; „a… Al „11̄0…, „b… Cu„11̄0…, „c… Al „001…
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absence of constitutive data in this regime, it is impossible
incorporate realistically these effects into the model. Hence,
will make a grossly simplified assumption of ideal plastic beha
ior under quasi-static plane-strain conditions while implement
single crystal plasticity. Rate effects, hardening, strain gradie
and three-dimensional effects are neglected.

The goal of the simulation is then to attempt to understand
overall character of the deformation and lattice rotation fields a
see how much can be predicted by such a simple simulation
doing so, we can ascertain which of the dominate features of
fields are attributable to the anisotropic plastic behavior of
single crystal. Subsequent simulations, which account for m
realistic material constitutive behavior, can then concentrate h

Fig. 12 Spatially distribution of latticed rotation on sample
surface from simulation
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to
we
v-
ng
nt,

the
nd
. In
the
he
ore
ow

the additional effects modify the baseline solution. Thus, t
oversimplified approach can shed insight into the mechanics
deformation and lay the ground work for more realistic simu
tions in future studies which will include three-dimensional, d
namic, and strain-rate effects.

4.1 Kinematical Theory of Single Crystal Mechanics
From single crystal plasticity theory,@14–16#, there are two
physically distinct mechanisms for deforming and reorienti
materials—plastic slip and elastic lattice deformation. In gene
the deformation gradient of a single crystal that undergoes pla
deformation can be written with reference to Fig. 10 as

F5F* •FP (1)

whereFP corresponds to the deformation caused by plastic sh
ing on crystallographic slip systems andF* is caused by elastic
stretching and rotation of the crystal lattice. The velocity gradi
of material is given by a standard formula:

L5v¹5Ḟ•F215D1V. (2)

TheD andV terms are the symmetric rate of stretching tensor a
the antisymmetric rate of spin tensor, respectively. They are t
decomposed into parts due to plastic slip (DP,VP) and lattice
deformation (D* ,V* ) as follows:

D5D* 1DP, V5V* 1VP. (3)

The lattice rotation measured in the experiment is theV* term
integrated throughout the deformation history. The reader in
ested in the distinction betweenV* andVP-may refer to pg. 107
of Asaro’s review paper,@16#, for a full discussion of which rota-
tion components leads to the measured lattice rotation field.
SEPTEMBER 2004, Vol. 71 Õ 719



Fig. 13 Deformation profile in depth direction from simulation and AFM; „a… FEM result, „b… AFM result
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4.2 FEM Analysis of Shock Peening With UMAT Incorpo-
rating Single Crystal Plasticity. A user-material subroutine
~UMAT ! for single crystal plasticity based on theory in@16# and
written by Huang@17# and modified by Kysar@18# is incorporated
into the finite element analysis using the general purpose fi
element program ABAQUS/Standard,@19#. In the UMAT, the
$111%^110& slip systems in FCC metal are used for both sin
crystal Al and Cu. A critical shear strengthtCRSS51 MPa on each
of the slip systems is assumed. The simulation is a two-step qu
static loading and unloading process corresponding to the sh
peening and relaxation processes. Following the work of Zh
and Yao@7#, shock pressure obeys Gaussian spatial distribut
with its 1/e2 radius equals to&R, where R is the radius of
plasma. Lettingx be the radial distance from the center of t
laser beam, the spatially nonuniform shock pressureP(x) is then
given as
720 Õ Vol. 71, SEPTEMBER 2004
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P~x!5P0 expS 2
x2

2R2D (4)

on the shocked surface.P0 is the peak value of shock pressure a
the plasma radiusR510mm here. In order to make a dimension
less analysis, all simulation results are normalized as the func
of two dimensionless parameters (P0 /tCRSS,x/R). The boundary
conditions of the plane strain model are as follows. At the t
surface, surface traction equals the applied shock pressure, a
bottom surface, the vertical displacement is specified to be z
and the outer edges are traction-free. In the simulation, ela
ideally plastic behavior is assumed so that hardening is neglec
In order to eliminate ‘‘volume-locking’’ which occurs in plasti
deformation simulation, four-node linear elements with reduc
Fig. 14 Three plane-strain slip systems and yield surface in „110… plane; „a… Al „11̄0… and Cu „11̄0… sample, „b… Al „001… sample, „c…
yield surface in „110… plane
Transactions of the ASME



Fig. 15 Shear strain on active slips under laser shock peening from simulation; „a… shear strain of active slip systems for Al „11̄0…
sample, „b… shear strain of active slip systems for Cu „11̄0… sample, „c… shear strain of active slip systems for Al „001… sample
n
sec-

e is
nd

ro-
integration and hourglass stiffness control are used. Two orie
tions and two materials are simulated, Al(110̄), Al ~001!, and
Cu(11̄0).

4.3 Finite Element Simulation Results. Lattice rotation
field for Al and Cu. In Fig. 11~a!, the calculated lattice rotation
Journal of Applied Mechanics
ta-fields below the laser shocked surface of the Al(110̄) sample are
shown. The shock pressure loading has been removed in the
ond step of simulation and the peak value of shock pressur
P0 /tCRSS57. The experimental results with the same material a
same orientation is shown in Fig. 7~a!. It can be seen that the
antisymmetric pattern of lattice rotation field and the sign of
SEPTEMBER 2004, Vol. 71 Õ 721
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tation ~1, counterclockwise,2, clockwise! is consistent with the
experiment result from EBSD~Fig. 7~a!!. The magnitude of rota-
tion is around64° in simulation which is close to the63° from
experiment result. The lattice rotation field in the simulation e
tends over a region across the shock line center with width
640mm ~0 corresponds to center! and depth of 35mm.

Figure 11~b! shows the analogous lattice rotation fields f
Cu(11̄0) sample under laser shock peening and the peak valu
shock pressure isP0 /tCRSS57 which is the same as that for A
For Cu(11̄0) sample, the lattice rotation field is similar with th
of Al except the magnitude of rotation is only 2.7°, less than t
of Al (4°). This is consistent with the experimental results fro
Fig. 7~b! and it is mainly due to the larger elastic modulus of C

Figure 11~c! shows the lattice rotation field of Al~001! sample
from simulation. On the shocked surface, the lattice rotation
rection and magnitude is almost the same with that of Al(110̄)
sample and consistent with the experiment result in Fig. 6~e–f !.
However, the predicted lattice rotation field in the depth direct
is significantly different than that of Al(110̄) in that the affected
region in depth direction is about two times deeper than tha
Al(11̄0) and the magnitude of rotation is63°, less than the64°
of Al(11̄0). The change in sign of lattice rotation which occu
around 25mm below the surface does not correspond to the tr
sition from a compressive residual stress state to a tensile res
state, which occurs at approximately 80mm below the surface.

Figure 12 shows the predicted spatial distribution of lattice
tation on the sample surface for Al(110̄), Cu(11̄0), and Al~001!
which can be compared with the experiment result from Fig. 6~b!,
~d!, and~f !. The lattice rotation distribution is quite similar to th
experimental results. When the position changes from left
shock line to the right, the lattice rotation starts from zero degr
~beyond 640mm) to maximum negative value (24° at
215mm) and after that, the magnitude of lattice rotation d
creases to zero again close to the shocked line center. For the
side of shock line center, the distribution is antisymmetric with
left side.

According to the comparison above, it can be seen that
lattice rotation fields under shock peening depend mainly u
crystal orientation. For the same orientation of FCC material s
as Al(11̄0) and Cu(11̄0), the lattice rotation fields are quite sim
lar except the magnitude of rotation is less for Cu due to the la
elastic modulus and shear strength. If the orientation is differ
even in same material such as Al~001! and Al(11̄0), the lattice
rotation fields on shock peened surface is still similar, howe
they are quite different in depth direction below the sam
surface.

Figure 13~a! and~b! compares the indentation profiles induc
by laser shock peening between FEM simulation and AFM re
for the Al(11̄0) sample. Figure 13~b! shows ‘‘composite’’ surface
profile from several AFM measurements across the shocked
As is expected from the approximately incompressible mate
behavior, significant pile up around the indentation region~see
Fig. 13~b!! is observed and agrees well with simulation resu
Surface ablation is not observed by either SEM or AFM which
probably due to the protective coating layer on the top of samp

Slip system and yield surface analysis. The plastic slip sys-
tems in a face-centered cubic crystal exhibit mirror symme
about the~110! plane, so that sustained plastic flow under pla
strain conditions in the~110! plane is possible as long as a sl
system and its mirror image are activated in equivalent amou
Thus, there are three pairs of effective slip systems that sa
these conditions as shown in Fig. 14~a! and ~b!, @9#. The yield
surface which defines graphically the criterion for plastic slip in
stress space with abscissa (s112s22)/2 and ordinates12, @8#, is
shown in Fig. 14~c!. Plastic slip occurs only when the stress sta
lies on the yield surface with stress increment directed out of
yield surface.

Figure 15~a–c! shows the predicted shear strain on each s
system, as well as the total accumulated slip summed over all
722 Õ Vol. 71, SEPTEMBER 2004
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systems for all three samples. It can be seen that the shear str
close to zero on the top surface for slip system I in (a). Since on
sample free surface,s1250, the stress state must lie on the a
scissa of the yield surface in Fig. 14~c!. Therefore, plastic defor-
mation near the surface is caused by slip systems II and III so
the shear strain for slip system I is zero near the free surface
only II and III slip systems are active. For the region around
mm below the surface, all three slip systems are active. Sh
strain simulation on each slip system is shown in Fig. 15~b! for
Cu(11̄0) sample also and the result is quite similar with that
Al(11̄0), except the magnitude of shear strain is 35% less t
that of Al. Figure 15(c) shows the same simulation for Al~001!
sample; it can be seen that the magnitude of shear strain is al
two times larger than that for Al(110̄) and the spatial distribution
is different in that the affected region is two times deeper th
Al(11̄0). The shear strain in slip system I is also much sma
than other two slip systems.

5 Conclusions
In this study, new experimental methodologies using EBSD a

X-ray microdiffraction are employed which enable measurem
of the in-plane lattice rotation component of the deformation g
dient under plane-strain conditions. The lattice rotation field un
laser shock peening is found to be antisymmetric on and be
the shock peened single crystal Al and Cu surface. For
Al(11̄0) sample, the magnitude of rotation is63° and covers a
region around635mm across the shock line center on peen
surface and reaches 40mm below the surface. For Cu(110̄)
sample, the magnitude of rotation is61.5° and the affected re
gion is620mm on surface and 15mm below the sample surface
Single crystal plasticity FEM analysis shows an interesting co
spondence between the experimental results and theoretical
dictions. Lattice rotation fields are quite similar for Al and C
with the same (11̄0) orientation and different for Al with~001!
orientation. FEM simulation shows only certain slip systems
active on shock peened surface with more active below the
face. Lattice rotation measurements made as a byproduct o
sidual strain/stress measurements by X-ray micro-diffraction
ing synchrotron light source also give an indication of the ext
of the plastic deformation induced by the microscale laser sh
peening.

The experimental methodology and results presented herein
the stage for further study of the microscale laser shock pee
process both experimental and computational. It is now poss
to systematically measure the extent and character of crystal
tice rotation fields, as well as to measure the induced resid
stresses with micron spatial resolution. Thus it is possible to ap
these techniques to determine the optimum laser-shock proce
parameters~i.e., laser intensity, time of shock, shock spacing, et!
which induce the maximum residual stress.
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A Mechanical Model for
Low-Gravity Sloshing in an
Axisymmetric Tank
A mechanical model for low-gravity sloshing in an axisymmetric tank is developed u
a newly developed slosh analysis method. In this method, spherical coordinates,
origin is at the top of the cone that is tangent to the tank at the contact line of
meniscus with the tank wall, are used to analytically determine the characteristic f
tions for an arbitrary axisymmetric tank for which it is customary to resort to numer
methods. By this means, fast and cost-efficient computation can be conducted. Para
of the mechanical model are determined such that the frequency responses of the re
force and moment to lateral excitation coincide with those of the actual sloshing sy
Influences of the Bond number and the liquid-filling level on the parameters of the
chanical model are examined.@DOI: 10.1115/1.1794700#
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1 Introduction
Low-gravity propellant sloshing has received substantial att

tion in view of its relevance to operations of artificial satellites@1#.
In low-gravity sloshing, the surface tension of the liquid plays
overwhelming role in comparison to the gravitational force. Th
have been a considerable number of studies made on low-gr
slosh dynamics. For a cylindrical tank, analytical investigatio
were presented for a rigid tank@2–5# and the hydroelastic problem
of a flexible tank bottom@6,7#. Sloshing in an arbitrary axisym
metric tank was analyzed using a marker-and-cell method@8#, a
finite difference method@9,10#, a finite element method@11#, and
a numerical approach based on the Ritz method@12#. Further-
more, experimental studies were conducted by producing l
gravity environments by means of small-scale models@2,13#,
drop-towers@14#, or parabolic flight tests@5#.

As mentioned above, the low-gravity sloshing problem for
arbitrary axisymmetric tank was generally solved by numeri
methods. However, an ingenious application of curvilinear co
dinates for which the Laplace equation is separable leads
computationally efficient semi-analytical method that allows us
analytically determine the characteristic functions of the liqu
motion. Based on this idea, the author developed a new metho
previous papers@15,16#. This method uses spherical coordinate
whose origin is at the top of the cone that is tangent to the tan
the contact line of the meniscus with the tank wall, thereby
pressing the characteristic functions in terms of the Gaussian
pergeometric function irrespective of the generatrix shape of
tank.

In the previous papers, the response of low-gravity slosh
was analyzed for the case where an arbitrary axisymmetric tan
exposed to lateral@15# and axial@16# excitations. It was confirmed
that the present theoretical predictions for the eigenfrequency
in good agreement with the previous theoretical and experime
results@14#. Furthermore, the analytical method was extended
case in which the shape of the static liquid domain is not axisy
metric as with the sloshing problem for teardrop tanks@17#. The
purpose of the present paper is to develop an equivalent mec

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 18, 20
final revision, April 3, 2004. Associate Editor: W. S. Saric. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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cal model for low-gravity sloshing in an arbitrary axisymmetr
tank subject to lateral excitation. Representation of the slosh
namics in terms of this model is useful for assessing the dyna
response of artificial satellite because the parameters of
equivalent mechanical model are determined in such a way a
satisfy a dynamic similarity condition that requires the result
force and moment of the mechanical model be the same as t
of the actual sloshing system.

2 Method of Solution

2.1 Computational Model. The sloshing system to be con
sidered is shown in Fig. 1. The tank is subjected to the late
accelerationf̈ (t) in the x direction. The meanings of the symbo
are given in the Nomenclature. Note that the static liquid surf
M ~meniscus! is curved strongly due to the surface tension effe
The meniscusM reduces to a plane surface under normal grav
The analysis is performed under the following assumptions: 1! the
liquid motion is inviscid, incompressible, and irrotational; 2! the
tank is rigid; and 3! the oscillatory displacement of the liqui
surfacez from its equilibrium positionM is small enough to be
represented within the framework of the linear theory.

2.2 Spherical Coordinates. As shown in Fig. 1, we intro-
duce spherical coordinatesR, u, andw whose originO is at the top
of the cone that is tangent to the tank wall at the contact line of
meniscus. The originO is above the tank forzC.b ~Case 1! and
below otherwise~Case 2!. The liquid surface displacementz is
considered in theR direction. In terms of the spherical coord
nates, the undisturbed and disturbed liquid surfaces and the
wall can be expressed as

M : R5RM~u! (1)

F: R5RF~u,w,t !5RM~u!1z~u,w,t ! (2)

W: R5RW~u! (3)

2.3 Variational Principle. The slosh analysis is performe
based on a variational principle established as follows. In the
sence of surface tension and gas pressure, the liquid pressupl
gives the Lagrangian per unit volume@18#. For the low-g sloshing
problem, we must take into account the potential energy due to
gas pressurepg and the surface energy associated with the liqu
gas, liquid-solid, and gas-solid interfaces. Thus we obtain the
lowing variational principle:

1;
per
lied
sity
pted
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dE
t1

t2F E E E
V
~pl2pg!dV2E E

F
sdF2E E

W1

s1dW1

2E E
W2

s2dW2Gdt50 (4)

The liquid pressurepl can be expressed in terms of the veloc
potentialf, describing the liquid motion relative to the movin
tank

pl5pC2r f$]f/]t1g«@RM~ ū !cosū2R cosu#

1R sinu cosw f̈ ~ t !1
1
2 ~¹f!21Ġ~ t !% (5)

whereĠ(t) is an arbitrary time function.
An important work prior to the slosh analysis is to determi

the meniscus shapeRM(u) @Eq. ~1!#. This static analysis can b
conducted by reducing Eq.~4! to the principle of virtual work
from which governing equations that are equivalent to the You
Laplace equation and the contact angle condition can be der
Because the detailed procedure is explained in Ref.@16#, it is not
presented here andRM(u) is considered to be a known function i
this paper.

Substituting Eq.~5! into Eq. ~4! and considering the variation
with respect tof, z, andG leads to@15,16#

E
t1

t2H r fE E E
V
¹2fdfdV2r fE E

W
¹f•NWdfdW

2r fE E
F
F]z

]t
cos~NF ,R!2¹f•NFGdfdF

1E E
F
~pg2pl2s div NF!dz cos~NF ,R!dF

1«E
C
~s cosuC8 1s12s2!dzdC

Fig. 1 Axisymmetric tank and coordinate systems
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2r fdGE E
F

]z

]t
cos~NF ,R!dFJ dt50 (6)

which yields the field equation~7!, the boundary conditions~8!–
~11!, and the volume constant condition~12!,

¹2f50 in V (7)

¹f•NW50 on W (8)

~]z/]t !cos~NF ,R!2¹f•NF50 on F (9)

pg2pl2s div NF50 on F (10)

s cosuC8 1s12s250 along C (11)

E E
F

]z

]t
cos~NF ,R!dF50 (12)

Since Eq.~12! can be derived from the other kinematic conditio
~7!–~9!, Eqs.~7!–~11! may be regarded as basic equations.

ExpressingNF , NW , dF, dW, dC, and cosuC8 in Eq. ~6! in
terms of the spherical coordinates, making the linear approxi
tion for the boundary conditions onF using Eq.~2!, and using the
static equations that are used to determine the meniscus shap
transform Eq.~6! into

r fE
0

2pE
0

ū
«E

RM

RW

¹2fdfR2 sinudRdudw

2r fE
0

2pE
0

ū
«S ]f

]RU
R5RW

2
RWu

RW
2

]f

]u U
R5RW

D dfuR5RW
RW

2 sinududw

1r fE
0

2pE
0

ū
«S ]f

]RU
R5RM

2
RMu

RM
2

]f

]u U
R5RM

2
]z

]t D dfuR5RM
RM

2 sinududw

1E
0

2pE
0

ūH «r f

]f

]t U
R5RM

1«r fRM sinu cosw f̈ ~ t !

2r fgz cosu2sFS1M~u!z1S2M~u!
]z

]u
1S3M~u!

]2z

]u2

1S4M~u!
]2z

]w2G J dzRM
2 sinududw2E

0

2p

sFRM~RM
2

1RMu
2 !23/2S RM

]z

]u
2RMuz D G

u5 ū

dzuu5 ūRM~ ū !sin ūdw50,

(13)

whereSiM (u) ( i 5124) are functions depending on the menisc
shapeRM(u). These are listed in Eq.~33! of Ref. @16#.

2.4 Modal Equation. Because the Laplace equation~7! is
separable for the spherical coordinates,f and z can be analyti-
cally expressed as follows for the free vibration analysis:

f~R,u,w,t !5 ivf̄~R,u,w!eivt (14)

z~u,w,t !5 z̄~u,w!eivt (15)

with

f̄~R,u,w!5(
k51

` H akS R

l a
D a1k

1bkS R

l b
D a2kJ Qk~u!cosw (16)
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z̄~u,w!5(
k51

`

ckQk~u!cosw (17)

whereak , bk , andck are unknown constants;l a and l b are nor-
malization parameters;a1k and a2k are characteristic exponen
related to the separation variablel by a(a11)5l, i.e.,

a1k5
1
2 @212~114lk!

1/2#, a2k5
1
2 @211~114lk!

1/2#;
(18)

andQk(u) is the characteristic function expressed in terms of
Gaussian hypergeometric seriesF as

Qk~u!5sinuF@12a1k , a1k12, 2, ~12cosu!/2# (19)

The characteristic valuelk is determined such that

dQk /du50 at u5 ū (20)

Substituting Eqs.~14! and ~15! into Eq. ~13! and applying the
Galerkin method leads to algebraic equations forak , bk , andck .
These equations can be reduced to an eigenvalue problem
which eigenfrequencies and mode shape functions can be d
mined. In terms of the fundamental mode shape functions,
expressf andz as

f~R,u,w,t !5q̇~ t !f̄~R,u,w! (21)

z~u,w,t !5q~ t !z̄~u,w! (22)

where q(t) is the modal coordinate. Substituting Eqs.~21! and
~22! into Eq. ~13! and considering the variation with respect
q(t) leads to the modal equation of the form

q̈1v2q5b f̈ ~ t ! (23)

2.5 Equivalent Mechanical Model. To develop the equiva-
lent mechanical model, we first express the slosh force and
ment exerted to the tank wall in terms of the modal coordin
q(t). The slosh force due to the fluid pressurespl andpg can be
calculated by taking the dynamical component of the force

F̄x5E E
W1

pl~NW•ex!dW11E E
W2

pg~NW•ex!dW2 (24)

That is

F̄x,dy5E E
W1,st

pl ,dy~NW•ex!dW1,st1E E
W1,dy

pl ,st

3~NW•ex!dW1,dy1E E
W2,dy

pg~NW•ex!dW2,dy (25)

whereW1,dy and W2,dy are the variations inW1 and W2 respec-
tively, due to the dynamical liquid surface displacement. Hen
the surface elements ofW1,dy andW2,dy can be expressed as

dW1,dy52dW2,dy52«zdCst (26)

Substituting Eqs.~5! and ~26! into Eq. ~25! yields

F̄x,dy5E E
W1,st

~2r f !F]f

]t
1x f̈~ t !G~NW•ex!dW1,st

1«E
Cst

~pg2pC!z~NW•ex!dCst (27)

The slosh moment induced by the fluid pressurespl andpg can be
calculated likewise. In addition to these fluid pressures, we sho
take into account the surface tension force vector applied a
the moving contact lineC. This force vector is perpendicular t
the contact lineC and parallel to the oscillating liquid surfaceF,
having the magnitudes. Thus, the slosh force and moment e
erted on the tank wall are calculated by
726 Õ Vol. 71, SEPTEMBER 2004
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Fx5Fx11Fx21Fx3 (28)

M y5M y11M y21M y3 (29)

where

Fx15E E
W1,st

~2r f !F]f

]t
1x f̈~ t !G~NW•ex!dW1,st (30)

M y15E E
W1,st

~2r f !F]f

]t
1x f̈~ t !G@~NW•ex!z2~NW•ez!x#dW1,st

(31)

Fx25«E
Cst

~pg2pC!z~NW•ex!dCst (32)

M y25«E
Cst

~pg2pC!z@~NW•ex!z2~NW•ez!x#dCst (33)

Fx35E
C
s

NF3~NF3NW!

uNF3~NF3NW!u
•exdC (34)

M y35E
C
s

NF3~NF3NW!

uNF3~NF3NW!u
•~exz2ezx!dC (35)

Using Eqs.~21! and ~22! and expressing the normal vectors
terms of the spherical coordinates using Eqs.~2! and ~3!, we ex-
press each component of the slosh force and moment in term
the modal coordinateq(t) as

Fx15A1q̈~ t !1B1 f̈ ~ t ! (36)

M y15C1q̈~ t !1D1 f̈ ~ t ! (37)

Fx25A2q~ t ! (38)

M y25C2q~ t ! (39)

Fx35A3q~ t ! (40)

M y35C3q~ t ! (41)

For brevity, constantsA12A3 , B1 , C12C3 , andD1 are not pre-
sented here. When surface tension is not present, we have

A25A35C25C350 (42)

because the components of the slosh force and momentFx2 , Fx3 ,
M y2 , andM y3 do not arise.

Substituting the solution to the modal equation~23! for the
sinusoidal excitation

f̈ ~ t !5sinv f t (43)

into Eqs.~36!–~41! and using Eqs.~28! and ~29! leads to

Fx5
A1bv f

21B1~v f
22v2!2~A21A3!b

v f
22v2 sinv f t (44)

M y5
C1bv f

21D1~v f
22v2!2~C21C3!b

v f
22v2 sinv f t (45)

On the other hand, for the mechanical model as shown in Fig
the equation of motion of the slosh mass and the resultant fo
and moment are given by

m1ü1k1u52m1 f̈ ~ t ! (46)

Fx,mech5k1u2m0 f̈ ~ t ! (47)

M y,mech5k1l 1u2m0l 0 f̈ ~ t !1m1gu (48)

The responses of the forceFx,mechand the momentM y,mech to the
sinusoidal excitation~43! are
Transactions of the ASME
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Fx,mech5
k12m0~v f

22vmech
2 !

v f
22vmech

2 sinv f t (49)

M y,mech5
k1l 12m0l 0~v f

22vmech
2 !1m1g

v f
22vmech

2 sinv f t (50)

where

vmech5~k1 /m1!1/2 (51)

The parameters of the mechanical model can be determined
the dynamic similarity condition that requires

Fx,mech5Fx (52a)

M y,mech5M y (52b)

for any frequencyv f of the excitation. First, from Eq.~52a!, the
fixed and slosh masses and the spring constant are determin

m052A1b2B1 (53)

m15A1b2
1

v2 ~A21A3!b (54)

k15m1v2 (55)

and then from Eq.~52b!, thez coordinates of the slosh and fixe
masses are determined by

l 05
C1b1D1

2m0
(56)

l 15
2m0l 0v22D1v22~C21C3!b2m1g

k1
(57)

From Eqs.~53! and~54!, the sum of the fixed and slosh mass
is

m01m152B12
1

v2 ~A21A3!b (58)

Equations~30! and~36! indicate that the parameterB1 is given by

B152r fE E
W1,st

x~NW•ex!dW1,st (59)

By using the divergence theorem, Eq.~59! can be transformed
into

B152r fE E E
V0

div~xex!dV01r fE E
S
x~NS•ex!dS

52r fV01r fE E
S
x~NS•ex!dS (60)

Fig. 2 Mechanical model
Journal of Applied Mechanics
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whereS is the planez5zC , including the static contact line~see
Fig. 1!, NS is the outer unit normal vector of the planeS, andV0
is the domain bounded by the tank wallW1,st and the planeS.
SinceNS•ex50, Eq. ~60! becomes

B152r fV0 (61)

which transforms Eq.~58! into

m01m15r fV02
1

v2 ~A21A3!b (62)

For the case Bo→`, r fV0 is equal to the liquid massr fV because
the planeS coincides with the liquid surface. Furthermore, th
second term on the right-hand side of Eq.~62! vanishes, as can be
seen from Eq.~42!. Hence, the sum of the slosh and fixed mas
is equal to the liquid mass.

On the other hand, for finite Bond numbers,r fV0 is larger than
the liquid mass and the following discussion can be made. F
when the frequencyv f of the acceleration~43! of the tank is
lower than the eigenfrequencyv of the sloshing, the slosh force
componentFx1 is out of phase with the acceleration~43! of the
tank. Hence, it can be seen from Eq.~44! that

A1b.0 (63)

Second, the dynamic liquid pressure2r f]f/]t and the outward
liquid surface displacement2«z are in phase for an arbitraryw,
andpg is larger thanpC . This fact renders the force componen
Fx1 andFx2 given by Eqs.~30! and ~32! out of phase~the phase
difference is 180°! to one another. Hence, from Eqs.~44! and~63!,
we can see that

2A2b,0 (64)

Third, the dynamical component ofFx3 is in phase with thew
derivative of the outward liquid surface displacement2«]z/]w at
w5270°, which is in phase withFx1 . Therefore, it is revealed
from Eqs.~44! and ~63! that

2A3b.0 (65)

It can be expected that the combined effect ofFx2 andFx3 satis-
fies 2(A21A3)b,0 and consequently makes the sum of t
fixed and slosh masses given by Eq.~62! close to the liquid mass
In fact, this conservation of mass is satisfied by the values of
fixed and slosh masses numerically computed based on
present theory.

3 Numerical Results
The numerical computation is carried out using dimensionl

quantities normalized by the characteristic lengthb, massr fb
3,

and frequencyvch . The Bond number defined by

Bo5
r fgb2

s
(66)

is used as a dimensionless parameter relating the magnitud
gravity to surface tension. The characteristic frequency is defi
by

vch5~g/b!1/2 for BoÞ0 (67a)

vch5~s/r fb
3!1/2 for Bo50 (67b)

Figure 3 shows the dependence of the slosh mass on the B
number and the liquid-filling level for the case of a spherical ta
and a contact angle of 5° between meniscus and tank wall. It
be seen from Fig. 3 that when the Bond number is decreased
given liquid-filling level, the slosh mass decreases. For h
liquid-filling levels, the slosh mass is small because the liq
surfaceM is narrow and results in small kinematic energy of t
liquid relative to the tank given by
SEPTEMBER 2004, Vol. 71 Õ 727
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•~¹f!2dV52

1
2E E

M
f~¹f•NM !dM

1
1
2E E

W
f~¹f•NW!dW (68)

where the integral over the tank wallW is zero in Eq.~8!. The
small values of the slosh mass for low liquid-filling levels a
evident because the total liquid mass is small. Thus, the s
mass is small for both high and low liquid-filling levels and co
sequently exhibits a maximum value at a certain intermed
liquid-filling level.

Another significant observation that can be made from Fig.
that the liquid-filling level yielding the maximum slosh mass
lower for the case of finite Bond numbers than for the case
→`, in which the surface tension effect is not taken into accou
The reason for this can be discussed as follows. The magnitud
the dynamic liquid pressure applied along the generatrixw50 of
the tank wall is large near the contact pointz5zC . Hence, the
magnitude of the forceFx1 given by Eq.~30! is greatly influenced
by the direction cosineNW•ex of the unit normal vectorNW at the
contact pointz5zC . This direction cosine is maximal atzC51,
which corresponds to 50% filling level for Bo→`. The forceFx1
for Bo→` is maximum at somewhat higher 65% filling leve
because an increase in the liquid-filling level extends the are
the tank wall subjected to the liquid pressure. When the Bo
number is decreased while keeping the same filling level 65%,
contact point goes up reducing the value ofNW•ex at the contact
point and, therefore, the magnitude of the forceFx1 decreases.
Consequently, the liquid-filling level yielding the maximum ma
nitude of Fx1 becomes lower. Also, the variations in the amp
tudes of the force componentsFx2 andFx3 with the liquid-filling
level exhibit a tendency similar to the dependence ofFx1 on the
liquid-filling level due to the following factors:

a. NW•ex that appears in Eq.~32! is maximum atzC51.
b. As can be seen from Eqs.~32! and ~34!, Fx2 and Fx3 are

influenced by the length of the contact line and the amplitude
the liquid surface displacementz at the contact point; the forme
is maximum atzC51 while the latter increases as the liqui
filling level increases@15#.

As a result, the amplitudes of the force componentsFx1 , Fx2 , and
Fx3 are maximum at nearly the same liquid-filling level. Henc
althoughFx2 is out-of-phase withFx1 and Fx3 , the total slosh
force is maximum at a liquid-filling level that is lower than th
liquid-filling level giving the maximum magnitude ofFx1 for
Bo→`.

Figure 4 shows thez coordinate of the fixed mass. It can b
seen from Fig. 4 that thez coordinatel 0 of the fixed mass is equa
to the radiusb of the tank irrespective of the Bond number and t
liquid-filling level. This is due to the fact that for a spherical tan
the following relation holds.

~NW•ex!z2~NW•ez!x5b~NW•ex! (69)

This relation results in

Fig. 3 Dimensionless slosh mass
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C15bA1 , D15bB1 (70)

as can be seen from Eqs.~30!, ~31!, ~36!, and ~37!. Substituting
Eqs.~53! and ~70! into Eq. ~56! leads tol 05b.

Figure 5 shows thez coordinatel 1 of the slosh mass. For non
zero Bond numbers, the variation ofl 1 with the liquid-filling level
can be explained by the dependence of the dimensionless e
frequencyv/(g/b)1/2 on the liquid-filling level~Fig. 6! as follows.
By using Eqs.~53!–~56!, Eq. ~57! can be transformed into

l 1

b
5

1

b

v2C12~C21C3!

v2A12~A21A3!
2

1

v2/~g/b!
(71)

For the case Bo→`, in which the surface tension effect is no
taken into account at all, the relations~42! and~70! transform Eq.
~71! into

l 1

b
512

1

v2/~g/b!
(72)

The dimensionless eigenfrequencyv/(g/b)1/2 increases with in-
creasing liquid-filling level, as can be seen from Fig. 6. Therefo
l 1 /b increases with the increase of the liquid-filling level. F
finite Bond numbers, the variations ofl 1 /b with the liquid-filling
level determined from Eqs.~71! and ~72! exhibit a similar ten-
dency because the relationC25bA2 holds @see Eqs.~32!, ~33!,
~38!, ~39!, and~69!# andC3 does not largely differ frombA3 for
small contact angles for the following reason. The vectorNF
3(NF3NW) appearing in Eqs.~34! and~35! can be expressed in
terms of the linear combination of two vectors that are exactly a
approximately proportional toNW as

Fig. 4 Dimensionless position of fixed mass

Fig. 5 Dimensionless position of slosh mass
Transactions of the ASME
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NF3~NF3NW!5~NF•NW!NF2~NF•NF!NW5NF cosuC2NW
(73)

and the magnitude of this vector assumes a constant value siuC ,
as can be readily seen from a geometrical consideration.

For the case of Bo50, on the other hand, the second term
the right-hand side of Eq.~71! vanishes. This indicates that th
variation of l 1 /b with the liquid-filling level is not strongly influ-
enced by the dependence of the dimensionless eigenfrequen
the liquid-filling level shown in Fig. 6. Therefore,l 1 /b for Bo
50 is almost constant, as can be seen from Fig. 5.

4 Conclusions
A mechanical model for low-gravity sloshing in an axisymme

ric tank has been developed in this paper. The parameters o
mechanical model were determined such that the resultant f
and moment of the mechanical model are the same as the
force and moment. In evaluating the slosh force and mom
dynamical forces due to the pressure difference across the liq
gas interface and the surface tension force applied along the m
ing contact line were taken into account in addition to the dyna
cal liquid pressure. Numerical results were presented fo
spherical tank. The numerical results show that: 1! when the Bond
number is decreased for a given liquid-filling level, the slosh m
decreases; 2! the liquid-filling level yielding the maximum slosh
mass is lower for finite Bond numbers than for infinite Bond nu
ber; 3! the height of the fixed mass is equal to the radius of
tank; and 4! for nonzero Bond numbers, the variation of the heig
of the slosh mass with the liquid-filling level can be explained
the dependence of the eigenfrequency on the liquid-filling le
whereas for zero Bond number, the height of the slosh mas
almost constant since it is not strongly influenced by the dep
dence of the eigenfrequency on the liquid-filling level.

Nomenclature

A12A3 , B1 5 constants in slosh force@Eqs.~36!, ~38!, and
~40!#

Bo 5 Bond number@Eqs.~66!#
b 5 half height of tank~characteristic length,

Fig. 1!
C 5 contact line

C12C3 , D1 5 constants in slosh moment@Eqs.~37!, ~39!,
and ~41!#

Fig. 6 Dimensionless eigenfrequency
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ex , ey , ez 5 unit vectors inx, y, andz directions
F 5 disturbed liquid surface~Fig. 1!

f̈ (t) 5 acceleration of tank inx direction
g 5 gravitational acceleration

l 0 , l 1 5 z coordinates of fixed and slosh masses, re-
spectively~Fig. 2!

M 5 meniscus~undisturbed liquid surface, Fig. 1!
m0 , m1 5 fixed and slosh masses respectively~Fig. 2!

NF 5 unit normal vector ofF pointing into liquid
domain

NM 5 unit normal vector ofM pointing into liquid
domain

NW 5 unit normal vector ofW pointing outwards
from liquid domain

pC 5 static liquid pressure at contact line
pg 5 gas pressure
pl 5 liquid pressure

q(t) 5 modal coordinate
R, u, w 5 spherical coordinates~Fig. 1!

RF(u,w,t) 5 function expressing shape of disturbed liquid
surfaceF ~Fig. 1!

RM(u) 5 function expressing shape of meniscusM
~Fig. 1!

RMu , RMuu 5 dRM /du, d2RM /du2

RW(u) 5 function expressing shape of tank wall~Fig. 1!
RWu 5 dRW /du

V 5 liquid domain~Fig. 1!
W 5 tank wall ~Fig. 1!

W1 , W2 5 liquid-solid and gas-solid interfaces, respec-
tively

b 5 coefficient in modal equation~23!
« 5 1 and21, respectively, for Cases 1 and 2

~Fig. 1!
z 5 liquid surface displacement~Fig. 1!
ū 5 maximum value ofu ~Fig. 1!

uC 5 contact angle between meniscus and tank wa
uC8 5 contact angle between disturbed liquid surfac

and tank wall
r f 5 liquid density

s, s1 , s2 5 surface energy per unit area associated with
liquid-gas, liquid-solid, and gas-solid inter-
faces, respectively

f 5 velocity potential describing the liquid motion
relative to the tank

v 5 eigenfrequency of sloshing
v f 5 excitation frequency

vmech 5 eigenfrequency of mechanical model
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Volumetric Constraint Models for
Anisotropic Elastic Solids

Carlos A. Felippa
Department of Aerospace Engineering Sciences and
Center for Aerospace Structures, University of Colorado
Boulder, CO 80309-0429 Mem. ASME

Eugenio Oñate
International Center for Numerical Methods in
Engineering~CIMNE!, Edificio C-1, c. Gran Capita´n s/n,
Universidad Polite´cnica de Catalun˜a, Campus Norte
UPC, 08034 Barcelona, Spain

We study three ‘‘incompressibility flavors’’ of linearly elastic an
isotropic solids that exhibit volumetric constraints: isochoric, h
droisochoric, and rigidtropic. An isochoric material deforms wit
out volume change under any stress system. An hydroisoch
material does so under hydrostatic stress. A rigidtropic mater
undergoes zero deformations under a certain stress patt
Whereas the three models coalesce for isotropic materials, im
tant differences appear for anisotropic behavior. We find that i
choric and hydroisochoric models under certain conditions m
be hampered by unstable physical behavior. Rigidtropic mod
can represent semistable physical materials of arbitrary anis
ropy while including isochoric and hydroisochoric behavior
special cases.@DOI: 10.1115/1.1748318#

1 Introduction
An incompressible linearly elastic isotropic solid does not d

form under hydrostatic stress. It does not change volume un
pressure. Since deviatoric and volumetric deformations uncou
no volume change occurs under any stress state. The three
metric constraints just stated coalesce, and it is sufficien
qualify the material as incompressible.

A more careful study is necessary for anisotropic materials

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August
2002, final revision, February 15, 2004. Associate Editor: K. R. Rajagopal.
Copyright © 2Journal of Applied Mechanics
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the present note we examine three volumetric constraint mode
a linearly elastic anisotropic solid. The following definitions a
used for that examination:

1. A material is calledrigidtropic if it does not deform~i.e.,
experiences zero strains! under a specific stress patter
which is a null eigenvector of the strain-stress~compliance!
matrix. The term ‘‘rigidtropic’’ is used in the sense of ‘‘ri-
gidity in a certain way’’ as defined by that eigenvector.

2. A material is calledisochoric if it does not change volume
under any applied stress system~@1#, Sec. 77!. Alternatively:
the volumetric strain is zero under any stress state.

3. A material is calledhydroisochoricif it is isochoric under
hydrostatic stress. Isochoric materials are hydroisochoric
the converse is not necessarily true.

As noted the three models coalesce for an isotropic mate
For an arbitrary anisotropic solid, however, it will be shown th
imposing a isochoric or hydroisochoric constraint may produc
compliance matrix that has at least one negative eigenvalue.
means that under some stress system the material is able to c
energy, contradicting the laws of thermodynamics. Such mo
cannot represent a physically stable material. On the other h
for rigidtropic behavior it is easier to control material stability fo
any type of anisotropy because constraints are posed directl
the spectral form.

2 Compliance Relations
We consider a linearly elastic anisotropic solid in three dime

sions referred to axes$xi%. Stressess i j and strainsei j will be
arranged as six-component column vectors constructed f
the respective tensors through the usual conventions of struc
mechanics:

s5@s11 s22 s33 s12 s23 s31#
T,

e5@e11 e22 e33 2e12 2e23 2e31#
T. (1)

The strain-stress constitutive equations in matrix notation are

e5F e11

e22

e33

2e23

2e31

2e12

G53
C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm C66

4 F
s11

s22

s33

s23

s31

s12

G
5Cs. (2)

9,
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HereCi j are compliance coefficients arranged into the symme
compliance matrixC. All diagonal entriesCii are assumed to be
nonnegative with a positive sum. The compliance matrix is ca
stable, semistable, or unstableif C is positive definite, positive
semidefinite, or indefinite, respectively. In the semistable cas
will be assumed thatC has a rank deficiency of at most one
simplify the analysis. The eigenvalues ofC are g i for i
51,2 . . . 6, withvi being the corresponding eigenvector norm
ized to length). ~This nonstandard normalization simplifies link
ing up to the hydrostatic stress vector in Sections 4ff.! Accord-
ingly the spectral decomposition is

C5
1

3 (
i 51

6

g ivivi
T , vi

Tvj53d i j , (3)

whered i j is the Kronecker delta. The eigenvalues will be arrang
so thatg15gmin is the algebraically smallest one andg65gmax
the maximum. For stable or semistable models,g1>0 and g j
.0 for j 52, . . . 6.

If g150 the material is rigidtropic according to the definitio
given in the Introduction, withv1 defining the corresponding
stress pattern. The volumetric strain isev5e111e221e33. Isoch-
oric behavior is mathematically characterized byev50 under any
s. Hydroisochoric behavior means thatev50 under sp

5p@1 1 1 0 0 0#T for any p. These constraints are mathematica
expressed in terms ofC as follows:

rigidtropic: g150, g i.0, i 52, . . . 6.

hydroisochoric: C111C221C3312C1212C1312C2350.

isochoric: C1 j1C2 j1C3 j50, j 51,2,3. (4)

Diagonal compliances are often known reliably from exte
sional and torsion tests. Off-diagonal entries are typically l
amenable to accurate measurement. Volumetric constraints
example on volume change, are checked with triaxial tests. In
case, such constraints may be satisfied only approximately. R
ence@2# discusses projection and scaling techniques for findin
‘‘reference model’’ that satisfies constraints accurately while
moving spurious instabilities due to experimental noise.

3 Examples
The following examples of compliance matrices pertain to

orthotropic material with the$xi% aligned with the principal ma-
terial axes. The diagonal entries are kept the same. The t
nonzero off-diagonal entries are adjusted to meet the definit
~4!.
Rigidtropic:

Crig53
1 23/8 23/16 0 0 0

23/8 1/4 21/48 0 0 0

23/16 21/48 1/9 0 0 0

0 0 0 2 0 0

0 0 0 0 5 0

0 0 0 0 0 3

4
5

1

1443
144 254 227 0 0 0

254 36 23 0 0 0

227 23 16 0 0 0

0 0 0 288 0 0

0 0 0 0 720 0

0 0 0 0 0 432

4 . (5)
732 Õ Vol. 71, SEPTEMBER 2004
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Eigenvalues:@5 3 2 1.181038 0.180074 0#. The compliance matrix
is semistable. The null eigenvector defining the rigid mode isv1

5A54/35@1/2 5/6 1 0 0 0#T.
Hydroisochoric:

Chyd53
1 211/27 295/432 0 0 0

211/27 1/4 223/432 0 0 0

295/432 223/432 1/9 0 0 0

0 0 0 2 0 0

0 0 0 0 5 0

0 0 0 0 0 3

4
5

1

4323
432 2176 295 0 0 0

2176 108 223 0 0 0

295 223 48 0 0 0

0 0 0 576 0 0

0 0 0 0 1440 0

0 0 0 0 0 864

4 .

(6)

Eigenvalues:@5 3 2 1.208689 0.21158020.059158#. The compli-
ance matrix is unstable. Isochoric:

Ciso53
1 241/72 231/72 0 0 0

241/72 1/4 23/72 0 0 0

231/72 23/72 1/9 0 0 0

0 0 0 2 0 0

0 0 0 0 5 0

0 0 0 0 0 3

4
5

1

1443
144 282 262 0 0 0

282 36 46 0 0 0

262 46 16 0 0 0

0 0 0 288 0 0

0 0 0 0 720 0

0 0 0 0 0 432

4 . (7)

Eigenvalues:@5 3 2 1.508781 020.147669#. The compliance ma-
trix is unstable.

4 Hydroisochoric Model
Assume that the material modeled by~2! is hydroisochoric.

Consequently

Csp53
C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symm C66

4 F
p
p
p
0
0
0

G
5F p~C111C121C13!

p~C121C221C23!

p~C131C231C33!

2e12

2e23

2e31

G5F e11

e22

e33

2e23

2e31

2e12

G ,
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with ev5e111e221e33

5p~C111C221C3312C1212C1312C23!

50. (8)

~The value of the shear strains is of no interest.! The complemen-
tary energy density produced bysp is

Up* 5
1

2
sp

TCsp5
1

2
p~e111e221e33!5

1

2
pev50. (9)

But gp5Up* /(sp
Ts)5Up* /(3p2)50 is the Rayleigh quotient ofsp

with C. According to the Courant-Fisher theorem,@2#, gp must lie
in the closed interval@gmin ,gmax#:

g1<gp50<g6. (10)

If sp is not an eigenvector ofC: CspÞ0, the leftmost equality in
~10! is not possible. Consequently

g1,0, (11)

and the model is unstable.
If Csp50 the sum of the first three columns~or rows! of C

must vanish. The hydroisochoric model then coalesces with
isochoric one, which is analyzed next.

5 Isochoric Model
The model is isochoric if the sum of the first three rows~or

columns! of C is the null six-vector. Equivalentlysp is a null
eigenvector ofC. The Rayleigh quotient test~10! does not offer
sufficient information on stability and a deeper look atC is re-
quired. Nonetheless asufficientcriterion for instability can be de-
rived by considering the upper 333 principal minorC̃. From the
last of ~4!, C̃ must have the form

C̃5FC11 C12 C13

C22 C23

symm C33

G
5F C11

1

2
~C332C112C22!

1

2
~C222C112C33!

C22
1

2
~C112C222C33!

symm C33

G .

(12)

This matrix is singular. Takinga5C11/C22 andb5C11/C33 for
convenience, an eigenvalue analysis shows thatC̃ is indefinite if

2S 1

a
1

1

b D,11S 1

a
2

1

b D 2

, (13)

and is positive semidefinite if the inequality is reversed. IfC̃ is
indefinite, so isC and the model is unstable. IfC̃ is semidefinite,
an eigenvalue analysis of the completeC is required to decide on
stability. The stability regions ofC̃ are shown in Fig. 1, where
‘‘potentially semistable’’ indicates that confirmation by a analy
of the full C is required. An exception is an orthotropic mater
referred to principal material axes, in which case no further te
are necessary ifC44, C55, andC66 are positive.

Figure 1 illustrates that a wide range of diagonal compliance
C̃ is detrimental to stability. For example ifa5b, instability is
guaranteed to happen fora.4.

6 Rigidtropic Model
If C is nonnegative withg150 and w5v1 is the only null

eigenvector the material is rigidtropic under that stress mode.
an isotropic materialw5@1 1 1 0 0 0#T5sp , the hydrostatic
Journal of Applied Mechanics
the

is
al
sts

in

For

stress mode. For an anisotropic material modew generally will
contain shear stresses. Introducing effective pressure ap
51/3wTs and effective volumetric strain asev5wTs, the volu-
metric and deviatoric energies can be uncoupled,@3#.

If the rigid stress mode issp , rigidtropic reduces to isochoric
This inclusion is pictured in Fig. 2.

7 Isotropic Material
If the solid is isotropic with elastic modulusE.0 and Pois-

son’s ration,

C

5
1

E 3
1 2n 2n 0 0 0

1 2n 0 0 0

1 0 0 0

2~11n! 0 0

2~11n! 0

symm 2~11n!

4 .

(14)

Fig. 1 Stability chart for the principal minor „12… of an iso
choric material as function of the ratios C11 ÕC22 and C11 ÕC33

Fig. 2 Schematic of inclusions between rigidtropic, isochoric
and hydroisochoric models. The crosshatched area marks a
singular C matrix.
SEPTEMBER 2004, Vol. 71 Õ 733
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Under hydrostatic stresssp , ev53(122n)p/E, which vanishes
for n51/2. It is easy to verify that ifn51/2, ev50 for anys and
the material is isochoric. Furthermoresp is the only null eigen-
vector of C. Consequentlygp5g150 and C has no negative
eigenvalues. The definitions of rigidtropic, incompressible a
isochoric behavior coalesce for this model.

8 Conclusions
It remains to pin down the label ‘‘incompressible.’’ In con

tinuum mechanics this term means that the stress is determine
the deformation history only up to a hydrostatic pressure or ‘‘ex
stress’’p ~@4#, Sec. 30!. This is equivalent to what we call here th
hydroisochoric model, which as previously shown for semista
materials merges with the isochoric model. Restricting attentio
the semistable case, the model nesting is:

Isotropic semistable5Hydroisochoric semistable

[IncompressiblePRigidtropic. (15)

These and related model inclusions are sketched in Fig. 2. Fro
mathematical standpoint, the splitting techniques used for
rigidtropic model by Felippa and On˜ate @3# apply equally to iso-
choric behavior, and no special distinction for the incompress
case needs to be made.

We do not consider here the comparatively rare case of a c
pliance matrix possessing two or more zero eigenvalues. For t
the analysis is complicated by the appearance of a multidim
sional null space. Such ‘‘multi-rigidtropic’’ models require sep
rate treatment.
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Nomenclature

C 5 compliance matrix
C 5 upper 333 minor of compliance matrix

Ci j 5 entries of compliance matrix
E 5 elastic modulus of isotropic model
e 5 strain 6-vector arranged as per~1!

ei j 5 strain tensor components
ev 5 volumetric strain
p 5 amplitude of hydrostatic stress state
vi 5 eigenvectors of compliance matrix
w 5 null eigenvector of singular compliance matrix
a 5 compliance ratioC11/C22
b 5 compliance ratioC11/C33
g i 5 eigenvalues of compliance matrix
n 5 Poisson’s ratio of isotropic model
s 5 stress 6-vector, arranged as per~1!

sp 5 hydrostatic stress 6-vector
s i j 5 stress tensor components
U 5 strain energy density

U* 5 stress~complementary! energy density
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A Basic Power Decomposition in
Lagrangian Mechanics
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1 Introduction
In Lagrangian mechanics, under certain conditions, the Ja

energy integral exists and plays a fundamental role~see@1–6#!.
More generally, when Jacobi’s integral does not exist, it is s
possible to gain useful engineering information from a consid
ation of power versus rate-of-energy relations. In the present n
we are concerned with a system ofN (>1) particles subject to
general holonomic and non-holonomic constraints. The unc
strained physical system may be represented by an abstract
ticle P in a 3N-dimensional Euclidean configuration space. In t
presence of holonomic constraints, the motion ofP is confined to
a submanifoldM whose dimension is equal to the number
generalized coordinates needed to describe the system. In ge
M moves through configuration space and may also chang
shape with time.1 Now, the velocityv of P can always be ex-
pressed as the vector sum of two componentsv8 andv9 such that
v9 is the velocity of the pointA ~say! of M thatP occupies at time
t, andv8 is the velocity ofP relative toA. It will be shown that
when this decomposition is employed, the corresponding port
P8 and P9 of the total powerP of the forces acting on the par
ticles, can be expressed as time derivatives~partial and total! of
portions of the kinetic energy.2 These expressions furnish a co
venient means for calculating the power expended in moving
manifold M, and in movingP relative toM. This is particularly
useful in the former case, because the constraint forces that m
M would have been eliminated from the Lagrangian analysis.

The discussion is presented both in terms of physical quant
and abstract variables in configuration space. A few remarks
garding the desirability of the latter geometrical representation
in order:

Several different approaches to Lagrange’s equations can
found in the literature. These vary both in generality and in
degree of physical insight that they provide. Some are base
d’Alembert’s principle and the principle of virtual work, while
some others use variational principles. With the advent of R
mannian geometry and tensor calculus in the 19th century, a
abstract approach to dynamical theory arose, represented
cogently, perhaps, by Hertz@7#. In 1927, Synge@8# argued pas-
sionately for an approach to dynamics that is phrased in geom
cal terms using the analytical apparatus of the tensor calculus~see
also Section 186 of@1#, as well as Synge’s address,@9#, to the
American Mathematical Society in 1935!. For constrained particle

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar
25, 2003, final revision, February 6, 2004. Associate Editor: I. Mezic.

1A simple example is provided by a heavy bead sliding on a spinning wire wh
motion is prescribed as a function of time~a special case of this is analyzed i
Example 3 at the end of the note!. In practice, almost all mechanical engineerin
devices involve parts that move on other moving parts.

2See Eqs.~15a,b! and ~6!.
Copyright © 2Journal of Applied Mechanics
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systems, a derivation of Lagrange’s equations based on suc
approach was first published by Synge and Schild@10#, who
proved that Lagrange’s equations are just the covariant com
nents, in the configuration manifoldM of the constrained system
of Newton’s second law. In this kind of derivation, no appeal
the concepts of virtual displacements, virtual velocities, nor v
tual work is necessary~although the majority of authors of mono
graphs on tensor calculus still prefer to employ them~see, e.g.,
@11,12#!!. Moreover, the exact physical content of Lagrang
equations is revealed clearly. Recently, Casey@13# showed that, in
Synge and Schild’s type of derivation, it is actually possible
bypass the cumbersome manipulations of Christoffel symb
while maintaining the logical thrust of the original argument.3 An
additional major advantage of the geometrical approach to dyn
ics is that it places the subject in the rich mathematical envir
ment of the global theory of differential equations on manifolds
theory which is undoubtedly one of the most beautiful and po
erful in all of mathematics.4

2 Representation of Particle Systems in Configuration
Space

Consider a system consisting of particlesPi ( i 51, . . . ,N)
moving relative to a Newtonian frame of reference under the
fluence of forces and possibly subject to time-dependent h
nomic and non-holonomic constraints. Letr i , with rectangular
Cartesian components (xi

1,xi
2,xi

3), be the position vector of the
particle Pi relative to the origino of the Newtonian frame, let
Mi (.0) be the mass ofPi , and let the total mass of the syste
bem. Let the resultant force vector acting onPi beFi , and denote
its rectangular components by (Fi

1,Fi
2,Fi

3). We represent the
physical system by an abstract particleP of massm moving in a
fixed 3N-dimensional Euclidean vector space,configuration
space, E3N, as follows: The coordinatesui ( i 51,2, . . . ,3N) of P,
taken along mutually orthogonal axes through an arbitrarily c
sen originO, are identified as (u3i 22,u3i 21,u3i)5(xi

1,xi
2,xi

3), (i
51,2, . . . ,N). Correspondingly, the position ofP may be repre-
sented by its position vectorr . A metric onE3N may be defined by

md2~P,O!5(
i 51

N

Mir i "r i5(
i 51

3N

mi~ui !2, (1)

where m3i 225m3i 215m3i5Mi ( i 51,2, . . . ,N). Thus, the dis-
tanced of P from O is defined to be the radius of gyration of th
particle system about the origino in physical space.5 The corre-
sponding inner product is

@r ,r* #5
1

m (
i 51

N

Mir i "r i* , (2)

where the asterisk denotes a second set of position vectors fo
system. The position vector ofP can be expressed asr
5( i 51

3N uiei , where ei (151,2, . . . ,3N) are pairwise orthogona
basis vectors, whose magnitudes are determined by~2!.6 A recip-
rocal basisei ( i 51,2, . . . ,3N) may be defined by the condition
@ei ,ej #5d j

i , (i 51,2, . . . ,3N; j 51,2, . . . ,3N), where d j
i is the

Kronecker delta, having the value unity ifi 5 j , and zero other-
wise. We introduce an abstract force vectorF in E3N by F

h

ose

g

3The corresponding derivation of Lagrange’s equations for a single rigid body
a system of rigid bodies may be found in@14,15#. A similar derivation of Lagrange’s
equations for a pseudo-rigid body is given in@16#.

4The qualitative study of ordinary differential equations was initiated by He
Poincare´ ~1854–1912! well over a century ago, and has truly blossomed during
twentieth century. See the monographs by Arnold@17#, Abraham and Marsden@18#,
Guckenheimer and Holmes@19#, Marsden@20#, and Marsden and Ratiu@21# for an
account of modern developments. See also Hirsch@22# and Smale@23#.

5This inertia metric, or more precisely, themoment of inertia metric, was utilized
by Hertz @7# ~see@13,14# for further references!.

6Thus, the magnitude of each of the first three of these vectors isAm1 /m.
004 by ASME SEPTEMBER 2004, Vol. 71 Õ 735
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i , with (F3i 22 ,F3i 21 ,F3i)5(Fi
1,Fi

2,Fi
3),(i

51, . . . ,N). Newton’s second law, written for each particlePi , is
equivalent to the vector equation

F5mr̈ (3)

in E3N ~see@13#!. Thus, the dynamics of the unconstrained phy
cal system is now represented by the dynamics of a single abs
particleP of massm moving through configuration space.

In the presence ofL holonomic constraints (L,3N), which are
allowed to be time-dependent,P will be confined to a moving
manifold M, called theconfiguration space of the constraine
system, or simply the constraint manifold, of dimensionn53N
2L.7 Let qa (a51,2, . . . ,n) be convected coordinates onM;
these are our ‘‘generalized coordinates.’’ The position vector oP
can now be written as a functionr5r (qa,t). The covariant basis
vectors inM are defined by

aa5
]r

]qa ~a51,2, . . . ,n!. (4)

The inner products aab5@aa ,ab#, (a51,2, . . . ,n;
b51,2, . . . ,n) furnish a Riemannian metric onM. The velocityv
of the particleP has the decomposition

v5v81v9, (5a)

v85(
a51

n

q̇aaa , (5b)

v95
]r

]t
. (5c)

The componentv95v9(qa,t) is the velocity of the pointA of M
that P instantaneously occupies at timet; the componentv8
5v8(qa,q̇a,t) is the velocity ofP relative toA, and it lies in the
tangent space toM at A. In general, these two components are n
orthogonal to one another. The kinetic energy of the system ca
expressed as

T5
1
2m@v,v#5T21T11T0 , (6)

where8

T25
1

2
m@v8,v8#5

1

2
m(

a51

n

(
b51

n

aabq̇aq̇b, (7a)

T15m@v8,v9#5m(
a51

n

baq̇a, ba5@v9,aa#, ~a51,2, . . . ,n!

(7b)

T05
1
2 m@v9,v9#. (7c)

The Lagrange’s equations for the system can be written in
general form

d

dt S ]T

]q̇gD 2
]T

]qg
5Qg , ~g51,2, . . . ,n! (8)

where

Qg5@F,ag# ~g51,2, . . . ,n! (9)

are the covariant components ofF in the manifoldM.9 These
‘‘generalized forces’’ need not be derivable from a potential, a

7Recall that non-holonomic constraints will not alter the dimension of the c
straint manifold.

8Note that the lengthds of the line element inM is related toT2 by ds2

5(2T2 /m)/mdt2. The kinetic energyT, depending on both generalized coordinat
and generalized velocities, is a function defined on the 2n-dimensional tangent
bundle ofM at time t.

9The left-hand side of~8! is equal to then covariant components of mass time
acceleration, i.e.,@mv̇,ag# ~see@13# for details!.
736 Õ Vol. 71, SEPTEMBER 2004
si-
tract

d

f

ot
be

the

nd

no assumption whatsoever is being made regarding the natu
the constraint forces~which may, for example, be dissipative!.
Recalling the relationship that the abstract vectorsr , F bear to
physical position and force vectors, and making use of~4!, we
obtain

Qg5(
i 51

N

Fi•
]r i

]qg
~g51,2, . . . ,n!. (10)

Further, we note that the velocity ofPi ( i 51,2, . . . ,N) can be
expressed as

vi5 ṙ i5vi81vi9 , ~ i 51,2, . . . ,N! (11a)

with

vi85(
a51

n
]r i

]qa
q̇a, vi95

]r i

]t
~ i 51,2, . . . ,N!. (11b)

3 The Power Decomposition
Let P be the power of all of the forces acting on the system, i

P5(
i 51

N

Fi• ṙ i5@F,v#. (12)

It is obvious from~12!, ~3!, and~6! that

P5m@ v̇,v#5Ṫ. (13)

Further, it is evident from~12!, ~5!, and~11a,b! thatP can always
be decomposed as

P5P81P9, (14a)

P85@F,v8#5(
g51

n

Qgq̇g5(
i 51

N

Fi "vi8 , P95@F,v9#5(
i 51

N

Fi "vi9 .

(14b)

One can now establish the following results:10

P85
d

dt
~T22T0!1

]T

]t
, (15a)

P95
d

dt
~T112T0!2

]T

]t
. (15b)

To prove~15a!, note that by virtue of (14b)1 and ~8!,

P85(
g51

n S d

dt S ]T

]q̇gD 2
]T

]qgD q̇g

5(
g51

n S d

dt S ]T

]q̇g
q̇gD 2

]T

]q̇g
q̈g2

]T

]qg
q̇gD . (16)

But, in view of ~6! and ~7a,b,c!

]T

]q̇g
5

1

2
m(

b51

n

agbq̇b1
1

2
m(

b51

n

abgq̇b1mbg ,

~g51,2, . . . ,n!. (17)

Hence,
n-

s

s

10The formula ~15a! appears in published lecture notes~@24#, p. 89! of Paul
Painlevé~1863–1933!. His course, given at the University of Lille in 1891, and at th
Faculty of Sciences in Paris in 1895, was devoted to the integration of the equa
of mechanics. I am not aware of any earlier reference. See also Painleve´ @25#, Appell
@26#, and Brillouin@11#. In addition to his contributions to mathematics and mecha
ics, Painleve´ was active in politics. He became French minister for war in 1917, a
subsequently was minister for aviation.
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g51

n
]T

]q̇g
q̇g52T21T1 . (18)

Also, the total time derivative ofT is given by

Ṫ5
]T

]t
1(

g51

n S ]T

]qg
q̇g1

]T

]q̇g
q̈gD . (19)

From ~16! and ~19!, it is clear that

P85
d

dt S (g51

n
]T

]q̇g
q̇gD 1

]T

]t
2Ṫ. (20)

Equation~15a! follows immediately from~20!, ~18!, and ~6!.
Equation~15b! may be readily deduced from~13!, ~14a!, ~6!, and
~20!.

We mention two important consequences of~15a!:
~I! Suppose that:~a! the constraint forces do not contribute

the powerP8; and ~b! the remaining forces are derivable from
potential functionV. Let L5T2V be the Lagrangian function
Then,

d

dt
~T22T01V!1

]L

]t
50. (21)

To prove this, note that in view of assumption~b!, the covariant
components of the nonconstraint forces will be11

Qg* 52
]V

]qg
~g51,2, . . . ,n!. (22)

The contribution of the componentsQg* to the powerP8 is

(
g51

n

Qg* q̇g52(
g51

n

51
]V

]qg
q̇g5

]V

]t
2V̇. (23)

By assumption~a!, the constraint forces contribute nothing
P8. With the help of (14b)1 and ~15a!, it then follows that

]V

]t
2V̇5

d

dt
~T22T0!1

]~L1V!

]t
, (24)

from which ~21! can be concluded at once.
~II ! ~Jacobi Integral!. In addition to the conditions~a! and ~b!

assumed in~I!, suppose that the Lagrangian does not depend
plicitly on t. Then,~21! immediately yields the integral:

T22T01V5const.5E8 ~say!. (25)

4 Examples
Let us take some illustrative examples involving a single p

ticle P of massm. The configuration space now coincides with t
physical three-dimensional space having the ordinary Euclid
metric.

Example 1. Suppose thatP moves on a horizontal plane~eleva-
tor floor! that is being driven vertically upwards in a Newtonia
frame. The floor is the constraint manifold. Using a fixed rect
gular Cartesian coordinate system, we may write the velo
components in~5b,c! asv85 ẋi1 ẏj , v95ḣk, whereh5h(t) is a
prescribed function. The force acting onP is F5Fxi1Fyj1(N
2mg)k, whereN is the force supplied by the floor. The kinet
energy ofP comprises

T25
1
2m~ ẋ21 ẏ2!, T150, T05

1
2mḣ2. (26)

Lagrange’s equations yieldmẍ5Fx , mÿ5Fy . The two por-
tions of the power that appear in~14b! are P85Fxẋ1Fyẏ,
P95(N2mg)ḣ. Equations~15a,b! reduce to

11The potential function in~22! may depend explicitly ont.
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P85
dT2

dt
, P95

dT0

dt
5mḧḣ. (27)

Example 2. Suppose thatP is constrained to move on a frictionles
horizontal circle fixed at the origin of a Newtonian frame, a
having a prescribed radiusl (t). Suppose that no other forces a
applied toP. Here, the constraint manifold is a time-depende
circle centered at the origin and we may take the polar coordin
u as our generalized coordinate. Let (er ,eu) be the usual ortho-
normal basis of polar coordinates. The covariant basis vecto
a15]r /]u5 leu . The velocity components in~5b,c! are v8
5 u̇( leu), v95 l̇er . The kinetic energy ofP comprises

T25
1
2ml2u̇2, T150, T05

1
2ml̇2. (28)

The only force acting onP is that of the constraint and it point
in the radial direction. The Lagrange’s equation isd/dt(]T/]u̇)
50, which yields the angular momentum integralml2u̇5const.
The power decomposes as

P8505
d

dt
~T22T0!1

]T

]t
,

P5P952
dT0

dt
2

]T

]t
5m~ l̈ 2 l u̇2! l̇ . (29)

Example 3. Suppose thatP is constrained to move on a frictionles
rigid circle that is rotating with constant angular velocityV about
a fixed vertical axis under the influence of gravity. Let us u
spherical coordinatesr, u, w, the anglew being measured from the
positivez-axis. Takingw as our generalized coordinate, the po
tion vector of P is r5r (w,t), and the velocity components in
~5b,c! arev85ẇ( lew), v95 lV sinw eu . The kinetic and potential
energies are

T25
1
2ml2ẇ2, T150, T05

1
2ml2V2 sin2w,

V5mgl cosw. (30)

The constraint force has the formN5Nrer1Nueu . The
Lagrange’s equation yieldsẅ2(g/ l 1V2 cosw)sinw50. The La-
grangian does not depend explicitly on time. We therefore hav
Jacobi integral~25!. The portionP9 of the power is

P952
dT0

dt
5ml2V2ẇ sin 2w, (31)

i.e., the power supplied byNu .
Example 4. Suppose thatP is confined to move on a fixed plan

z50 under the action of potential forces. If fixed Cartesian co
dinates are used, obviouslyP950 andT1V5const. Instead, take
another frame of reference, also withz50, but which rotates with
constant angular velocityV about thez-axis. Let (b1 ,b2) be an
orthonormal basis fixed to the rotating frame and let the posit
vector ofP be written asr5r1b11r2b2 . The constraint manifold
M coincides with the rotating frame. Choosingr1 andr2 as gen-
eralized coordinates, we see that the covariant basis onM is
(b1 ,b2). The velocity components in~5b,c! are

v85 ṙ1b11 ṙ2b2 , v95V~2r2b11r1b2!. (32)

The kinetic energy ofP has the three portions

T25
1
2m~ ṙ1

21 ṙ2
2!, T15mV~r1ṙ22 ṙ1r2!,

T05
1
2mV2~r1

21r2
2!, (33)

andV5V(r1 ,r2 ,t). The Lagrange’s equations yield

2
]V

]r1
5m~ r̈122Vṙ22V2r1!,

2
]V

]r2
5m~ r̈212Vṙ12V2r2!. (34)

In view of the definitions~14b,c!,
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P852gradV•~ ṙ1b11 ṙ2b2!52
]V

]r1
ṙ12

]V

]r2
ṙ25

]V

]t
2V̇,

(35a)

P952gradV•V~2r2b11r1b2!5VS r2

]V

]r1
2r1

]V

]r2
D .

(35b)

Applying the relations~15a,b! to ~33!, we find that

P85
d

dt
~T22T0!5m~ ṙ1r̈11 ṙ2r̈2!2mV2~r1ṙ11r2ṙ2!,

(36a)

P95
d

dt
~T112T0!5mV~r1r̈22r2r̈1!12mV2~r1ṙ11r2ṙ2!.

(36b)

With the help of~34!, Eqs. ~35a,b! are seen to be equivalent t
~36a,b!.

Example 5. Suppose thatP is confined to move on a fixed
horizontal plane, with rectangular Cartesian coordinatesx and y,
under the action of potential forces and subject to the nonh
nomic constraint (2sinvt)ẋ1(cosvt)ẏ50, wherev5const. As-
sume that the constraint force is parallel to the vector having
components (2sinvt, cosvt). The kinetic energy is

T5T25
1
2m~ ẋ21 ẏ2!. (37)

The Lagrange’s equations are

mẍ1
]V

]x
52l sinvt, mÿ1

]V

]y
5l cosvt, (38)

where the multiplierl is plus or minus times the magnitude of th
constraint force. The powerP9 is zero and the constraint forc
makes no contribution toP8; ~II ! yields the energy integralT
1V5const.
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1 Introduction
A number of methods for the identification of the axle loads

vehicles using a bridge’s static and pseudo-dynamic respo
have been developed,@1–5#. Identification of moving loads has
been studied separately by the authors,@6–8#. However existing
methods to identify the system parameters or the moving load
not consider the influence from the environment or the sys
itself, respectively. This paper attempts to include the exte
force system in the identification of system parameters of a sim
supported beam. The dynamic response of a prestressed
under moving load is studied based on modal superposition
forward problem. An inverse problem to identify both the pr
stress force and the moving load is then formulated. It is furt
extended to include the flexural rigidity of the beam as variable
the identification. Results from the studies indicate that the id
tification of both the system parameters and the moving loads
normal modal testing technique is feasible even with noisy da

2 Equation of Motion
The bridge deck is modeled as a single-span simply suppo

unbonded prestressed uniform Euler-Bernoulli beam subjecte
a set of moving loadsPl ( l 51,2, . . . ,Np) as shown in Fig. 1.
These forces are assumed to be moving as a group at a presc
velocity v(t) along the axial direction of the beam from left t
right. The equation of motion of the beam can be written as

rA
]2y~x,t !

]t2
1c

]y~x,t !

]t
1T

]2y~x,t !

]x2
1

]2

]x2
EI0

]2y~x,t !

]x2

5(
l 51

Np

Pl~ t !d~x2xl~ t !! (1)

where r is the mass density,A the cross-sectional area,c the
damping of the beam,E the Young’s modulus of material,I 0 the
moment of inertia of the beam cross section,T the externally
applied compressive axial force~note that compression is positiv
and tension is negative!, y(x,t) the transverse displacement fun
tion of the beam,xl(t) the location of the moving loadPl(t) at the
time t, Np the number of the moving load,d(t) the Dirac delta
function andb is the width of the beam.

Expressing~1! using generalized coordinates,

q̈i~ t !12j iv̄ i q̇~ t !1v̄ i
2qi~ t !5

1

mi
f i~ t !, (2)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2003; final revision, Jan. 21, 2004. Associate Editor: O. O’Reilly.
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where v̄ i5AEI0 /rA( ip/L)42T/rA( ip/L)2, j i and mi are the
reduced modal frequency, the damping ratio and the modal m
of the ith mode; f i(t)5( l 51

Np Pl(t)Yi(xl(t)) is the modal force.
Since the modal shape functions of the prestressed beam rese
those of a beam without prestress force,@9#, and it can be written
in the normalized form asYi(x)5A2/(rAL) sin ip/Lx for a sim-
ply supported beam. Writing~2! in matrix form

@ I #$Q̈~ t !%1@C#$Q̇~ t !%1~@K#2@K8# !$Q~ t !%5$F~ t !%, (3)

the modal response of the system under load is computed in
time domain numerically by using the Newmark’s integrati
scheme,@10#.

3 Identification of the Prestress and Moving Forces
Expressing the measured displacementsỹ(xm ,t) at a pointxm

from the left support in modal coordinatesỹ(xm ,t)
5( i 51

Nm Yi(x)qi(t), (m51,2, . . . ,Nm), or in vector

$ ỹ%Nm315@Y#Nm3N$q%N31 (4)

where$ ỹ%Nm31 is the vector of displacements atNm measurement
locations. The vector of generalized coordinates can be obta
using the least-squares pseudo-inverse. A generalized orthog
polynomial,@7#, is used to model the measured displacement s
to reduce the computation error for the modal velocity and ac
eration. The velocity and acceleration are then approximated
the first and second derivatives of the orthogonal polynomial.
ter some transformations, we have

@K8#$Q~ t !%1$F~ t !%5@ I #$Q̈~ t !%1@C#$Q̇~ t !%1@K#$Q~ t !%.
(5)

Matrix @K8# contains the prestress forceT which is assumed con
stant throughout the length of the beam. The vector of general
force $F(t)% can also be found from

$F~ t !%5@B#$P~ t !%. (6)

Rewriting Eq.~5! in a simple form

$dT%n31T1@B#n3Np
$P~ t !%Np315$r %n31 (7)

and vector@r# contains all the terms on the right-hand side of~5!.
In ~7! T is the unknown prestress force of the beam and$P(t)% is
the unknown moving load vector to be identified.

The inverse problem is to solve~7! in the time domain. Since
bothT and$P(t)% are uncoupled,~7! can be further simplified into

@Bd#X5$r % (8)

where@Bd#5@$d%,@B##, X5$$P%
T %. The prestress forceT and the

moving load$P% can be calculated directly using the least-squa
method.

In order to have bounds on the ill-conditioned solution, t
damped least-squares method is adopted,@11#, and singular value
decomposition is used in the pseudo-inverse computation.
prestress force and moving loads can also be identified from
measured strains. The strain at the bottom of the beam at a p
xm from the left support can be expressed similar to~4! in terms of
the generalized coordinates as

$«̃~xm ,t !%52
h0

2
@Y9~xm!#$qi~ t !% ~m51,2, . . . ,Nm!. (9)

The rest of the computation for the identification is similar to th
for identification from measured displacements mentioned abo

4 Identification of the Prestress, Moving Forces, and
the Flexural Rigidity of the Beam

Other variables in the system should also be included in
identification for a real application. One parameter that is s
jected to variation is the flexural rigidityEI0 of the beam section.

2,
004 by ASME SEPTEMBER 2004, Vol. 71 Õ 739
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Fig. 1 A simply supported prestressed beam under Np moving loads
a

ith

re:
tios
e is
n as

to

s
e-
and
If we have a uniform uncracked beam in the problem, we h
prestress forceT, flexural rigidity EI0 , and moving loadP(t) as
the three variables in the identification. Rewriting~7! as

$dT%n31T1@B#n3Np
$P~ t !%Np312$dEI%EI0

5$r 8%n31 (10)

Table 1 Errors in the identified single moving load and pre-
stress force „in percent …

Number of
Vibration Modes

Noise Level

1% 5% 10%

3 5.8/27.2 6.0/28.9 7.6/36.0
4 5.1/26.3 5.0/28.2 6.3/34.8
5 5.1/26.1 5.1/28.0 5.7/34.2
6 4.8/25.8 4.9/27.6 5.4/32.7

Note: •/• denotes errors for the moving load and the prestress force, respective
MBER 2004
ve

$r 8%5@ I #$Q̈~ t !%1@C#$Q̇~ t !% (11)

The rest is similar as Section 3.

5 Simulations
A 30-meters long simply supported Euler-Bernoulli beam w

an axial prestress force of 0.3Tcr58.22473106 N is studied,
where Tcr is the critical buckling load of the beam andTcr

5p2EI0 /L2. The first six natural frequencies of the beam a
1.03, 4.75, 10.11, 19.56, 30.67, and 44.25 Hz. The damping ra
for these six modes are all equal to 0.02. The prestress forc
assumed constant along the beam. The moving load is take
P(t)540,000@110.5 sin(2pt)10.3 sin(10pt)#N, which moves
along the axial direction of the beam at 30 m/s from the left
right supports. The parameters of the beam are:rA55.0
3103 kg/m, E5531010 N/m2, L530 m, b50.6 m, and h0
51.0 m. The flexural rigidityEI0 of the beam is calculated a
2.53109 Nm2. White noise is added to the calculated displac
ments and strains to simulate the polluted measurements. 5%

ly.
Fig. 2 Identification of single moving force and prestress force „— true, . . . 5% noise, - - - 10%
noise …
Transactions of the ASME
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10% noise levels are studied in this brief note. The numbe
measured location is equal to the number of modes and they
evenly distributed on the beam.

Case 1—Identification of both the single moving load and
prestress force.

The first three to six modes and measured strains are used i
calculation. The sampling frequency is 1000 Hz. Table 1 sho
the errors in the identified single moving load and the prestr
force from using different number of vibration modes. It is fou
that: ~a! the error decreases with the increase in the number of
vibration modes used in the identification;~b! the error in the
moving load is much less than the error in the prestress force.
may be due to the reason that the response is not sensitive t
prestress force; and~c! the error is not sensitive to the noise lev
in the response measurements.

Figure 2 shows the identified results from measured strains
5% and 10% noise. There is only a slight difference in the ti
histories of the identified moving load with the two noise leve

Fig. 3 Identification of two moving forces, prestress force and
flexural rigidity of a beam „— true, - - - identified …
Journal of Applied Mechanics
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This is because the measurement noise has been substantia
moved by the orthogonal function approximation.

Case 2—Identification of two moving loads, prestress force a
the flexural rigidity of the beam.

The two moving loads are

P1~ t !520,000@110.5 sin~2pt !20.3 sin~10pt !# N,

P2~ t !520,000@110.5 sin~2pt !10.2 sin~10pt !# N.

moving as a group at 4-meters spacing at 30 m/s from left to rig
The sampling rate is 500 Hz and four modes are used for
identification. 5% noise is included in the response measureme
The same system as for Case 1 is studied. Figure 3 shows tha
identified prestress force, two moving loads and the flexural s
ness are fluctuating around the true values, especially around
middle half of the time histories.

6 Conclusion
This paper includes the load environment in the system ide

fication of a structure. A method is presented in the time dom
to identify the prestress force and the flexural rigidity of a Eul
Bernoulli beam under moving loads with regularized solution. T
noise effect is minimized using orthogonal polynomial function
The method gives some good results from the first few measu
modes and data obtained from several measurement points.
merical results demonstrate the feasibility of indirectly identifyi
both the moving loads on the beam and prestress force as we
the flexural rigidity of the beam from noisy measurements.
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The Effect of Warping Stress on the
Lateral-Torsion Buckling of
Cold-Formed Zed-Purlins

Xiao-ting Chu, Long-yuan Li, and Roger
Kettle
School of Engineering and Applied Science, Aston
University, Aston Triangle, Birmingham B4 7ET, UK

An analytical model is developed for analysing the elastic later
torsion buckling of cold-formed zed-purlins with partially later
restraint from metal sheeting. The model is used to estimate
effects of warping stresses on the lateral-torsion buckling beh
ior of cold-formed zed-purlins with various boundaries and inte
val braces provided by antisag bars. The results show that
warping stress only has remarkable influence on the late
torsion buckling when the boundary of the member is fixed
there is no antisag bar present.@DOI: 10.1115/1.1781178#

1 Introduction
Cold-formed sections are widely used as purlins or rails,

intermediate members between the main structural frame and
corrugated roof or wall sheeting in light gauge steel construct
These cold-formed sections are produced in a variety of for
such as zed, channel, and sigma, which are inherently sensiti
local, distortional, and lateral-torsion buckling,@1,2#. In the codes
and standards local buckling is taken into account by using ef
tive widths for plane elements,@3–6#, originally developed by
Winter @7# from the post-buckling analysis of plates under co
pression. This concept has now been extended to account fo
effect of distortional buckling of edge-stiffened elements or
stiffened elements with an intermediate stiffener,@5,6#. The
lateral-torsion buckling of cold-formed members is generally c
culated from the theory of the lateral buckling of detached bea
in which the effects of warping torsion, prior to buckling, is no
mally not considered,@8#.

As most cold-formed sections are restrained by cladding
metal sheeting, the loads acting on the sections not only ca
bending of the member about its two principal axes but also
sion of the cross section. Recently, Li@8# developed an analytica
model for predicting the lateral-torsion buckling of cold-forme
zed-purlins partially restrained by the sheeting. The model con
ers bending and torsion for both pre-buckling and buckling ana
ses. However, the torsion considered in the model is only n
warping torsion. In other words, the longitudinal stress genera
by warping torsion is ignored in the model, which is the same
that treated in the lateral buckling of beams.

This paper is a further development of Li’s model to consid
the effect of warping stress on the lateral-torsion buckling of co
formed members. It is well known that, when a thin-walled be
has one or more cross sections that are constrained against
ing, a complex distribution of longitudinal warping stresses
developed. These longitudinal warping stresses, together with
longitudinal stresses generated by the two bending moments,
cause the beam to have local, distortional, or lateral-torsion bu
ling. In the present paper, the focus will only be on lateral-tors
buckling. Local and distortional buckling only use the local co

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2
2003, final revision, November 25, 2004. Associate Editor: S. Mukherjee.
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pressive stress and so the warping stresses can simply be a
into the local compressive stress caused by bending to conduc
local and distortional buckling analyses.

2 Analytical Model
Consider a purlin, the section of which is shown in Fig. 1, th

is laterally restrained in the translational direction but free in
rotational direction, which is the case for most practical appli
tions. Let the origin of the coordinate system (x,y,z) be the cen-
troid of the cross section, with thex-axis being along the longitu-
dinal direction of the beam, and they and z-axes taken in the
plane of the cross section. The strain energy of the beam du
deflections and rotation can be expressed as

Uo5
E

2 Eo

lF I yS d2w

dx2 D 2

12I yz

d2w

dx2

d2v
dx2 1I z S d2v

dx2D 2Gdx

1
GJ

2 E
o

l S df

dx D 2

dx1
ECw

2 E
o

l S d2f

dx2 D 2

dx (1)

where v and w are the deflections of the beam in they and
z-directions,f is the angle of twist,I y and I z are the second
moments of the cross-section area about they and z-axes,I yz is
the product moment of the cross-section area,E is the Young’s
modulus,G is the shear modulus,J is the torsion constant,Cw is
the warping constant, andl is the span length of the beam. Th
corresponding work done by the uniformly distributed uplift loa
qy , is

Wo5E
o

l

qy~af2v !dx (2)

where a is the distance between the loading line and the w
central line. Since the purlin, in the present case, is assumed t
laterally restrained in its upper flange, the angle of rotation can
expressed in terms of the horizontal displacement, i.e.,f
52w/d, whered is the midline depth of the section. The defle
tions, v(x) and w(x), and the angle of twist,f(x) due to the
externally applied load can be determined by employing the p
ciple of minimum potential energy as follows:

d~Uo2Wo!50. (3)

2,
Fig. 1 Analytical model for lateral-torsion buckling analysis
© 2004 by ASME Transactions of the ASME



l
After the deflections and rotation are determined, the pre-buck
longitudinal stresses can be calculated which are then use
calculate the work done by the stresses through the buckling
placements as follows,@8#:

Fig. 2 Comparison of critical loads „aÄb Õ2…. „a… Both ends
simply supported. „b… One end simply supported and the other
end fixed. „c… Both ends fixed.
Journal of Applied Mechanics
ing
d to
dis-

W152E
o

lE
A
sxbFfbS z

d2vb

dx2 2y
d2wb

dx2 D GdAdx

2
1

2 Eo

lE
A
sxwF ~y21z2!S dfb

dx D 2GdAdx2
d

4 Eo

l

qyfb
2dx

(4)

Fig. 3 Comparison of critical loads for no antisag bar purlin.
„a… Both ends simply supported. „b… One end simply supported
and the other end fixed. „c… Both ends fixed.
SEPTEMBER 2004, Vol. 71 Õ 743
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wherevb andwb are the buckling deflections of the beam in they
and z directions, andfb52wb /d is the buckling angle of twist,
sxb and sxw are the bending and warping stresses generated
the pre-buckling bending and twisting moments, respectiv
which can be calculated directly from the obtained pre-buckl
displacements,v, w, andf. In Eq. ~4!, the first term represent
the work done by the pre-buckling bending stress, the second
represents the work done by the pre-buckling warping stress
the third term represents the work done by the distributed load
to the load that is acting above the shear center,@9#. The expres-
sion used for calculating the strain energyU1 generated by the
buckling displacements is the same as Eq.~1! but v andw need to
be replaced byvb and wb . The minimum critical buckling load
and the corresponding buckling mode displacements can thu
determined by the following variational equation:

d~U12lW1!50 (5)

wherel is the loading proportional factor. If the work done by th
warping stress is neglected in Eq.~4!, then the present mode
reduces to the conventional lateral buckling models,@8,10–12#.

In the present study, both Eqs.~3! and ~5! are solved using a
numerical method in which cubic spline interpolations are use
construct the deflection distribution with seven nodal displa
ments as the unknowns. The numerical solutions are not sens
to the number of points chosen, as long as there is at least
point between constraint positions. The assumed deflection f
tions are required to pre-satisfy all of the required displacem
boundary conditions. In this way, the variational Eqs.~3! and ~5!
are reduced to the matrix forms of a set of linear algebraic eq
tions and a set of eigenvalue equations. The details of the num
cal treatment can be found in our papers,@8#, and thus are not
presented further here.

3 Numerical Example
The purlin considered here is that: web depthd5202 mm,

flange width b575 mm, lip length c520 mm, thicknesst
52 mm, Young’s modulusE5205 Gpa, Poisson’s ration50.3,
and yield stresssy5390 Mpa. The boundary conditions for th
lateral displacement,w and wb , are simply supported wherea
for the vertical displacement,v and vb , are specified in each
individual case. For cases where the purlin is laterally restrai
by anti-sag bars it is assumed that the position of the bars be a
center of the span~for one bar! or at 3/8 and 5/8 of the span lengt
~for two bars!. The loading density is assumed as thatqy

512M y / l 2 for purlins with both ends fixed andqy58M y / l 2 for
purlins with other boundary conditions~where M y52syI z /d is
the yield moment!.

The present pre-buckling stress analysis showed that the w
ing stress is considerably lower than the two bending stresses
is strongly dependent on the position of the applied load, bou
ary conditions on the beam and whether there are any antisag
Therefore, the influence of the warping stress on the late
torsion buckling is examined in terms of the boundary conditio
loading positions, and the number of antisag bars. Figure 2 sh
the comparison of critical loads of the purlin with and witho
considering the warping stress, for three different boundary c
ditions. The results show that, the warping stress has almos
influence on the critical load for the purlin that is simply su
744 Õ Vol. 71, SEPTEMBER 2004
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ported or that has one or two antisag bars. The influence of
warping stress on the critical load is noticed only in the ca
where the purlin has no antisag bars and is fixed at least at
end. The influence is found to decrease with the increased s
length.

The influence of the warping stress on the critical load due
various loading positions is shown in Fig. 3 for the purlin witho
antisag bars. Again, the influence of the warping stress on
critical load is found merely in the purlin with one or two fixe
ends. It is interesting to notice that the worst case associated
the lowest critical load occurs when the load is placed at
corner between the flange and the lip, whereas the highest cri
load occurs when the load is applied through the central line of
web. The influence of the warping stress on the critical load
variable. When the warping stress is considered, the critical l
factor is reduced fora5b/2 and a5b, but increases when
a50.

4 Conclusions
An analytical model based on the energy method has been

veloped to estimate the effect of the warping stress on the late
torsion buckling of cold-formed zed-purlins subject to partia
lateral restraint from the metal sheeting under a uniform
distributed uplift load. From the present numerical studies
following conclusions are drawn:

• The remarkable influence of the warping stress on the crit
load for lateral-torsion buckling of the partial-laterally re
strained purlin was found only when the purlin was fixed
least at one end and no antisag bars were present.

• For simply supported purlins or purlins with antisag bars, t
effect of the warping stress on the critical load for later
torsion buckling is almost negligible.

• As far as lateral-torsion buckling is concerned, the ideal lo
ing place is at the web central line as this leads to the high
values of the critical load.
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Effect of Loop Shape on the
Drag-Induced Lift of Fly Line

Caroline Gatti-Bono
e-mail: gattic@umich.edu
Applied Numerical Algorithms, Computational Research
Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720

N. C. Perkins
e-mail: ncp@umich.edu
Mechanical Engineering, University of Michigan, Ann
Arbor, MI 48109-2125, Fellow ASME

This note explains why casting a loop with a positive angle
attack is advantageous in distance fly casting. Several l
shapes, one with a positive angle of attack, one with a nega
angle of attack, and two symmetrical loops with zero angle
attack are studied. For each loop, we compute the vertical d
component, i.e., the ‘‘lift.’’ It is found that a loop with a positiv
angle of attack generates lift about four times larger than a sy
metrical loop. Thus, loops with positive angles of attack stay ‘‘a
rialized longer’’ which is consistent with observations made
(competition) distance fly casters.@DOI: 10.1115/1.1778414#

1 Introduction
Fly casting involves considerable mechanics of both the fly

and fly line as described in several studies,@1–9#. For instance,
the angler imparts both rigid and flexible body motions of the
rod in accelerating the fly line during the forward and back cast
strokes. These strokes end with an abrupt deceleration of th
rod, often referred to as the ‘‘stop,’’ after which a ‘‘loop’’ of fly
line is formed as shown in the photograph below. This loop pro
gates as a nonlinear wave under the action of fly line tension
drag and gravity. The initial conditions that form the initial sha
and velocity of this loop are generated during a short time inte
following the stop,@10#. Eventually the loop propagates to the e
of the fly line and the attached ‘‘leader’’ and ‘‘fly’’ turn over as th
line straightens at the end of the cast.

The dynamics of this loop is the subject of a number of stud
beginning with those that assume idealized semi-circular or sq
loop shapes,@1–3#. Further studies,@5–9#, relax these assump
tions and compute the loop shape from the kinematics of the
tached fly rod and the equations of motion of the flexible fly lin
Fly casting experts~see, for example,@11–13#! are fully aware
that the shape of the loop has considerable influence on its
namics. For instance, it is well understood that loops with sma
diameters propagate farther as they provide less projected ar
the flow, hence less air drag. As a result, casting small loops a
distinct advantage when casting longer distances or into a h
wind.

The purpose of this note is to explain a second advantage
results from casting loops that are asymmetrical and with a p
tive angle of attack such as shown in Fig. 1. Fly casting loops
this form have a ‘‘pointed’’ top portion followed by a larger an
more rounded ‘‘belly’’ beneath. The belly forms a positive ang
of attack in the flow and the air drag along this portion of the lo
generates a component that is vertically upwards. The upw
drag component acts opposite gravity and allows these loop

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
28, 2003; final revision, December 16, 2003. Associate Editor: O. M. O’Reilly.
Copyright © 2Journal of Applied Mechanics
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propagate farther. Fly casters sometimes say these loops ‘
aerialized’’ longer and also use the term ‘‘climbing loops’’ to d
scribe this effect. The purpose of this note is to explain this
served phenomenon by analyzing the drag on a loop as a func
of its shape. Below, we consider four qualitatively distinct lo
shapes and compare their vertical drag components.

2 Analysis of Loop Drag
Four loop shapes are illustrated in Fig. 2. These loops h

identical lengthl 5pR and diameter 2R, and are assumed to
propagate to the right without changing shape. Two loops
asymmetrical~Figs. 2~a! and 2~b!! and two are symmetrical~Figs.
2~c! and 2~d!!. The first asymmetrical loop~Fig. 2(a)) has a posi-
tive angle of attack and is termed a ‘‘climbing loop,’’ while th
second~Fig. 2~b!! has a negative angle of attack and is terme
‘‘falling loop.’’ The two symmetrical loops consist of a ‘‘pointed
loop’’ and a ‘‘circular loop’’ as illustrated in Figs. 2~c! and 2~d!,
respectively. It should be noted that the shapes of these loop
not satisfy the steady-state conditions. However, they are clos
the shapes observed in real casts and, therefore, they do pro
good insight into the mechanics of a cast. Below we demonst
how the loop shape significantly affects the vertical componen
drag on fly line. We begin by computing the velocity field for a
arbitrary loop shape.

2.1 Velocity Field. Figure 3 illustrates an arbitrary loop
shape and a control volume that travels with the loop with vel
ity vcv5vcvi. The upper portion of the loop~assumed horizontal!
travels with velocityvo5voi and the velocity of the bottom por
tion of the loop~assumed horizontal! is zero as it is attached to th
end of the stationary fly rod~and the effects of gravity are ne
glected!. The velocity of an arbitrary material point P relative
the control volume is denoted asvr and its magnitude is uniform
along the loop since the loop does not deform as it propaga
The absolute velocity of point P is

vp5vcv1vr (1)

The velocities of the material points coincident with the top po
~AA ! and bottom~point BB! of the loop are

vAA5voi (2)

vBB50, (3)

respectively. Using Eqs.~2! and ~3! in Eq. ~1! leads to the con-
clusion that

vcv5v r5
vo

2
(4)

Therefore,

vp5
vo

2
i1

vo

2
et (5)

whereet is the unit tangent vector to the loop at P. Thus, given
shape of the loop, Eq.~5! can be used to evaluate the velocity
an arbitrary material point. Resolving this velocity into comp
nents tangential and normal to the loop allows one to compute
drag components due to skin friction and form drag as follow

2.2 Vertical Drag Component. The drag on an element o
fly line derives from skin friction~tangent to the element! and
form drag~normal to the element!. The drag coefficients for skin
friction and form drag are denoted byCdt andCdn , respectively.
Let ra denote the density of air and letd denote the diameter o
the fly line ~considered uniform for this example!.

The loops shown in Fig. 2 are composed of straight segme
and circular segments that, in total, subtend a semi-circle. F
straight segment of lengthl s , the vertical component of drag is

st
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1

2
rapdlsCdtv tuv tuet• j2

1

2
radlsCdnvnuvnuen• j (6)

wherev t andvn are the velocity components tangential and no
mal to the fly line, respectively~see, for example,@14#!. Note the
contributions of both skin friction and form drag to this result. F
the~sum of! circular segments of radiusR, the vertical component
of drag is

DY5E
0

pF2
1

2
rapdRCdtv tuv tuet• j2

1

2
radRCdnvnuvnuen• j Gdu

5
p

3
radRvo

2Cdt (7)

and this drag contribution depends only on the skin friction. W
now employ Eqs.~6! and ~7! to compute the vertical drag com
ponent for the four loops of Fig. 2.

Climbing Loop: For this loop, the straight segmentCD5(p2

14/4p)R and the semi-circle of radiusR/2, composed of the arcs
BC and DE, are subject to drag. The total drag is expressed

DY5
1

2
radRvo

2S ~p418p2164!p

3~p214!2 Cdt1
p~p224!

~p214!2 CdnD (8)

and the contribution due to form drag on the straight segm
~second term! is positive due to the positive angle of attack~Fig.
2~a!!.

Falling Loop: For this loop, the straight segmentBC5(p2

14/4p)R and the semi-circle of radiusR/2, composed of the arcs
AB and CD, are subject to drag. The total drag is expressed

DY5
1

2
radRvo

2S 4p
~p412p214!

3~p214!2 Cdt2
p~p224!

~p214!2 CdnD
(9)

Fig. 1 The fly line ‘‘loop’’ is formed after the ‘‘stop’’ in a cast-
ing stroke and propagates as a nonlinear wave. This loop is
asymmetrical and possesses a positive angle of attack. Such
loops are a hallmark of expert fly casters.
746 Õ Vol. 71, SEPTEMBER 2004
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and the contribution due to form drag on the straight segm
~second term! is negative due to the negative angle of attack~Fig.
2~b!!.

Pointed Loop: For this loop, the straight segmentsBC5DE
5 pR/4 and the semi-circle of radiusR/2, composed of the arcs
AB, CD, and EF, are subject to drag. The total vertical dr
becomes

DY5
1

16
radRvo

2S 14p

3
1

2p~p224!

p2 DCdt (10)

and the contributions due to form drag cancel due to symmet
Circular Loop: The result for this loop follows directly from

Eq. ~7!

DY5
p

3
radRvo

2Cdt (11)

and it is independent of form drag as mentioned above.

3 Example and Conclusions
Prior studies of fly line dynamics have used slightly differe

values for drag coefficients for skin friction and form dra
@1–3,5–9#. Here, we shall assume valuesCdt50.015 andCdn
51 that are typical of those used in prior studies. We also rec
nize that these values depend, in general, on fly line speed~Rey-
nold’s number!, @2#. Using these drag coefficients and the resu
above leads to the following table that compares the lift on
four loops shown in Fig. 2.

The results of Table 1 show that the lift generated by a climb
loop is approximatelyfour times greaterthan that of a semi-
circular loop with the same characteristic dimensions. The sou
of this additional lift is the contribution of form drag on th
‘‘belly’’ of the fly line that has a positive angle of attack. Th
negative angle of attack for the falling loop shape results in a
negative ‘‘lift,’’ again due to the form drag on the belly. Th
symmetrical loops~circular and pointed! generate approximately
the same lift. These results may be readily generalized to o
loops shapes.

This note explains a fact observed by fly casting expe
namely, that a climbing loop is advantageous in distance cas
How to generate a climbing loop through control of the casti
stroke is left as a~considerable! exercise to the reader.

Fig. 3 Kinematics of arbitrary loop
Fig. 2 Four qualitatively different loop shapes. „a… and „b… lÄAE, „c… lÄAF, and „d…
lÄAB
Transactions of the ASME
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Mitigating the Effects of Local
Flexibility at the Built-In Ends of
Cantilever Beams

Jonathan W. Wittwer

Larry L. Howell
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Local distortion at the built-in ends of cantilever beams can le
to significant errors when models assume the support to be
fectly rigid. This paper presents a novel approach for mitigati
this effect, using appropriately sized fillets to provide the ad
tional stiffness needed to make simplified models more accu
and reduce stress concentrations. The optimal nondimensiona
let radius, called the optimal fillet ratio, is shown to be near
constant for a wide range of geometries under predomina
bending loads, making it a useful parameter in the design of p
nar monolithic flexible mechanisms.@DOI: 10.1115/1.1782913#

1 Introduction
Flexible or compliant mechanisms are popular components

large variety of precision machinery and instruments,@1#. While
the use of compliance in precision machine design it not a n
concept,@2#, the past decade has seen a rapid expansion of m
ods for designing and analyzing flexible or compliant mec
nisms,@3–5#. This paper focuses on analysis of monolithic plan
compliant mechanisms, which are common components in pr
sion devices and microelectromechanical systems~MEMS!, such
as folded-beam linear suspension springs and micro force gau
@6–8#.

It is still common to assume that flexible members are attac
to perfectly rigid supports. However, the seminal works
O’Donnell @9# and Small@10# demonstrate through analysis an
experiment that the local flexibility at the juncture of a supp
and a cantilever beam or plate can lead to a significantly la
deflection for a given load. The stress distributions in Fig. 1 sh
the local distortion occurring at the juncture. To account for t
additional deflection, O’Donnell@11# and Matusz et al.@12# de-
veloped flexibility coefficients to use in a variety of classic
equations for the deflections and stresses in beams.

This paper derives a novel approach to the analysis of pla
loading of cantilever beams by using appropriately sized fillets
mitigate the effects of local elasticity in the support. It stands
reason that if the local flexibility of the support results in ad
tional deflection from bending and shear loading, then adding
terial to the beam in some optimal geometry would provide
additional stiffness to mitigate the effect. It is common practice
use fillets to reduce stress concentrations and improve manu
turability, so the additional stiffness will be applied by optimizin
the size of the fillet at the built-in end of the beam.

The optimal fillet radius is specified in terms of a nondime
sional parameter called theoptimal fillet ratio, r* , which is equal
to the fillet radius divided by the beam width (r /h). This param-
eter is shown to be nearly constant for a wide range of be
geometries under predominantly bending loads. This discov

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
ber 4, 2003, final revision, April 23, 2004. Associate Editor: S. Govindjee.
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makes it a useful parameter in the design of planar monoli
flexible mechanisms. It enables the designer to use simplified
lytical models during design that do not account for localiz
distortion, while achieving accurate predictions by specifying
appropriate fillet prior to manufacture.

2 FEA Model Setup
Figure 2~a! shows the FEA model used to simulate pure ben

ing at the juncture of the beam and an elastic half-plane. T
deflection at the reference point~point 1! was compared to the
vertical deflection of a moment end-loaded cantilever beam wi
perfectly rigid support~Fig. 2~b!!. A two-dimensional eight-node
structural solid element was used in all the FEA models. To sim
late a moment applied at point 1, a couple was applied to
extension of the beam far enough from the point of interest so
the local distortions at the application of the forces are insign
cant. A similar setup was used for pure bending of a beam
tached to an elastic quarter-plane~not shown!.

To ensure that the loading conditions were appropriate an
determine an appropriate element size, FEA models were te
using the same boundary condition as in Fig. 2~b!. Using a
mapped mesh with a basic element size ofh/6 was sufficient to
make the systematic error insignificant.

It is common in compliant mechanisms to have both bend
and shear loading of beams, so models were created to sim
vertically end-loaded cantilever beams. The quarter-plane mo
for this loading condition is shown in Fig. 3.

A good approximation to an infinite plane can be achieved
ing a large finite plane size,a andb ~see Fig. 2~a! and Fig. 3~a!!.
Following the procedure used in@12#, an appropriate value wa
determined by increasing the plane size until the sensitivity of
results to the plane size was insignificant. As in@12#, a value of
a/h>5 was found to be sufficient for the quarter-plane, but t
value used in this study wasa/h515 in order to reduce the sys
tematic error to less than 0.1%. A value ofa/h>9 with
b5(a/2)2h was found to be sufficient for the half-plane~Fig.
3~a!!, but a conservative value ofa/h520 was used. In each
model, the mesh was refined around the points of high stres
order to obtain a more accurate determination of the stress
centration factor.

3 Formulation of Simplified Analytical Model
Using Castigliano’s displacement theorem for the analysis o

end-loaded rectangular cantilever beam, the vertical deflectiond,
due to an applied moment or shear force are given by the foll
ing equations:

d5S 6L2

Ewh3D M5CMM (1)

d5S 4L3

Ewh3 1
12~11v !

5Ewh DF5CFF (2)

whereE is the elastic modulus,v is Poisson’s ratio,w is the beam
width, h is the beam thickness, andL is the beam length. The
general assumptions are that deflections are small, cross sec
remain plane, and the material is linearly elastic, isotropic, a
homogenous. For small deflections, the deflection is proportio
to the applied force, with a proportionality constant,C, commonly
termed thecompliance, which is the inverse of thespring constant
or spring rate.

The optimal fillet is determined based upon a comparison
Eq. ~1! or ~2! with the results obtained from finite element anal
sis of a cantilever attached to an elastic half-space or qua
space as shown in Fig. 2 and Fig. 3. The results are given in te
of an error in the compliance,«5(C2Ca)/Ca or spring rate
«5(ka2k)/k, where the subscript,a, refers to the ‘‘actual’’ value
as simulated using the FEA model. The error« will often be
reported as a percent. Theoptimal fillet is defined herein as the
fillet that reduces this error to zero.
-

© 2004 by ASME Transactions of the ASME
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4 Discussion of Results
The results found that the percent error was only significan

affected by two non-dimensional geometric parameters: the s
derness ratio (L/h) and the fillet ratior5(r /h).

Figure 4 shows graphs of error versus fillet ratio for the ca
involving pure bending for both the half-plane~Fig. 4~a!! and
quarter-plane~Fig. 4~b!! models. Each line on the graph represe
a specific slenderness ratio. A positive percent error means tha
beam will have a larger deflection than predicted when using
~1!. The point where a line crosses thex-axis is defined as the
optimal fillet ratio, r* , for that slenderness ratio. At this point, th
results from the FEA model match the simplified analytical eq
tion.

Fig. 1 Stress distribution at the juncture of a flexible beam
and „a… an elastic half-plane and „b… an elastic quarter-plane

Fig. 2 „a… FEA model and „b… simplified model for simulating a
constant-moment end-loaded cantilever beam of length, L , at-
tached to an elastic half-plane

Fig. 3 „a… FEA model and „b… simplified model for simulating a
vertically end-loaded cantilever beam of length, L , attached to
an elastic quarter-plane
Journal of Applied Mechanics
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These graphs show that for relatively small fillets, the error d
to local elasticity in the support can be highly significant, esp
cially for non-slender beams. The serendipitous discovery w
that each of the lines in the plots intersected thex-axis at nearly
the same point. Or, in other words,r* is nearly identical for each
geometry.

When the sufficient conditions are met for the plane size~as
discussed earlier!, r* has only a slight dependence on the sle
derness as shown in Fig. 4. Because the optimal values are
similar and the sensitivity to variation is small, a sufficient a
proach is to use the same fillet ratio regardless of the slendern
Using the graphs in Fig. 4, appropriate approximations ofr* for
the half-plane and quarter-plane arerH50.64 andrQ51.1, as
summarized in Table 1.

The geometric stress concentration factor is usually a conc
in design for determining both a static safety factor, and for c
culating an estimate of the fatigue life. Most charts of geome
stress concentrations are only for fillet ratios below 0.3, sin
values larger than that result in very small or negligible str
concentrations,@13#. When using the ratiosrH50.64 and
rQ51.1, the results obtained from the finite element model
pure bending show essentially no stress concentration (Kt51.0).
This shows that not only does using the optimal fillet ratio m

Fig. 4 Plot of the percent error versus the fillet ratio and slen-
derness for the „a… half-plane model, and „b… the quarter-plane
model, under pure bending

Table 1 Approximations of r* for two juncture types

Juncture Type r5r /h

Half-plane 0.64
Quarter-plane 1.1
SEPTEMBER 2004, Vol. 71 Õ 749
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gate the effects of the flexibility of the juncture, but it also pra
tically eliminates the geometric stress concentration.

For the cases involving nonuniform bending~Fig. 3!, the results
showed the same trends as those for pure bending in tha
intersections of the lines and thex-axis were nearly identical. The
important result was that the optimal fillet ratios were all fair
close to the same values as those for pure bending, nam
rH50.64 andrQ51.1. Combined loading involving bending an
shear makes up a large portion of problems in compliant mec
nisms analysis, so the fact that the same fillet ratio works to m
gate the effect of local elasticity forboth loading conditions is
advantageous. In addition, the geometric stress concentratio
vertical end-loading was less than 1.06 when the optimum fi
ratio was used.

5 Example
A device used in both precision instrumentation and in mic

electromechanical systems~MEMS! is a folded-beam linear sus
pension,@3,7,8#. A schematic for the suspension is shown in Fig
along with the corresponding simplified model that can be use
obtain the spring constant. This suspension uses a combinatio
half-plane and quarter-plane junctures. These junctures do not
resent beams attached to infinite half-planes or quarter-planes
the method of using optimal fillets is fairly robust to these boun
ary conditions when the rigid members are over five times
thickness of the beams (hr /h.5). From Castigliano’s method
the compliance of this linear suspensionCd,F for a load F and
deflectiond, applied in they-direction ~see Fig. 5!, is

Table 2 Parameter values used in Example 1

Variable Value Units

E 162000 MPa
v 0.22 —
w 3.5 mm
L 75 mm
h 3 mm
Lr 9 mm
hr 18 mm
r H 1.9 mm
r Q 3.3 mm

Fig. 5 Schematic for a folded-beam linear suspension and the
simplified model for applying Castigliano’s method to obtain
the spring constant
750 Õ Vol. 71, SEPTEMBER 2004
c-

the

ly
ely

d
ha-
iti-

for
llet

o-
-
5
to

n of
rep-
, but
d-

the

Cd,F5
1

wE S L3

2h3 1
6~11v !L

5h
1

Lr

2hr
1

3L2Lr

2hr
3 D 5

1

kd,F
(3)

wherew is the out-of-plane thickness of the suspension, and
last two terms represent the compliance of the semi-rigid segm
as shown in Fig. 5. A complete beam-element model includ
shear effects was used to validate the assumptions made in d
ing Eq. ~3!.

Two detailed finite element models using eight-node structu
solid elements were made for the linear suspension. The first
modeled without fillets, and the second was modeled using fil
based upon the valuesrH50.64 andrQ51.1. These FEA models
which can account for local elasticity, serve as benchmarks
comparison to Eq.~3! and the beam-element model. Table 2 lis
the values of the variables used in this example.

The results for this example are summarized in Table 3. T
results indicate that when designing the mechanism using mo
thatcannotaccount for local elasticity, manufacturing the mech
nism using the estimated optimal fillet ratiosrH50.64 and
rQ51.1 may lead to a nearly insignificant percent error. If t
mechanism were to be made without fillets, the FEA simulat
indicates that the percent error would be as much as two orde
magnitude higher. However, one should also consider that ma
facturing limitations usually result in a minimum fillet radius
which for surface micromachined MEMS is usually about 1 m
cron ~making the fillet ratior /h50.33 for this example!. This
would still result in a significant percent error, but instead
building a more complicated model to predict the behavior of
real device, the appropriate fillet can be designed into the ac
mechanism to make it behave more like the simplified or bea
element model. In the process, the geometric stress concentra
at these junctures are eliminated through the use of relatively la
fillets.
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