Journal of
Applied Mechanics

18380 2005 Published Bimonthly by ASME
VOLUME 71 « NUMBER 5 « SEPTEMBER 2004

TECHNICAL PAPERS

597 Herringbone Buckling Patterns of Compressed Thin Films on Compliant
Substrates
X. Chen and John W. Hutchinson

604 A Coupled Zig-Zag Third-Order Theory for Piezoelectric Hybrid Cross-Ply
Plates
S. Kapuria

615 Mechanical Systems With Nonideal Constraints: Explicit Equations
Without the Use of Generalized Inverses

Firdaus E. Udwadia, Robert E. Kalaba, and Phailaung Phohomsiri

622 Applicability and Limitations of Simplified Elastic Shell Equations for
Carbon Nanotubes
C. Y. Wang, C. Q. Ru, and A. Mioduchowski

632 Stability Criteria for Nonclassically Damped Systems With Nonlinear
Uncertainties
D. Q. Cao, Y. M. Ge, and Y. R. Yang

637 Dynamic Response of a Clamped Circular Sandwich Plate Subject to
Shock Loading
X. Qiu, V. S. Deshpande, and N. A. Fleck

646 A Continuum Theory That Couples Creep and Self-Diffusion
Z. Suo

652 Sandwich Plates Actuated by a Kagome Planar Truss
N. Wicks and J. W. Hutchinson

663 Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions
Incorporating Surface /Interface Energies
P. Sharma and S. Ganti

672 Defect Green’s Function of Multiple Point-Like Inhomogeneities in a
Multilayered Anisotropic Elastic Solid
B. Yang

677 The Maximal Lyapunov Exponent for a Three-Dimensional Stochastic
System
K. M. Liew and X. B. Liu

691 A General Solution for Two-Dimensional Stress Distributions in Thin
Films
R. Krishnamurthy and D. J. Srolovitz

697 Mechanical Response of a Metallic Aortic Stent—Part |: Pressure-Diameter
Relationship
R. Wang and K. Ravi-Chandar

706 Mechanical Response of a Metallic Aortic Stent—Part Il. A Beam-on-
Elastic Foundation Model
B. Wang and K. Ravi-Chandar

713 Characterization of Plastic Deformation Induced by Microscale Laser
Shock Peening
Honggiang Chen, Jeffrey W. Kysar, and Y. Lawrence Yao

724 A Mechanical Model for Low-Gravity Sloshing in an Axisymmetric Tank
M. Utsumi

(Contents continued on inside back cover

This journal is printed on acid-free paper, which exceeds the ANSI Z39.48-
1992 specification for permanence of paper and library materials. @™
@ 85% recycied content, including 10% post-consumer fibers.



http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000597000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000604000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000615000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000622000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000632000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000637000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000646000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000652000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000663000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000677000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000672000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000691000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000697000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000706000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000713000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000724000001&idtype=cvips

(Contents continued )

Journal of Applied Mechanics Volume 71, Number 5

BRIEF NOTES

731

735

739

742

745

748

Volumetric Constraint Models for Anisotropic Elastic Solids
Carlos A. Felippa and Eugenio On ate

A Basic Power Decomposition in Lagrangian Mechanics
J. Casey

System Identification Including the Load Environment
Z.R.Luand S. S. Law

The Effect of Warping Stress on the Lateral-Torsion Buckling of Cold-Formed Zed-Purlins
Xiao-ting Chu, Long-yuan Li, and Roger Kettle

Effect of Loop Shape on the Drag-Induced Lift of Fly Line
Caroline Gatti-Bono and N. C. Perkins

Mitigating the Effects of Local Flexibility at the Built-In Ends of Cantilever Beams
Jonathan W. Wittwer and Larry L. Howell

ANNOUNCEMENTS AND SPECIAL NOTES

752

Information for Authors

SEPTEMBER 2004

The ASME Journal of Applied Mechanics is abstracted and
indexed in the following:

Alloys Index, Aluminum Industry Abstracts, Applied Science & Technology Index,
Ceramic Abstracts, Chemical Abstracts, Civil Engineering Abstracts, Compendex (The
electronic equivalent of Engineering Index), Computer & Information Systems Abstracts,
Corrosion Abstracts, Current Contents, EEA (Earthquake Engineering Abstracts Data-
base), Electronics & Communications Abstracts Journal, Engineered Materials Ab-
stracts, Engineering Index, Environmental Engineering Abstracts, Environmental
Science and Pollution Management, Fluidex, Fuel & Energy Abstracts, GeoRef,
Geotechnical Abstracts, INSPEC, International Aerospace Abstracts, Journal of Ferro-
cement, Materials Science Citation Index, Mechanical Engineering Abstracts, META-
DEX (The electronic equivalent of Metals Abstracts and Alloys Index), Metals Abstracts,
Nonferrous Metals Alert, Polymers Ceramics Composites Alert, Referativnyi Zhurnal,
Science Citation Index, SciSearch (Electronic equivalent of Science Citation Index),
Shock and Vibration Digest, Solid State and Superconductivity Abstracts, Steels Alert,
Zentralblatt MATH



http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000731000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000735000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000739000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000742000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000745000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000748000001&idtype=cvips
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAMCAV000071000005000752000001&idtype=cvips

Herringhone Buckling Patterns

X. Chen . .
Department of Civil Engineering and Engineering Of c 0 m p resse d Th I n FI I ms
Mechanics,
)
Columbia University, c I t S h t t
New York, NY 10027 On Omp Ian u S ra es
Mem. ASME
hn W. Hutchi A thin metal film vapor deposited on thick elastomer substrate develops an equi-biaxial
o JO. n bt u“_: m_snn compressive stress state when the system is cooled due to the large thermal expansion
Division of Engineering and Applied Sciences, mismatch between the elastomer and the metal. At a critical stress, the film undergoes
Harvard University, buckling into a family of modes with short wavelengths characteristic of a thin plate on a
Cambridge, MA 02138 compliant elastic foundation. As the system is further cooled, a highly ordered herring-
Fellow ASME bone pattern has been observed to develop. Here it is shown that the herringbone mode

constitutes a minimum energy configuration among a limited set of competing
modes.[DOI: 10.1115/1.1756141

1 Introduction pattern is held against the film as the buckles form and is then

: removed when the buckles are fully developed. In this case the
Recent studiesBowden et al[1], Huck etal.[2], and Yoo ilm is aluminum and the substrate has two layers, a relatively thin

e . . i
et al. [3]) have explored the feasibility of manipulating bucklei . . .
films on compliant substrates to achieve highly ordered patter, gmpliant polymer layefpolystyren¢ bonded to a thick silicon

with distinctive features. A metal film with a thickness measure
in tens of nanometers can be vapor deposited at an elevated te
perature on a thick elastomer substrate. When the fiIm/substra
system is cooled, the large mismatch between the thermal exp
sion of the metal and elastomer produces a state of equi-biax
compression in the film. At a critical temperature the film begin\ﬁl

All the films considered in this paper remain bonded to the
ystrate in the buckled state. They undergo little, or no, plastic
ormation. Selected tests revealed that the buckles almost en-
|y disappeared when the temperature was revefde?], The
t that the film locks into modes that are very different from
hat would be expected from a linear buckling analysis is due to

buckles grow and distinctive patterns emerge. Buckle patterns g jinearity also accounts for the unusual, highly ordered her-
be manipulated either by creating nonplanar substrate topograpfihone mode of buckling in Figs. 1 and 2 that is observed when
prior to deposition[1,2], or by forcing a film on a smooth planarthe

start of deposition, the buckle pattern is influenced by the undgﬂ

lying topography. On .the right-hand side of Fig. 1, one sees t}a‘f‘stance between jogs in the herringbone mode is aboufub®0
buckle pattern.that arises when the. substrate.surfa.ce h_as a Seﬂ?{?change in direction of the waves at each jog is approximately
of flat depressions running linearly in the vertical direction. DugO deg. The amplitude of the waves is on the order of a micron or
to local deformation of the substrate, the in-plane film stress é?naller'. Thus, although the amplitude is large compared to the
rglaxed in the Q|rect|on perpendmular to the edges qf thg dep“ﬁﬁ'n thickness: the mode is shallow in the sense that the slopes of
sions resqltlng |n”tge bu%kli alllgfrt1ment zhovgm,zj. Th'g alllgn-. the pattern are small. The strains associated with the buckling
ment persists we eyon the left-most epression edge In F',gm]ode are also small, and both the film and the substrate materials
where the substrate is perfectly smooth and flat prior to bucklmgre within their respective linear elastic ranges

The parallel undulations in the left-center of Fig. 1 transition to The herringbone pattern is very different fro.m any mode one

theb herr]ringbcf)ne %atteréL Tlple herrin%bone byckle p"’f‘;.“?m ?pf)eﬁﬁaht suspect based on a linear stability analysis, as will be seen
to be the preferred mode whenever there exists a sufficiently laidga. A clue to its existence is its ability to alleviate equally in all

patch of smooth substrate and when the system has been cogfgditions the biaxial in-plane stress driving buckling. A mode

Well.below the onset.of bupkling. Th?‘re are irregularities to thﬁ/ith undulations extending in only one direction such as that seen
herringbone pattern, including local distortion most likely due B the right in Fig. 1, which will be referred to hereafter as a

imperfe.ctiolns in either the film or su.bstrate. Another e.xamplle blsne-dimensional modeelieves in-plane stress only in the direc-
shown in Fig. 2 where the substrate is pre-patterned with a singig, e hendicular to the undulations. The in-plane stress compo-

circular depression of several millimeters diameter at its center ¢ parallel to the undulations is only slightly altered by buck-

The depression edge determines the orientation of the bucklequ”g. On the other hand, the alternating directions of the local

its vicinity_,l_hbut awayl fr.or7|1:.the3 edrg];_ehthe hkerrir}gboneh Patterdhe_dimensional undulations in the herringbone mode reduce the
emerges. The example in Fig. 3, which is taken fii@h Shows o e rail in-plane stress in the film in all directions. The herring-

the highly ordered mode that forms when a mold with a squafgne mode allows for an isotropic average in-plane expansion of

Cormributed by the Applied Mechanics Division ofiE A . the film, but otherwise has zero Gaussian curvature apart from the
ontrioute Yy the Applie echanics Division ol MERICAN CIETY OF AT H e . f
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- VICInIty_ of the jOg_S. In adqun to bending, some no.nunlform
CHANICS. Manuscript received by the Applied Mechanics Division, May 14, ZOOS,StretChmg of the mm_ necessf’;lrlly occurs |Oca”y at the Jjogs. N_eV'
final revision October 30, 2003. Editor: R. M. McMeeking. Discussion on the pap@rtheless, the near-inextensionaligpart from the average uni-

should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appliggyrm expansiopof the herringbone mode and its ability to allevi-
Mechanics, Department of Mechanical and Environmental Engineering, Universi . : ; ;

of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep'i%tg the .In p_Iane stress equ.a”y in all dlrec_:tlons? are the t‘f"o. featur.es
until four months after final publication in the paper itself in the ASMmianaL oF  Underlying its preferred existence. An origami pattern similar to it

APPLIED MECHANICS. can be created from a series of folds of a piece of paper.

he buckle undulations or “waves” is about 3@m and the
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50 nm Au
film on thick
PDMS
substrate

Fig. 1 Buckling of a 50 nm gold film on a thick elastomer (PDMS) substrate.
On the right, the substrate has been patterned with alternating flat depres-
sions, [2]. The substrate on the left two-thirds of the figure is flat and not
patterned. The herringbone pattern is on the left. The wavelength of the pattern
across the crests is approximately 30  um while the distance between jogs of
the herringbone mode is approximately 100  um.

It will be shown that the herringbone mode of buckling is théhe substrate experiences no pre-stress—buckling is driven by the
minimum energy configuration among several competing modgse-stress in the film not the substrate. In the numerical analysis of
We confine attention to modes that are periodic, and we begin the two other modes, nonlinear kinematics holds throughout the
presenting the result of the classical buckling analysis for the farsystem(with linear stress-strain behavjpbut nonlinearity in the
ily of modes associated with the critical stress. Then, a closeslibstrate is negligible. It will be seen that the energy associated
form analysis is presented of one-dimension undulations of finitéth the herringbone mode is distinctly below that of the other
amplitude at temperatures arbitrarily below the critical stress. Ntwo modes. The energy minimum of the herringbone pattern is
merical analyses of the herringbone mode and a square checkelatively flat in the sense that there is little change in the energy
board mode follow. The film is represented as an elastic thin pléi@ a fairly wide range of the parameters characterizing the geom-
satisfying the nonlinear von Karman plate equations. These eqe#ry of the pattern, especially the spacing between jogs. The paper
tions are accurate for the shallow modes observed. In the analgirds with speculation on how the mode forms and a discussion on
cal work, the elastomer substrate is represented by linear, smh# limitations of approaches based on energy minimization.
strain elasticity theory. This is an accurate representation becaus&he Young's modulus, Poisson’s ratio and coefficient of thermal
the strains in the substrate remain small. Moreover, a linear stragxpansion of the film are denoted By », anda. The correspond-
displacement characterization of the substrate is justified becausg quantities for the substrate are denotedHyy vy, and as.

The film thickness id. The substrate is assumed to be infinitely
thick and, thus, it imposes its in-plane strains on the film. Assum-
ing the film is deposited on the substrate when both are at tem-
peratureT; and the temperature of the system is then reduced by
AT, and assuming the film is elastic and unbuckled, the compres-
sive equi-biaxial pre-stress stresgs,, in the film is

To
0'11:0'22:_0'0:_[E/(1_V)] AadT (1)
Tp—AT

whereAa= as— a. For the systems under consideratiday>0
and oy>0.

The von Karman plate equatiorigl], governing the deflection
of the film are

DVAW—(N1qW 13+ NogW 55+ 2N W 1) = —p (2)
1., 2
Et VIF=Wi— W W 2. (3)

Here,V* is the bi-harmonic operatof) =Et3/[12(1— v?)] is the
bending stiffness of the platey is its displacement perpendicular
to the plane, X, ,X5), pis the stress component acting perpendicu-
lar to the plate that is exerted by the substrate,€y()/dx,,,
N,s=J0,z0%; is the stress resultant in the plane of the plate and
F is the Airy stress function withNyj;=F 55, Nypp=F 13, Npp
=—F ;5. Equation(2) is the moment equilibrium equation, and
(3) is the compatibility equation ensuring the existence of in-plane
displacement gradients,, ;. Tangential components of the trac-

///@ﬁf} i

W

Al
film on thick vy
PDMS
substrate

T

Fig. 2 Gold film on a substrate which has been patterned with

a circular flat depression of several millimeters in diameter, [1]. tion exerted by the substrate on the plate are ignored. This is a
The herringbone pattern emerges in the center of the spot and standard approximation in the analysis of wrinkling of a thin film
outside the edges of the spot. on compliant substrat¢5], whose accuracy can be validated by a
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(a)

~——  PDMS mold

Metal
P etal layer

~4— Polymer layer

~———  Substrate

(d)

®

Mold contact & heating

©
Buckling in
confined geometry
@
Mold removal

Fig. 3 An example from [3] of a highly organized buckling pattern for a film

Period : 6.3 um

’/\

m

30

X 10.000 pw/div
2 500.000 nu/div

N\
\‘\ V/ ?
\\
10

/substrate system.

As depicted, the film is forced to buckle into a mold with a square pattern, after which the mold

is removed.

more detailed analysis for one-dimensional moée=e below.
Middle surface strains are related to displacements By
=1/2(Ug gt Uga) F12W W 57 Nop=[E/(1—-?)]((1-v)E,p
+_VE_y~y§aﬂ); and M 5= D((1- V)W,aﬁ+_vw,y76aﬁ) are the con-
stitutive relations withM,; as the bending moment tensor.

2 Classical Buckling Based on Linearized Stability
Analysis

however, for an equi-biaxial pre-stress, the critical stress applies
not only to the one-dimensional mode wkh=k® andk,=0 but
to any mode whose wave numbers satisfy

K2+ k2t =kCt=(3E4/E) 3, @)

The compressed film in the equi-biaxial state has multiple modes
associated the critical buckling stress. In what follows, both the
one-dimensional mode and the square checkerboard mode with

The film is imagined to be infinite in extent. The unbuckled filmk; =k,= kC/\2 will be investigated.

has a uniform stress state givenMy;=N,,= — ogt, N;,=0. The
classical buckling analysis, based on linearizatiorifand (3)
about the pre-buckling state, leads to

DV4w+ oot V2w=—p

(4)

along with VAAF=0 where F=—1/2(x3+x3)oot+AF. The
system of equations admits periodic solutions of the form

p=p cog k;x;)cogK,Xs),
AF=0

with (4) giving (Dk*— ootk?)W= — p wherek= \k3+k5.
The exact solution for the normal deflection of the surfatef
the infinitely deep substrate under the normal loadtimg (5) with

zero tangential tractions at the surfacedis 6 cosk;x;)CoskyX,)
where 3=25/(E5k) with Eg= ES/(l—vg).l Combining Ok*
—ootk)W=—p ands= 2p/(Egk) subject tov= 5 gives the eigen-
value equationoot=Dk2+E¢2k. The critical buckling stress,
ag, is the minimum eigenvalue with respect kpwhich is at-
tained fork®t=(3E4/E)*"* giving

Ug 1 (

E 4

W= \;\V COS( klxl)COS k2X2) y

®)

E 2/3
- ) ©)

3 Nonlinear Analysis of the One-Dimensional Mode

An exact closed-form solution for the nonlinear von Karman
plate coupled to the linearly elastic foundation is possible for the
one-dimensional mode with nonzeky and k,=0. The eigen-
value (i.e., the stress at the onset of bucklingssociated with
arbitraryk, is now denoted byr5t=Dk?+ E4/2k, to distinguish
it from the stress in the unbuckled statg,. Results will be pre-
sented for variouk, including the critical case with; =k and
o5=0§. The solution is produced for temperatures such that
O'0> O'E .

The normal displacement in the finite amplitude state continues
to bew=w cosk;x;), and(3) implies that the resultant stress in
the buckled filmN4, is independent af; . It follows, then, from
(2) that the relatiorN,;= — o'5t remains in effect in the nonlinear
regime. An additional constraint must be imposed to ensure that
u,; is consistent with the overall substrate deformation, i.e.,

5”“‘1Auldx1=0 where Au;=u;—u? with u} as the displace-
ment in the unbuckled film at,. (Equation(3) ensures the exis-
tence ofdu, /dxy; this condition provides the underdetermined
constant, ensuring the overall film displacement matches that of

the substrate.This constraint condition can be expressed using

with E= E/(1—»?). This is the result for the one-dimensionalthe strain-displacement relation and the stress-strain relation as

plane-strain wrinkling stress, which is widely knowis]. Note,

The effect of the boundary conditions tangential to the surface of the substrate is
minor. For example, if the tangential displacements are constrained to be zero,

finds :Szzf))\/Esk where\ = (3—4vy)/[4(1— vs)?]. For vs=1/3, \=15/16; for v
=1/2,\=1.

Journal of Applied Mechanics

1 L (27 dw Zd k2 )
E—t(a'ot‘i‘Nll)—E . d_Xl Xl—zw .

®
%nheus, the amplitude of the buckling mode is obtained by combin-
ing (8) with N;,=— o5t:

SEPTEMBER 2004, Vol. 71 / 599
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In the unbuckled state when the film stresgrig the substrate
is unstressed and the energy per unit area in the film/substr:
system is

Us

1-v

UO: E

(10)

O'St .

The average energy per unit area in the buckled state can
expressed as

1
U= E(Nll(Nll_ VN32) + Noo(Npr— ¥N1y))

Ky 2mlky [ d2w
o D\ =
am ) dox,
In (11), the first contribution is from the uniform resultant in-
plane stresses in the film, the second is the bending contributiui
from the film, and the third is the elastic energy in the substra
Enforcing AE;,=0, as measured from the gnbuckled state@l  gypstrate system in the buckled state to that in the unbuckled
one readily finds thall,,= — (1—v) oot — voot. Each of the con- state, U7, as a function of ay/a for the one-dimensional
tributions in(11) can be evaluated explicitly. In the same order agiode. Results are shown for several wavelengths. Note that
(ky

in (11), the ratios of the energy contributions in the buckled statee wavelength that is critical at the onset of buckling
to the energy in the unbuckled state are =k¢) produces the minimum energy in the buckled state even

— when oy is well above o§.
oE\2 (1-1)2] (14w (k) [ E |2 )2 70 7o
EN (1-19) * 48 ao) |t

(1+v)k1t(ES)( E)Z
J,__ J— R—
8 E 0o

2d ky (27 . u
Xl"'E . pwdx . (11)

0 5 10 15 20

[Ei'g. 4 Ratio of average elastic energy per unit area in the film /

U 1+v
U, 2

Jo
sociated with the critical mode. Thus, the results of Fig. 4 empha-
size the strong preference for the wavelength associated with the
critical wavelength L°=2x/k® when the mode is one-
dimensional. The limit of the energy ratio ans)/(rg becomes

\7V 2
n ) (12)

With » and E4/E specified ando,/E determined from(1),
U/U, can be computed front12) for any kit becauseaglE
= (kit)?/12+ (E5/E)/(2k t) and W/t is given by (9). For the
critical mode withk,t=k t=(3E¢/E)*® and o§=0§ given by

(6), one findsw/t= /o /05—1 and

(US)Z (1- )2 +(1y)o_8(1a_8).
(1-17) o oo

U _1+v

U, 2

o0
(13)

Plots of U/U, as a function ofcrolag are given in Fig. 4 for

large isU/Ug=(1—wv)/2. In this limit the in-plane compressive
stress perpendicular to the buckles is completely relieved but the
compressive stress parallel to the buckles is changed only by the
Poisson effect.

4 Numerical Analysis of the Checkerboard and Her-
ringbone Modes

An exact analytic solution such as that given for the one-
dimensional mode cannot be obtained for either the checkerboard
or the herringbone mode. The finite element code, ABAQUS, has
been used to obtain a three-dimensional analysis of the periodic

v=1/3, v=0.48, andE./E=4100, representative of a gold film cell of these two modes. Within the cell, the plate is represented

on a PDMS substrate. Results for the normalized energy are
sented for five values of the wavelength ratld/L¢=k®/k,,
wherelL =2/k, is the wavelength and®=2x/k® is the wave-

phy- 1000 three-dimensional eight-node, quadratic thin shell ele-

ments (with five degrees-of-freedom at each node and with re-
duced integrationthat account for finite rotations of the middle
rface. The stresses and strains within the plate are linearly re-

length of the critical mode. The wavelength predicted for the go
film/PDMS substrate system is@m which is significantly below
the observed wavelength of roughly 20 to @t seen in Figs. 1

ated. The substrate is meshed with 20-node quadratic block ele-
ments with reduced integration. The constitutive relation of the

and 2. The discrepancy, discussedit?], is believed to be due to substrate is also taken to be linear isotropic elasticity, but the
a layer of PDMS just below the film whose Young’s modulus igeometry is updated. As mentioned earlier, nonlinear strain-

much higher than the bulk elastomer due the high film depositi(ﬁ#r‘lspla‘cermi'nt beh_avior of the substrate ha§ essentially no influence
temperature. In effect, it is argued that there is a two-layer fil the results of interest. The substrate is taken to be very deep

whose thickness is substantially greater than the gold film. Othgy _pthd) com_pared to mode wavelength, and the_ boundary con-
possibilities for the wavelength discrepancy include the possibilifj/tions along _|ts| bottom surfaﬁe eft_rle zero normal displacement and
that the modulus used for PDMS in the range of very small straig€"© tangential tractions. The film is assigned a temperature-

applicable to this problem may not be correct. The experimentgf€pendent therncljal expan?ion ”;]ismamb" anc(jj a temper]ratgre al
agreement with the theoretical wavelength prediction is consid OpAT Is imposed starting from the unstressed state. The biaxia
ably better in[3]. compressive stress in the unbuckled film is therefarg

The results of Fig. 4 fotJ/U, for the one-dimensional mode =EA@AT/(1—v) if the substrate is infinitely deep. For each

show that the lowest energy state is associated with the critic@Pde: @ unit periodic cell is identified and meshed with periodic-

mode (L/LS=1) even at finite amplitude buckling deflections Y conditions imposed on the edges of cell, both for the film and

The lowest energy state at valueSc;Q,f/aOC just above unity must the underlying substrate.
be associated with the critical mode, but, in general, there is no &4.1 The Square Checkerboard Mode. Consider a square
priori reason why lowest energy configuration should remain asheckerboard mode such that the wavelengtin the x; and

600 / Vol. 71, SEPTEMBER 2004 Transactions of the ASME



) * ) v 1 T T T T v T T ) v T T T T T
51 . - 104
Herringbone \
One-dimensional -t \ One-dimensional
] - 7 0.8 \ |
‘\\ Checkerboard
w *] ] U o8- NS . i
— Checkerboard 1 —_— ] NS~ Herringbone
t ] | -
0 04 4
Y/
14 /./ |
y; 0.2 i
lr
o4 t L — LC ]
0.0 T T . : . .
T s s 0 4 8 12 16 20
0 4 8 12 16 20
C
o,/ o,

C
o,/ o,
. . . . . . Fig. 6 Ratio of average elastic energy per unit area in the film /
Fig. 5 Buckling amplitude of the film,  w/t, as a function of  gypstrate system in the buckled state to that in the unbuckled
o,/ 0§ for the three modes considered. The wavelengths (@and  state, Ur Uy, as a function of /e for the three modes con-
inclination in the case of the herringbone mode ) correspond to  sjdered. The wavelengths (and inclination in the case of the
the critical at the onset of buckling. herringbone mode ) correspond to the critical at the onset of
buckling. At (rolog well above unity, the herringbone mode
lowers the energy more than the other two modes.

Xo-directions is set by the critical condition ifY), i.e., 2m/k;

—_ —_] = C ¢ C— C

_z.tW/kﬁ._LtE.\/EL where af deﬁlned befl?r:s fzg/kf .d_The _with the ridge in the next cell. The excess breadth of the cell

unit cell in this case 1S a rectanguiar parafielepiped ot dimensi vingL/L®=2.4 results in two ridges in the interior sector of the

LXLxd. Avery small initial imperfection is prescribed such thaCell The shape of the mode with narrow breadth.C— 0.55, is

the plate in the unstressed systemAdt=0 has a slight middle =~ p . . T e
similar to that of the experimental herringbone pattern, but it will

surface deflectionw=wW, cosk;x;)coskyx,), where w, /t=0.02. :
Periodicity conditions are applied to the cell by enforcing all fiw%:: sée_eg that the energy for the narrow cell is well above that for

nodal degrees-of-freedom to be the same on the two edges of he d q iy h f th I
cell parallel to thex;-coordinate, and similarly for the,-axis. In e dependence d3/U, on the parameters of the cell geom-

addition, at one of the corners of the cell the conditiongdx, €Y (L/LS.a/L,a) is presented in Fig. 9. Figurd®, displays the
=0 andaw/ax,=0 are enforced such that the mode crests arfdear trend whereby minimum energy is associated with®
valleys align with the cell sides. =1. The energy of modes with/L°=1.6 andL/L°=0.7 is dis-

A square checkerboard mode is indeed determined with nornigictly above the minimum. In Fig.(®) it is seen that the energy
deflection that is roughly of the formv=W cosx,)cosk,x,). in the buckled state is surprisingly insensitive to the normalized
The computed relation between the mode amplitwde, defined length of the cella/L. Only for very short cellsa/L=0.5, is the
as one half the difference between the maximum and minimu@fergy noticeably above the minimum. Evidence for this insensi-
deflections, andro/goc is plotted in Fig. 5. Included in this figure tvity is reflected_ in the experimental her_rlngbone patterns in Figs.
are the corresponding results for the one-dimensional mode ah@nd 2, where it can be seen that the distance between jogs varies
the herringbone mode, which is obtained in the next subsecti(gﬁ’. qt least a faqtor of two from one section of the film to another.
The results for the computed average strain energy per area in @ilarly, there is not a very strong dependence of the energy of
film/substrate system are presented in Fig. 6 in normalized folf#¢ buckled system on the inclination of the cell,although the
as U/U, versus 00/08. The results for the one-dimensional
mode withk;=k® (k,=0) are also plotted, as is the correspond- . .
ing result for the critical herringbone mode obtained next. The Unit computational cell
energy per area of the critical checkerboard mode lies betwet
that for the one-dimensional mode and the herringbone mode.

4.2 The Herringbone Mode. The unit top surface of the
periodic cell for the herringbone mode is shown in Fig. 7. Th
parallelepiped is characterized by its widi, breadth,L, and
inclination angle,a. Periodicity conditions are applied to the top
and bottom edges of the cell, and symmetry is imposed on the |
and right edges. A small initial deflectiomv(/t=0.02) satisfying
these edge conditions is introduced to initiate the mode.

Contours of the normal deflection of the filmwithin the cell
are displayed in Fig. 8 for three values ofLC, at 00/03:26
(Figs. 8a), 8(b)) or oo/o5=4 (Fig. 8c)) with a/L=2 and
a=45°_ It will be seen below that the minimum energy configu-
ration hasL/L®=1, and for this value it can be seen that the
deflection shape displays the features of the herringbone mor
seen in Figs. 1 and 2. The mode has a curving ridge running along
the center of the cell that aligns itself to merge smoothly at the jog Fig. 7 Periodic cell of the herringbone mode
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a=45, a/L=2

(b)
=45, a/L=2

o,/ o8 =4

Fig. 8 Contour plots of the normal deflection of the film in the
herringbone mode at o/o5=26 (a,b) and o,/o5=4 (c) for
several values of the breadth of the periodic cell, all with alL
=2 and a=45 deg
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Fig. 9 Variation of U/U, as a function of o/ o for the herring-

bone mode. (a) Dependence on L/LC with a/L=2 and a=45
deg. (b) Dependence on a/L with L/L=1 and a=45 deg. (c)
Dependence on a with L/LC=1 and a/L=2.
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minimum is attained fow=45 deg(Fig. 9(c)). A feature seen in the herringbone mode emerges as the minimum energy mode.
each of the plots in Fig. 9, as well as for the one-dimensionBloes the herringbone mode spread across the film starting from
mode in Fig. 4, is the invariance of the ordering of the relativeome region of imperfection or from an edge? Or does it some-
energy trends with respect to changesriﬁgg_ Put another way, how emerge spontaneously over the entire film as a transition
the parameters governing the geometry of the minimum enerfjpm a combination of classical modes? Bowden ef B2] were

mode do not change in a significant way @s/o§ increases. In Not able to observe the evolution of the buckling patterns as their
both Figs. 5 and 9 the results for the herringbone mode are ofecimens were cooled from the film deposition temperature, and
plotted for values oir(,/zrg sufficiently large compared to unity. thus at this time it is not possible to give an experimental descrip-

The herringbone mode is not a bifurcation mode, and it only pdon of how the herringbone mode evolves.

comes a preferred mode in the sense of having minimum energ)Ba'tA‘ word of caution is in order about predicting mode patterns

00/08 somewhat above unity. MO/UC();%L the amplitude and ased on minimum energy states. The means by which deforma-

. : ) . ions evolve to the minimum energy state is by no means obvious.
normalized energy of the herringbone mode is dominated by i chanics is replete with problems whose minimum energy states
initial imperfection. are not easily assessable. The pattern formed by forcing a film to
buckle into a mold in Fig. 3 is just such an example. Once the
finite amplitude mode has formed and the mold removed, it ap-

Among the three buckling modes considered, the herringbopears that the mode is locked in place and does not undergo
mode produces the lowest average elastic energy of the filaWanges towards a lower energy state unless further disturbed. To
substrate system for films stressed well above critical, as seeroiir knowledge, the nonlinear mechanics governing such behavior
Fig. 6. The herringbone mode is able to relax the biaxial pre-stregsbuckled films has not been studied. In the case of the minimum
stress,oy, in the film in all directions while inducing relatively energy herringbone mode, experimental observation confirms its
little concurrent stretch energy. The stretch energy associated wéttistence, even though it has not been established how it evolves.
buckling that does occur is localized in the jog regions. By con-
trast, the one-dimensional mode requires essentially no strefgBknowledgment
energy (it continues to exhibit zero Gaussian curvajureut it . .
relaxes the biaxial pre-stress only in one direction. The checker-1NiS work has been supported in part by Grant NSF DMR

&

5 Conclusions

board mode relaxes the pre-stress in all directions, but it develdj&L3805 and in part by the Division of Engineering and Applied
non-zero Gaussian curvature and induces much more concurréRences, Harvard University.

stretch energy than the herringbone mode. The minimum enerlgy

state of the herringbone mode has undulation witlthwhich is eferences

very close to that of the one-dimensional modelc [1] Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W., and Whitesides, G.
_ e \1/3 . . . M., 1998, “Spontaneous Formation of Ordered Structures in Thin Films of
—27Tt_(E/3Es) , and jog anglex=45 deg~_The minimum energy Metals Supported on an Elastomeric Polymer,” Natdendon, 393 pp.
state is weakly dependent on the spacing between jogs, where 146-149.
stretch is localized. The experimental herringbone patterns in2l Huck, W. T. S., Bowden, N., Onck, P., Pardoen, T., Hutchinson, J. W., and
Figs. 1 and 2 show a spread in the jog spacing, and they also Whitesides, G. M 2000,_ Ordering of Spontaneously Formed Buckles on
. . . . . Planar Surfaces,” Langmuif,6, pp. 3497-3501.
displays jog angles in reasonable agreement with the theoreticak) voo, p. 3., Suh, K. Y., Park, S. Y., and Lee, H. H., 2002, “Physical Self-
minimum energy state. Assembly of Microstructures by Anisotropic Buckling,” Adv. MatékVein-
A question not addressed in this paper is how the herringbone _heim, Gen, 14, pp. 1383-1387. ) »
mode emerges as, increases above critical. For a small range of [l Ecmgrs:ﬁ’m ,\?éwp\;o:(”d Gere, J. M., 196Mheory of Elastic Stability
o, above critical, combinations of the classical modes of Sections; ajen, H. G., Analysis and Design of Structural Sandwich Pan&ergamon,

2 necessarily have the lowest system energy; butascreases, New York.

Journal of Applied Mechanics SEPTEMBER 2004, Vol. 71 / 603



A Coupled Zig-Zag Third-Order
Theory for Piezoelectric Hybrid
Cross-Ply Plates

S. Kapuria

Associate Professor. A new zig-zag coupled theory is developed for hybrid cross-ply plates with some piezo-

Department of Applied Mechanics, electric layers using third-order zig-zag approximation for the inplane displacements and
Indian Institute of Technology, Delhi, sublayer wise piecewise linear approximation for the electric potential. The theory con-
Hauz Khas, New Delhi 110016, India siders all electric field components and can model open and closed-circuit boundary
conditions. The deflection field accounts for the transverse normal strain due to the

piezoelectric d; coefficient. The displacement field is expressed in terms of five displace-

ment variables (which are the same as in FSDT) and electric potential variables by
satisfying exactly the conditions of zero shear stresses at the top and bottom, and their

continuity at layer interfaces. The governing equations are derived from the principle of

virtual work. Comparison of the Navier solutions for the simply-supported plates with the
analytical three-dimensional piezoelasticity solutions establishes that the present efficient

zig-zag theory is quite accurate for moderately thick plaf@Ol: 10.1115/1.1767170

1 Introduction [30] have presented coupled DLT, using layerwise approximation

. . . . . for displacement and potential, which yields accurate results for

tueigzr:gg?iﬂgige dlggiqggti(s)nﬁ?(\)/lm% frfzc;?legftr;cnsgxsoéf]:gzifﬁ]m and thick plates. But it is computationally expensive for prac-

of adaptive structures. The sensers ancfl) Actuators ca?i be in? al dynamics and control problems since the number of displace-
p ) nt unknowns depends on the number of sublayers. C4B8&fa

form of distributed layers or patches, which are surface mountg : T :
) s presented a coupled DLT for plates with layerwise linear zig-
or embedded. There have been many reviems., Choprdd]) on zag approximation across the thickness for inplane displacements

the state of art of smart structures and integrated systems. Sevg quadratic one for transverse shear stresses and potential. But

re\ge;/vs,[ﬁ_—S], of_thr(ele{ﬁimen3|(]3nall cor_itintuzijmk-]bgs_gd ?ptproaﬁh?r?e axial electric field is neglected and the constitutive equation
and two-dimensional theores 1or 'aminated nybrid plates, Nayg, spear stresses is only approximately satisfied. Bisegna et al.

been presented. Analyticel_ three-dimensional solutions are av ] have presented a layerwise coupled first-order shear deforma-
able only for some specific shapes and boundary COhdItIOﬂSt n model for each layer of piezoelectric sandwich plate with

plates,_[6—8]. The three-dimensional finite e'e”.‘e”‘ af_‘a'yﬁgﬂv linear variation of electric potential along the thickness of the
of laminated plates results in large problem size which may b

nts and across-the-thickness uniform variation for the trans-
Vise displacement, which satisfy the shear traction free
conditions at the top and bottom surfaces and transverse shear

. - . Utress continuity conditions at the layer interfaces for zero inplane
tors. Classical laminate theofCLT), [14-17, first-order shear gjactric fields. Except for the coupled DLJ30], in which the

deformation theoryFSDT), [18-19, and the refined third-order {nsyerse displacement is also taken as piecewise linear, no other
theory (TOT), [20], have been applied without electromechanicgjy._gimensional theory discussed above considers the piezoelec-
coupling to hybrid plates and shells. Coupled CLT, FSML— e yransverse normal strain induced due to piezoelectricity
26], and TOT,[27,28, solutions for hybrid plates including the { oy ghd,, coefficient, which has been observed to have consid-
charge equation of electrostatics and electromechanical coupliggap|e effect on the response, especially for electrical 1p4d,

have been reported. These equivalent single layer theories are iggs efficient zig-zag third order theory of laminated elastic plates,
computationally involved and are straight forward to implemen 4,35, has been extended by Kapuria et[@6—39 for static

But these theories do not account for the zig-zag distribution 5 d dynamic analysis of hybrid composite and sandwich beams.
the inplane displacements and do not satisfy the interlaminar shgdtyiq coupled efficient DLT, a third-order zig-zag approximation
stress continuity conditions, yielding inaccurate results for modi,oss the thickness for the axial displacement is used with a

erately thick laminates and even thinner laminates with Stro%giblayerwise piecewise linear approximation for the potengial

inhomogeneities across the thi.ckness.. A discrete layer theefie conditions of zero transverse shear stressat the top and
(DLT) with layerwise approximation of displacements was devejs,

. : ) -V “Pottom surfaces and the conditions of continuity9f at layer
oped by Robbins and Red{i29] for elastic laminated beams with e faces are enforced to formulate the theory in terms of three

induced actuation strain in the piezoelectric layers. Heyliger et @imary displacement variables, which are the same as in FSDT.

Comibuted by th ed Mech " © The model considers both the axial and transverse electric fields
ontributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; f ; ; d?ﬂﬂ -

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- a.nd includes the transverse piezoelectric strain f coeff

CHANICS. Manuscript received by the Applied Mechanics Division, February 5(,:|ent- Very accurate re_SU|tS have been reported by them for mod-

2003; final revision, October 17, 2003. Associate Editor: R. C. Benson. Discussigfiately thick beams using this theory.

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, JournalThis work presents an efficient coupled third-order zig-zag

of Applied Mechanics, Department of Mechanical and Environmental Engineeri _ ; ; ; : A
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will eeory for cross-ply hybrid plates using combination of third-order

accepted until four months after final publication in the paper itself in the ASMi‘."arie!tionlacrOSS the thickness and a |ayemise "near zig-zag ap-
JOURNAL OF APPLIED MECHANICS. proximation across the thickness for the inplane displacements.

of accuracy compared to the three-dimensional models. So
works have used various elastic laminated plate mofiels;13,
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Fig. 1 Geometry of a hybrid plate

The electric potentialy is sublayerwise approximated as pieceUnlike most other studiest,, E, are not considered as zero,
wise linear. The transverse displacement is approximated to taece these may be applied by actuation or may be induced by the
into account the piezoelectric strain in the thickness direction dpézoelectric coupling. The linear constitutive equations for the
to piezoelectric coefficiend;;. The shear traction free conditionsstresseso, 7 and electric displacementd,, D,, D, are ex-

at the top and bottom of the plate and shear continuity conditiopsessed, using the assumptionagf=0, as

at the layer interfaces are exactly satisfied to formulate the theory _ .

in terms of only five primary displacement variables and the po- o=Qe —EgEZ, =Qy—¢€E,

tential variables. These primary displacement variables are the R R -

same as for the FSDT. The coupled stress and charge equilibrium D=e"y+7E, D,=eze+ naE,, (2)
equations, and boundary conditions are derived using the principle )

of virtual work. The theory includes the effect of in-plane electritVnere, for cross-ply laminates,

field components which may be applied by actuation or induced
by the piezoelectric effect. The theory can model open and closed-
circuit boundary conditions. This theory is assessed by compari- o=|0y|, T=
son of an analytical Navier solution for simply-supported rectan- Txy

gular plate, with the analytical three-dimensional piezoelastic

solution and coupled FSDT solution. For this purpose highly in- _
homogeneous layups of a test case of six-layer hybrid plate, and a Y=
five-layer hybrid plate with composite elastic substrate are consid- _
ered. The accuracy of the theory is checked for mechanical and Qu Qp O -
electrical loads for different electrical conditions for thin and thick — | = = ~ [Qss O
plates. The theory is computationally as efficient as the equivalent Q=| Quz Qu v Q= 0 6
smeared plate coupled FSDT and yet yields quite accurate 0 0 Qe .
through-the-thickness variations of displacements, stresses and
potential for moderately thick plates.

y:

Ox

g ©)

71 O
0 72

es 0

e= 7= . e3=[ey ey 0],

0 ey
2 Approximation of Potential and Displacement Fields whereaij /&, 7, are the reduced elastic stifinesses, piezoelec-

Consider a hybrid cross-ply plateig. 1) made ofL. orthotropic  tric stress constants and electric permittivities.

plys of total thicknes# with the midplane chosen as thg-plane  The potentialg is approximated as piecewise linear across the
z=0. The plate is loaded transversely on the bottora=at,=  thickness, in terms of its values at, points at z,, j

—h/2 and on the top at=z =h/2. Some of the layers can be_1 5 n,:

orthorhombic piezoelectric materials of class fspmmetry, with e e

poling alongz. Thekth ply from the bottom has bottom surface at d(X,Y,2) :\Iiii)(z) H(x,y) 4)
z=z_,. The reference plane=0 either passes through or is the

bottom surface of théth layer. Letu,, uy; w be the in-plane where¢j(x,y):¢(x,y,zj¢). \pi(ﬁ(z) are linear interpolation func-
and transverse displacements. ldebe the eIectri_c p_otential and tions and summation convention is used for indicgs. A piezo-
Ex=—¢x. Ey=—¢y, E,;=— ¢, be the electric field. Denot- glectric layer is divided into sublayers for discretisation ¢f
ing differentiation by a subscript comma, the strain-displacemeghose number is determined by the required accuracy.
relations are Three-dimensional solutiongg], reveal that for moderately
thick plates under electric potential load,has significant varia-
tion across the thickness due to much greater electrical contribu-
Vyz=Uy 2t Wy,  Vox=Uyg,TWy. (1) tion to e, compared to that ofr,, o,. Hence, hereinw is ap-

ex=Uyx, &y=Uyy, &,=Wg, yxy=uxyy+uyyx,
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Fig. 2 The distributions of u, w, o, 7,, for test plate (a) under pressure load

proximated by integrating the constitutive equation fgr by  conditions each for the continuity efandu at the layer interfaces
neglecting elastic complianceS;3, Sy, i.e., e,=w,=S;30; and the two-shear traction-free conditions0 atz=z,, z_ . The

+Sy305+ g, = — dgzp = continuity condition ofr at interfacez=z;_, between layersand
— _ i—1 is expressed in the following recursive form so that the so-
W(X,Y,2) =Wo(X,y) = W(2) ¢(x,y) (5) Iution of ¢, & nis easily tractable:

Where\I'{,,(z) f0d33\1f -(2)dzis a piecewise linear function. For
the kth layer,u,, u, are approximated as a combination of third- Qo +2z,&+ 32 n]+[ew! o(Zi)— Q il o(Zi )]q&d
order variation inz across the thickness and layerwise piecewise

linear variation: =Q ¢ 1+27 é+ 377 ] +[& W i(z_y)
U(X,Y,2) =Uk(X,y) = ZWo,(X,Y) + Z¢i(X,Y) + Z2E(X,Y) ~Q MW (z -]k +2Q (2~ 21 £+3Q(Z~ 72 1) 7
+2°7(xy), (6) +[B{W(2)— Wiz )} Q{Wh(z) — W(z_1)}] 4.
where (©)]
_| % , :{WO’X} U= uk*} lr/,k—[l/ka}, Using Eq.(8), the shear traction free conditiatix,y,z,) =0, can
Uy ¢ [Woy Uk, P, also be written in the above pattern as
_| & =| ™ 7 A1 2 Al A1l j
Slel ") (D QUyn+22:6+3Zn]+[EW)y(21) — Q"Wy(21) 14
uy is the translation angy, is related to the shear rotation of the ~ =2Q%(z,—z,)&+3Q! (22— zo)y,+[e1{\1ﬂ (zy)— W W(Z0)}
kth layer.
Substitutinguy, u,, w from Egs.(6) and(5), and ¢ from Eq. *Ql{‘I’ (z1)— ‘I" (z0)}14),. (10)

(4) into Eqgs.(1) and using Eq(2) yields 7 as
T:ékwar 27é+ 3227]]+[ékq,j(i)(z)_ékq_,{ﬁ(z)]¢{j’ ®) Adding Eq.(10) and Egs(9) for i=2,3, ... k yields

where ¢h=[¢), ¢\ 1. For the koth layer, denoteuq(x,y) O ot 220 &4+ 322 7) + [ &g Ak i
X eV, (z,)—Q*V(z
= Ui, (X,Y) =U(x,y,0), #o(X,y)=th (X,y). The functionsuy, Q¥ kg e *l o(20 = QW (2 1

W, & mare expressed in terms af, and ¢, using the (—1) =2C{é+6Csn+CYply, k=2,... L, (11)
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Fig. 3 The distributions of Vv, W, &, 7, for test plate (a) under potential load
where ch=3k Q'(z -z 1), Ch==i,[&{V)(z) Ui=Ui_1 T2 [(Ry = RY) by + (Ri7

~ Wz} - QUW(2) ~ Wiz -}, C3=21-,Q'(z
— 272 ))/2. Using Eq.(8), the conditionr,,(x,z ) =0, can be writ-
ten as

Q Ly +22,¢+32 5] +[8W(2) — Q"Wly(z)1#4=0.
12)
Eliminating ¢, from Eq.(12) and Eq.(11) for k=L, and rewrit-
ing Eq. (10) yields
2C&+6Csn=—Chil, 220¢+325n=Clh— i,

13)
whereCL="},(z5)1,— (Q) ~*8'W(z,) andl, is a 2x2 identity
matrix. The solution of Eq(13) for &, 7 is

E=Rgn+RLdh, 7=Reyr+Rid, (14)
where A=47;C7—82,C5, Ry=4A7'CL, R,=—4A"'Ci/3,
RL=—A"1(2z5C5+4C5CL),  Rb=A"(4z,C5+4CiCL)/3.
Substitutingé, 7 from Eq. (14) into Eq. (11) yields

=Ry + R ¢l
where R=akR;+asR,, R}‘lza‘jR{#aER{ﬁ(ék)’l[C;j
— W (2)]+W(2)1,,  al=2[(QY) 'Ci-zdl), &
=3[2(Q%) "1Ck—272I,]. Using Eq.(6), continuity of u between

(15)

layersi andi—1=u;+z_,¢i=U;_1+Zz_1¥;_, and using Eq.

(15):

Journal of Applied Mechanics

—R)k, i=2,... L. (16)
Adding Eqgs.(16) for i=2 to k yields u, in terms ofuj :
U=y + Ry + R bl (17)

where 55: 31,z 1(Ry ' RY), Ejklz 2107 —1(R}Il_ R}l)'
Equations(17) and(15) yield for thekgth layer:

Uo(X,Y) = Uy (X,Y) = Uy + REOY; + RO,
Yo(%Y) =t (x,y) = Ry, + ROl (18)

Substitutingg, » from Eq.(14), u, from Eq.(17) with u; from Eq.
(18) and ¢ from Eq. (15) in Eq. (6) yields

u(x,y,z)=Uo(X,y) = ZWo (X,¥) + Ri(2) ¢h1(X,y)
+Rly(2) Bh(x,Y), (19)
where  Ry(2)=R{+zR+2°R3+2°R,;, Rl (2)=R{+zR
+2%RL+2°R}, with R¥=R5— R, R'{j:Rfl—E}(f. Substituting
1 In terms of ¢y from Eq. (18) into Eq. (19) yields the expres-
sion ofu as
U(X,Y,2) =Uo(X,Y) —2Wo,(X,Y) + R (2) ¢ho(X,Y)
+RY(2) gh(xy), (20)

where
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Fig. 4 The distributions of u, w, o, 7, for hybrid composite plate  (b) under pressure load
k() — koy—1_ Rk 5F 2 35
RU@ =R(D(R) <RI F 2R+ ZRe+ 2R, - f (0l + Toglct 70+ D SIS
RN(2)=Rly(2) ~ RY(2)RY=RI+ 2R, + 22RL+ 2°R} L
=0 (22)

Al Al A A o
(R{,R5,R3,Ry) = (R} RS, R, Ry (RY) %, _
aL N ~ V ug, dwWg, Sk, 8¢'. T' is the boundary curve of the midplane
k k k ok K k koK 0 0 @70 L ) L .
R’'=R{'-RiR? R1=R-RiR}?, of the plate with normah and tangens. This variational equation
SN ol B ok SN ol B ok is expressed in terms afuy, Swy, Sy, ¢! and stress and

Rs=Rs R3RJ‘$’ Re=Rs R4Ri$' (1) electric displacement resultants to yield field equations and
Rk, RY are diagonal matrices. Thus, w, u are related to the boundary conditions. The resultanti=[N, Ny N,,]", M

primary variablesl, Wy, ¥, @' by Egs.(4), (5), (20). =[M My M ]7, P=[Py Py, Py, P,T", Sz[ij Sjyx_ S£<y_sjy]T, Q
:[QXQY]T, Q=[x QT V=[V, V1T, V{/,:[V{/,XV‘d,y]T, H
3 Field Equations and Boundary Conditions =[H,H}]", G/ are defined by

Let A_be the surface area of the plate and at the interface F—(NT MT PT S™TT=[(fT
:z’q;, ¢'i be prescribed witl"qji being the extraneous surface 1=l _ __] =[¢ 3TU>]’
charge density on it. The total number of such prescribed poten- F2=[Qx Qy Q) Q]y]T:[<f4T>] (239)
tials isﬁ(b. Let p%, p§ be the forces per unit area applied on the R — _ . _ .
bottom and top surfaces of the plate in directmihe principle  V=(7), Vy,=(Vy7), H'=(¥,(2)D), G'=(V¥, ,(2)D,).
of virtual work, [33], can be expressed, using the notation (23)
(.)=3k % (...)dz as _
fi1 wheref;=[15zl; ®*®4], f,=[RY R =W (2)1,], 15 is a 3x3

identity matrix and
f [(0xBext aybey+ Tyy0Vxyt Ty20Vyst T1x0V2xt Dy y
A

R, 0 0 0
+Dy8¢,y+ D86 5) ~ P;OW(X,y,Z0) ~ P;OW(X,Y,2,) o~| 0 0 0 R

+D4(X,Y,20) ¢ =D A(X,y,2) 6" — q; 5 JdA 0 RY R, 0
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Fig. 5 The distributions of {d, w, a,, 7, for hybrid composite plate  (b) under potential load
R, 0 0 0 du,| [ 8uo, ] owe, Ri,  RE|[ dvo. . RE REL
ek=| 0 0 0 Ry (24)  Lous] | duo | [ owos| T[ RS, R 9%, |RE REL

0 RY R 0 5
y | X| sel |- (27)

It can be shown that elements®f, R¥, N, M, P, S transform as o'y

second-order tensors and elementslpﬁ/{,), Q, Qj, HI transform
as vectors for the coplanar axesy andn, s.
Using expressions ap, w, u from Eqgs.(4), (5), (20) and using
Eq. (23), the area integral in Eq22) becomes
J [Se1F,+ 850F o+ S Hi+ 3Gl — F 0w, — FLop ]dA
A
(25)
where

—w,
WYY
_2W0,xy l,b’ox’X ¢ox,y l//Oy,X ’//Oy,y ¢{xx d)fxy QS!yx (rb{yy]T
?ZZ[IZ/OX ’!/Oy d)Jx d)?y]Tv

Fa=p3+pZ,

e1=[Uo x Uo y Uo ytUo x —Wo

Fl=—pyW)(2z0) — p2Wl(2) + DXy, 2.) 8jn,
—D4(X,Y,20) 6j1+ 0, jj.. (26)

&;j is Kronecker’s delta. Using Eq20), the relation for compo-
nentsn, s can be expressed as

Journal of Applied Mechanics

Using expressions ab, w, u from Eqgs.(4), (5), (20) and resultant
components for axes, s defined analogous to E¢23), the line
integral in EqQ.(22) can be expressed using EG7) as

0.5

T R o[ S B 7
closed circuit _,.«f;;/ | open circuit " 1
=7 [ 5, ]
r 5005 \ ]
L o [A N7 4
z/h r //{." ,/ ] [ // 5=5 1
045 (4" N 4 F o .
NS N §=10
AR 3
N \'*\ — Exact 1
—_5 TN - - - Present |
[ =1 /S FSDT ]
s L v PRV T SN T B ST R
0.4
-1.0 -0.5 00 0 5 10 15
$(0.5a,0.5b,2) $(0.5a,0.5b,2)

Fig. 6 Closed-circuit and open-circuit potential across the pi-
ezoelectric layer of plate (b) under pressure load
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Table 1 Three-dimensional results and percentage error for present theory (Pres.) and FSDT for n=1

plate (a) plate (b)

load case 1 load case 2 load case 1 load case 2

% error in % error in % error in % error in

entity S 3D | Pres.|FSDT 3D | Pres.|FSDT| 3D |[Pres.|FSDT 3D |[Pres.|FSDT
We 5] -1.1026] -1.02| 15.36| 0.2420{ -9.40|-23.88]-2.1693(-0.01| 3.48] 0.2430|-3.28|-29.06
10{-0.5613 | -0.55 4.67| 0.2190{ -3.08| -7.96|-1.2200(-0.24| 0.7 0.1985|-1.33| -9.53
100]-0.3558 | -0.01] 0.05| 0.2030| -0.03| -0.09(-0.8896| 0.00( 0.01] 0.1816(-0.01| -0.10

o° 5| 0.6522| -1.46(-50.26( 13.5130| 16.50| 29.32| 0.9030| 2.82|-18.44| 22.3540|-6.96( -9.08
10| 0.4718{ -0.86|-19.61| 18.1530{ 4.23| 8.00| 0.7951| 0.56| -5.66( 21.0430(-2.01| -2.58
100| 0.4157] -0.01| -0.23] 20.9670| 0.04| 0.09( 0.7557| 0.01| -0.05| 20.5730|-0.02{ -0.03

oP 5| -0.3786-12.27{-31.03(-44.3840| 4.44| 5.72|-0.4696|-7.60|-30.99|-36.3650| 0.56| -8.48
10{ -0.2916| -4.58{-11.61|-45.9040( 1.28| 1.65|-0.3571(-2.95(-10.92(-36.9900| 0.09}-10.12
100| -0.2602| -0.75| -0.841-46.5590| -0.21| -0.21|-0.3181|-0.57| -0.66]-37.2290|-0.09}-10.58

Tez 5| -0.2597| -0.77| 21.31| -9.5732| 12.04| 16.64|-0.3980( 0.64| 5.86| -9.4582| 2.69| 4.64
104 -0.3167| 0.36] 6.29|-10.7010| 3.56; 4.97(-0.4195( 0.22| 1.51{ -9.8089| 0.71| 1.21
100| -0.3504| 0.01] 0.07|-11.2700| 0.04| 0.05|-0.4275| 0.00| 0.01] -9.9374| 0.01| 0.01

Tzy 5| 1.5811| -6.07|-16.78(-12.5470|-10.89|-15.48| 0.9454( 1.69| -5.22| -3.7263|-3.55|-12.08
10| 1.3169| -1.80| -6.19(-10.6190| -4.26| -6.18| 0.6746( 0.48| -2.50| -3.1249(-1.23| -4.07
100{ 1.1842| -0.02| -0.08| -9.5554| -0.05( -0.08| 0.5686| 0.01| -0.03| -2.8946|-0.01] -0.04

é (1) or| 5|-0.9442( -5.50| -4.92| -2.0547| -1.09| -1.60|-1.0169|-3.58{-10.70| -1.3006-0.34| -0.70
D, (2) | 10} -0.4692| -1.42| -3.78| -2.0162| -0.26| -0.45|-0.5669|-1.23| -5.03| -1.2911|-0.04| -0.13
100| -0.2988| -0.02| -0.07| -1.9958| 0.15| 0.15]-0.4151)|-0.01| -0.07| -1.2876] 0.08 -0.08

Up N, UgNns, Wo(V,+M ,
fr [Nn5u()n+anauosfMné\’vo,nJr(Vn*FMns,s)é\NOJr Pnal//on O OS ne O( " ns,s)
L

+Pﬂ85¢05+SL5¢{.n+(Hjn_Vj¢n_SLS,S)5¢j]dS WOnMnr l/’O Pnr lﬂo Pnsv ¢jnS£1 ’

+2i [AMnS(Si)&NO(Si)_Asfws(si)ﬁqu(si)]:or (28) ¢j[gj_@.d)n_gi_lsvs_{ai(nx_ka{/ny-F Hi(nx-l,- H{,ny

where the lateral surface has cornersats; . —(S +9_ Ynu—(Sl +S yp.—Si 30

The area integral in Eq(25) is expressed in terms afug, (St Sy (S + Sy 0y~ St} (30)
5u0y, SWo, 51//0x, 51//0y, 8¢, by using Green’s theorem if re-
quired, and the terms involvin@uox, 5u0y, oo, &poy, OWox
SWoy, ), ¢, , in the integrand of' | are expressed in terms
of componentsy, s. The details are omitted. Thus EQ2) yields _ _
coupled field equations consisting of five equations of equilibrium Wo(S))AM((s),  ¢(s)AS(s).
andn equations for electric potentials:

and at corners; :

NN —0 N N —0 _ The relations between the resultafits, F,, H!, G/ with
xx Nxyy = M xy,x— Nyy = M €y, ¢}, ¢ are obtained by substituting the expressionsrof,
~My— 2Myyxy— My gy~ F5=0, D, D, into Egs.(23):

—Pyx=PyxytQx=0, —Pyy—Py,+Q,=0,
- QL,X_ Q{/,y+ Si(,xx—i_ SLy,xy—i_ S{/x,xy+ S{/,yy_ Hi,x_ Hi/,y+ Gj
—FL=0, (29)

with j=1,2, ... n,. The boundary conditions dn, are the pre-
scribed values of one of the factors of each of the following prod-
ucts: where

Fi=As + 8¢, Fo=Aey+p o),

HI=pe,~El'gl, GI=pe-El'¢)" (31
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Table 2 Three-dimensional results and percentage error for present theory and FSDT
for plate (b) for n=3

load case 1 load case 2
% error in % error in

entity S 3D Pres. | FSDT 3D Pres. | FSDT
We 5 0.13230 0.66 28.48 | -0.05213 4.56 | -103.9
10 0.04762 0.39 7.59 | -0.03216 -421 | -55.33

20 0.02107 -0.33 1.58 | -0.02329 -2.66 | -21.11

100 0.01183 -0.03 0.04 | -0.01985 -0.15 -1.03

of 5 | -0.17387 42.18 | -50.52 -33.166 | -24.65 | -37.76
10 | -0.12604 7.09 | -31.07 -25.186 | -13.01 | -17.79

20 | -0.09864 1.26 | -11.56 -21.992 -4.32 -5.73

100 | -0.08785 0.04 -0.55 -20.796 -0.19 -0.25

oP 5 0.17387 | -23.11 | -75.98 36.688 2.89 -8.92
10 0.07405 | -12.10 | -49.60 37.962 1.09 | -11.40

20 0.04597 -5.38 | -21.31 38.477 0.25 | -12.44

100 0.03638 -0.76 -1.58 38.671 -0.06 | -12.83

Taz 5 | -0.10087 -6.92 43.69 -23.875 17.31 29.51
10 | -0.12966 0.55 12.37 -28.581 5.37 8.33

20 | -0.14146 0.35 3.22 -30.321 1.44 2.18

100 | -0.14593 0.02 0.13 -30.961 0.06 0.09

Tzy 5 0.08273 4.62 7.14 -2.4917 -5.08 | -22.94
10 0.04545 6.61 -0.90 -1.7890 -2.90 | -12.92

20 0.02687 2.88 -2.18 -1.4755 -1.40 -4.95

100 0.01912 0.16 -0.17 -1.3458 -0.07 -0.23

¢ (1) or 5 0.63291 | -23.78 | -19.64 1.3451 -2.29 -4.03
D, (2) 10 0.18876 -7.14 | -14.81 1.2994 -0.79 -1.31
20 0.08045 -2.57 -9.15 1.2841 -0.17 -0.31

100 0.04524 -0.15 -0.67 1.2787 0.06 0.05

A=(f}(2)Qf4(2)), A=(f1(2)Qf4(2),

B =(t3(2)elW), (2)),

B =(f1(28V}(2)), El'=(pa¥}, (2¥}, (2)), EI'=(5¥(2)¥}(2)),

All
A21

A1
]
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Substitution of the expressions of the resultants from E2fb.

into Egs.(29), yields following coupled equilibrium equations in

terms ofU=[uo_Uo Wo tho, Yo, o, zpoLqﬁl ¢? ... ¢"#]", taking

into account the zero elements Af A, B, E E for cross-ply
laminates:
LU=P (34)

whereP=[P, P, Ps P, PsPLP2. .. Pa4]". L is differential op-
erator matrix withL,=Lp; and

Lia==An( ) Asd )yyr  Liz= = (At Aggl( ) xy,
Lig= A ) oot (Ast2A30) () xyys
Lia=—A ) xx—Asg( ) yy: (Ar10t Az () xy:
Loo=—Ax ) yy=Ass( ) xx:
L1,5+j’:_AJ;|_,'11( ),xxx_(Aj3t12+A13:13+Aj1,,14)( ),xyy_ﬁjll( ) xs
Log=(Azat 2A30) () xxyT A2s( ) yyys
Los= = (At Asg)( ) xy
|-2,5+j’:_(Aj2:11+Aj3/,12+A%”’,19( ),xxy_A12:14( ),yyy_'gjzl( )y
Los= —Agd( )xx—Az1d )yyr  L3z= ~Aul ) xoo (AsstAsy

T4R60) () xxyy~ Ass( ) yyyy
Las=Asd ) oxxT (Aszt2Ag9) () xyys
L35= (As10T 2A60) ( ) syt Asad ) yyys
L3,5+j’:A£1,,11( ),xxxx+(Aill,14+2Aj6:12+2A£3:13+A£3,,1])( ) xxyy
+A£:14( ),yyyy+B£( ),xx+,3j5’( Yy
La=Au—Ard ) s Asel )y Las=—(Az10tAgd)( )y,
L4,5+jr=—Aj7:11( ),xxx_(Aj7’,14+Aj8’,12+A£3’,13)( ) xyy
+ (At Bl B )

Lss=Axn—A01d )yy:

Lis=—

L5v5+j =T (Aé,12+ Ag),l3+ AJlO,l:I)( ),xxy_ A!Lo,lz( ),yyy+ (A124
+ 18122_ :B!I.O)( ),y
L5+j 5+ == A!I.Jl,ll( ),xxxxf ('AJ:I.]1,14+ A!I.JZ,12+ 'AJ:LIZ,lS+ A!I.J3,12

+A'113,13+ AJ1]4,11)( ),xxyy_ Allj4,14( ),yyyy+[A1313 - J1J1
=B+ B+ BT~ EU 10 ) ot (AN, — Bl — B
+18£1JZ+B£12J_EJ2]2]( ),yy+ E“ :

P,=P,=P,=P5=0, Ps=—F;, PLk=—FL (35)

wherej, j’=1,...n,.

wo ¢
Uo, o,
u

o, o,

[Wo & ]nmsin(nmx/a)sinimary/b)
[on z,//OX]nmcos{nwx/a)sir(mwy/b) .
1 [uoy z,/foy]nmsin(nwx/a)cos{mwy/b)

©

M

n=1

3
[

Equations(34) yield algebraic equations far, mth Fourier com-
ponent. These are not listed for brevitycan be obtained using
Eq. (2), or more accurately by integrating the three-dimensional
equations of equilibrium.

4 Numerical Results and Discussion

The accuracy of present theory is assessed against the analytical
three-dimensional piezoelasticity solutior,6]. The three-
dimensional solution is obtained by analytically solving the three-
dimensional piezoelasticity constitutive relations, strain-
displacement and electric field-potential relations, and the stress
equilibrium and charge equilibrium equations subject to the exact
satisfaction of the boundary and interface continuity conditions
for simply supported plates witb, =0, w=0, o,=0, ¢$=0 atx
=0,aandu,=0,w=0, 0,=0, $=0 aty=0, b. Since the number
of displacement unknowns in the present theory is the same as in
FSDT, results are also compared with the coupled FIR3],
with shear correction factoré§SCF3 according to Whitneyf39].

Two inhomogeneous hybrid simply-supported plat@sand (b)
consisting of an elastic substrate with a layer of PZT-pH], of
thickness 0.kh bonded to its top are analyzed. The top and the
bottom of the substrate are grounded. The stacking order is men-
tioned from the bottom. The substrate of pléaghas five plies of
thickness 0.08/0.2251/0.1351/0.1&/0.27 of materials 1/2/3/3/3
with orientation 6, as [0°/0°/0°/90°/09. The plies have highly
inhomogeneous stiffness in tension and shear and is a good test
case[41]. The substrate of plat) is a graphite-epoxy compos-

ite (material 4,[40]) laminate with 4 layers of equal thickness
.225 with symmetric layup[0°/90°/90°/09. The PZT-5A layer

has poling in+ z direction. Platga) is a square plate and plate)

is a rectangular plate with/a=3. Convergence studies have re-
vealed that converged results are obtained for plabesnd(b) by
dividing the PZT layer into four equal sublayers for discretizing
¢. The material properties are:

[(Y1,Y2,Y3,G12,G23,G31), V12, V13, V23] =

Material 1:[(6.9,6.9,6.9,1.38,1.38,1.8&Pa, 0.25, 0.25, 0.25

Material 2:[(224.25,6.9,6.9,56.58,1.38,56)58Pa, 0.25, 0.25,
0.25

Material 3: [(172.5,6.9,6.9,3.45,1.38,3)485Pa, 0.25, 0.25,
0.25]

Material 4:[(181,10.3,10.3,7.17,2.87,711GPa, 0.25, 0.25,
0.33

PZT-5A: [(61.0,61.0,53.2,22.6,21.1,21.1GPa, 0.35, 0.38,
0.38], and

[(d3lrd321d33vd15‘d24)1(7711r 7225 7733)] = [(_ 171,-171,374,
584,584 10" **m/V,(1.53,1.53,1.5x 10 8 F/m].

Two load cases considered are:

1. pressurep§=—p0 sin(nmx/a)sin(my/b) on the top surface

To assess the theory developed herein, by comparison with the With closed circuit conditiong, =0 on it.
analytical three-dimensional piezoelasticity solution, analytical 2. applied actuation potentia"¢= ¢, sin(nmx/a)sin(mry/b) on

Navier solution is obtained for simply-supported rectangular
plates of sides, b along the axeg, y for the boundary conditions

at x=0a: Ny Uo,,Wo, My, Py ,\Ifoyld;J"SL:O;

aty=0b: Ny,Ug,Wo,My Py, W, ,4,8,=0; (36)

forj=1,...n,. The solution is expanded as
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the top surface with zero pressune: € p2=0).

The results for these cases are nondimensionalized Swith/h,
dr=374x10 CN %, Y;=6.9 GPa for platda) and 10.3 GPa
for plate (b):

1. (u,v,w)=100(u,v,w/S)Y1/hSpy,
O'y,Ssz)/Szpo, ¢=104¢YTdT/h32p0,

(;x :;y x?zx) =(oy,
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2. (U,0,W)=100(u,v,W/S)Sdr¢o,  (04,0y,70=(0x,0y, ¢°(2.0%), whereas the error in FSDT is large, being 9.5%nfor
St,0hIY1d1dg, d= ¢l Py, D,=D,h/100Y1d2¢hq. for load case 2 and upto 10.9% and 10.1% for the stresses for
loads 1 and 2, respectively.

The dimensionless entities are chosen in such a way that theiThe three-dimensional results and the error percentages in the
values are almost independent $ffor thin plates having large present theory and FSDT for the response of platdor the two
value of S Hence the dimensionless paramed@&ppears in some load cases witin=3 are given in Table 2. The error in both the
of them. These dimensionless entities are meaningful since theyo-dimensional theories increases with highersince it effec-
have constant values in a coupled CLT. tively decreases the span-to-thickness ratio. The error of the

The present results are compared with the three-dimensiopaésent theory fow is 0.7% and 4.6% for loads 1 and 2, respec-
results obtained as per Rd6] and the coupled FSDT resultstively, as against 28.5% and 103.9% in FSDT. In stresses too, the
obtained as per Ref25] with Whitney's SCFs[39]. The thick- present theory shows remarkable improvement over FSDT in all
ness distributions ofi or v, w, oy, 7,, are compared in Figs. 2 cases.
and 3 for plate(a) and in Figs. 4 and 5 for platé). The highly The above results reveal that the present theory yields generally
zig-zag in-plane displacementsandv are well predicted by the accurate results which are consistently superior to FSDT for both
present theory except for the lower-half of test pi@eand upper- mechanical and electrical loads. Though FSDT yields relatively
half of hybrid composite platgb) under potential load for the good prediction of the central deflection for the pressure load
thick caseS=5. The smeared laminate theories like FSDT canné@se, it gives highly erroneous results for the inplane stresses in
predict zig-zag variation. The thickness variationveffor load the elastic as well as piezoelectric layers. This inferior perfor-
case 2Figs. 3 and 5is very well captured by the present theorymance of FSDT is essentially due to the globally linear approxi-
even for thick plates in case of hybrid plat®), since it includes Mation of the in-plane displacements across the laminate thickness
the effect of straire, induced bye throughdss. The thickness in this model, which cannot account for the zigzag variation of
distributions Ofo, Tox in the present theory are in good agreethese QISp|aC_ementS a(_:I’OSS the th_lenQSS as 0bta|ned from the
ment with the three-dimensional solution. The thickness distribffirée-dimensional solution, shown in Figs. 2-5. Moreover, this
tions of electric potentia for plate(b) with the top surface of the theory does not satisfy the transverse shear stress continuity con-
piezoelectric layer in closed circuit,,=0) and open circuit ditions at the layer interfaces. In contrast, the approximations for

-0 diti din Fio. 6. Th t th the displacement field across the thickness in the present theory
(q”d)_ ) conditions are compared in Fig. 6. The presen €OL¥e much closer to the three-dimensional solution. It also satisfies

yields good prediction of the potential fielpifor both closed and the shear stress continuity conditions at the layers interfaces.
open-circuit conditions, used in actuation and sensory modes, However, the transverse normal stress induced due to the piezo-
spectively. electric stress constaag; for the same deflection appears to have

The three-dimensional results and the error percentages withyreater value in the potential load case 2 than in the pressure
respect to the three-dimensional solution in the response prediclegd case 1. Therefore, the neglectogfin the constitutive equa-
by the present theory and the coupled FSDT for pléieand(b) tion causes greater error in the deflectioin load case 2 than in
for the two load cases with the Fourier tems=1 are given in load case 1 in the present model. It is important to note that the
Table 1.w, is the deflectionw at the center. For platés), the performance of FSDT strongly depends on the choice of the shear
stresso® is o, in the elastic substrate at —.41h™ for case 1 and correction factors, which again depend on the boundary and load-
atz=.265 for case 20P is the maximum stress, in the piezo- ing conditions of the platg42]. The Whitney’s SCFs used in the
electric layer occurring at its top and bottom faces for cases 1 apigsent study, which are calculated for cylindrical bending of
2, respectively. For platéb), o© is the maximun, in the elastic plates, may not be \(alld for pl{ites with more complex geometries,
substrate occurring at its bottom surface for case 1 and top surf&@indary and loading conditions of the plate. The much larger
(z=.4h") for case 2.0” is the maximumo, in the piezoelectric error in FSDT for deflection in Iqad case 2 compared to load case
layer occurring at its top and bottom faces for cases 1 and 2aPPears to be partly due to this reason. The present theory does
respectivelyr,, is the maximum stress at=0 for load case 1 and NOt suffer from this drawback.
at the PZT interface for case 2,, is the maximum stress at the .
top surface.p andD, are the méximum values, respectively, a? Conclusions
midsurface and top of PZT layer for load cases 1 and 2. TheThe zig-zag coupled theory presented herein, for hybrid plates
present central deflection agrees well with the three-dimensioneth surface bonded or embedded piezo-electric layers, is the first
solution for all cases, except for a relatively large error of 9.4%oupled theory in which the shear stress continuity conditions and
obtained in case of thick test plata) with S=5 under potential shear traction free conditions are satisfied exactly, even for the
load. case of nonzero in-plane potential field and the effect of piezo-

For the thick test plate a witl$=5, the error of the present electric transverse normal strain is accounted for in the transverse
theory with respect to the three-dimensional resultsafoo® and displacement field. Its accuracy is established by comparison with
7,y is Within 1.5% for case 1 witm=1, whereas there is muchthe qnalytical three-dimensional piezoelasticity solutioin by con-
larger error in FSDT of 15.4% for deflectiomand upto 50.3% for Sidering two thick, moderately thick and thin plates with highly
the in-plane stresses. For a moderately thick plaewith S heterogeneous layups. The present accurate theory is also eco-
=10, the error in FSDT is 4.7% fow and upto 19.6% for the Nomical since the number of primary mechanical variables is the
inplane stresses for case 1. For the moderately thick plate und@Me as that of FSDT which yields poor results for moderately
load case 2 wittS= 10, the error in the present theory is 3.1% fofNick heterogeneous plates. The theory can accurately model
w and within 4.2% all stresses, whereas the error in FSDT is largdpSed and open-circuit electric boundary conditions in the sensor
being 8.0% fow and upto 8.0% for stresses. The transverse elegd actuator layers. The theory can readily be extended to any
tric displacemenD, induced at the actuated PZT surface is acci@eneral anisotropic laminate configuration without any additional
rately predicted by both the theories. approximations. This work is in progress.

For the thick hybrid composite plate) with S=5, the error of

the present theory is within 3.6% for all entities excef{7.6%) Nomenclature

for load 1 ando®(7.0%) for load 2, whereas there is very large a, b, h, L = sides along axey, y, thickness,
error in FSDT of 29.1% fow for load case 2 and upto 31.0% and __ number of plys

12.1% for the stresses for load cases 1 and 2, respectively. For the A, A = beam stiffness matrices
moderately thick platga) with S=10, the error of the present dj ,Eij = piezoelectric strain and stress con-
theory is within 1.3% for all entities exceptP(3.0%) and stants
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1 Introduction result involves the use of generalized inverses of various matrix

When constraints are applied to mechanical systems, additioﬁﬁﬁzn;'g??hggg égen)érdae”rz“é% tlrr]“e/g r;eessults by using the special prop-

forces of constraint are produced that guarantee their satisfactio I this paper we give a new, alternative seeaplicit equations

Irrl]:n(ijceaylels(;zgﬁwnst %fa?%:g# a;frgigcfi nt:)(/)tlr?gn:grrc)cl?snssté?éﬁgt;n ;gédescribes the motion of constrained mechanical systems that
mathematicians, like Appe(ll], Beghin[2], ChetaeV{3], Dirac .. ay or may not satisty D'Alembert's prlnc!ple. Thus these equa-
tions are valid when the forces of constraint may do work under

[4], Gausg[5], Gibbs[6], and Hame{7]. All these investigators .virtual displacements. We show here that there is no need to use

have used as their starting point the D’Alembert-Lagrange Pr'.ghy concepts related to generalized inverses in the development of

ciple. This principle, which was enunciated first by Lagrange i ; L . :
; : : : ese general equations. The explicit equations developed herein
his Mechanique Analytiqu¢8], can be presumed as being, at th an handle time dependent constraints that are nonlinear in the

pr%s,i?éntq'gq;’t,gtptgﬁc?;;e n?;féisgfagsizﬂﬁ%ﬂ Sgg;rgilr?; the n eneralized velocities, as do the equations obtained using gener-
ture of constraint forces in mechanical systems, and this assu lized inverses. Instead of relying on the properties of generalized

. . - L inverses, our explicit equations rely on a deeper understanding of
tion seems to work well in many practical situations. It states théﬁtual displacements as provided in Ref63,14.

the total work done by the forces of constraint under virtual dis- After obtaining the new equations, we show that they are in-

placements is always zero. In 1992 Udwadia and Ka[&bab- d . . : .

; - ey . . : eed equivalent to those given earlier by Udwadia and Kalaba
tained a S|mple,e_pr|C|t set of equations of motion, suited for 11,12 which make extensive use of generalized inverses. Three
general mechanical systems, with holonomic and/or nonholI -

nomic constraints. Though their equations encompass time dep aj_stratlve %(]anl]ples are per\éldeld Sth'Pc? th?us_e of the new
dent constraints that arfd) not necessarily independent, a(®] uations. The last example deals with sliding friction.
nonlinear in the generalized velocities, their equations are valid
only when D’Alembert’s principle is observed by the constraint
forces. 2 Explicit Equations of Motion for Mechanical Sys-
However, in many situations in nature, the forces of constraifgms With Nonideal Constraints

in mechanical systems do not satisfy D’Alembert’s principle. As
stated in Pars'@ Treatise on Analytical Dynamid4.0], “There
are in fact systems for which the principle enunciate
[D’Alembert’s principlg . . . does not hold. But such systems will
not be considered in this book.” Such systems have been consid- M(q.t)§=F(q.q,t); q(0)=0q,,q(0)=0q0., 1)
ered to lie beyond the scope of Lagrangian mechanics. Recently, . . .
Udwadia and Kalabg11,17 have developed general, explicitVhere. d IS $he ‘generalized  coordinaten-vector g
equations of motion for constrained mechanical systems that may91.9z. - - - .da] ; M is ann by n symmetric positive definite
or may not satisfy D’Alembert’s principle. The statement of theifhatrix; and,F(q,q,t) is then-vector of the “given” force which

is a known function ofy, q, and timet. The number of degrees-
" Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Of'freedom of the SyStem. is equal to _the n.umber of generalized
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIEDME-  coordinatesn, characterizing the configuration of the system at
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 14, 2003 ny time,t. The accelerationa(t), of the unconstrained system

final revision, March 8, 2004. Associate Editor: O. O’Reilly. Discussion on the pap ; ; ; _ -1 -
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of AppliglescnbEd by Eq(l) is then given b)a(t) M(q’t) F(q’q’t)'

Mechanics, Department of Mechanical and Environmental Engineering, University L€t the system descnb(_:-'d by EQ) be nowfurther constrained
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepley the m constraint equations

until four months after final publication in the paper itself in the ASMEJENAL OF . .

APPLIED MECHANICS. ¢i(g,q,t)=0, i=12,...m, (2)

For an unconstrained system Mfparticles, Lagrange’s equa-
H’on of motion for the system at time can be written, using
generalized coordinates, as
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in which k<m of these constraint equations are independent. We [ nn ~[17ngn

shall assume that the constraint equations satisfy the initial condi- s as

tions given in Eqg.(1). Equation set?2) includes both holonomic Lr=| [Blmxn [O]mxn [ C}: b |=s,

and nonholonomic constraints. Assuming sufficient smoothness, [0](n—kyxn [VT](nfk)xn S VTCs

we can differentiate equation s€2) with respect to timet to (15)
obtain

whereL is a (2n+m—Kk) by 2n matrix, r is a 2n-vector, ands is
A(,9,1)g=b(q,q,1), ®3) a(_l_zkr]”m_kt)_'vecgé_{-s) itutes the fund al | ¢ of
. . e equation s constitutes the fundamental linear set o
where the elements @f andb are known functions ofy, g, andt  gqyations that needs to be solved to obtain both the scaled accel-
and the matrixA is anm by n matrix that has rank. eration,ds, of the constrained system as well as the scaled con-

The presence of th? constralnts causes additional constr% taint forceFS. In what follows, we shall show that a solution to
forces to arise at each instant of time to assure that the constral[plg linear system of equations exists and is unique

are satisfied. The equation of motion for the constrained syste . - .
can be then expresged as 4 %e premultiply both sides of Eq(15) by LT to obtain the

} _ _ equation
Mg="F(q.q,t)+F(a.q.t), (4) -

- - ¢ o I BT 0 I BT o] &
where,F is the given force, an&° is the additional force engen- LTLr= 0 |r= b
dered by the presence of the constraints. -1 0 V -1 0 V T ’

L T V'C
Premultiplying Eq.(4) by M ™2, we have 3(16)
125\ —1/2 - —12Ec( y £
which can be written as D—B'B, 17)
QS(t)iFg:aS(t) (6) and
Here we have denoted the “scaled” acceleration of the con- E=VVT (18)
strained systen ¥4, by §4(t), the “scaled” force of constraint, ) _
M~Y2F¢ by FS, and the “scaled” acceleration of the uncon-Eduation(16) can be written as
strained systemM Y%, by ag(t). In the same manner, the con- [1+D]nxn  —[Hnxn a;+B'b
; ; -1 1/2;; Gr= = 19

straint Eq.(3) at timet can be expressed a& Y3 (MY%q) r o [1+Ele —a+EC,) (19)

=h. DenotingAM 2 by them by n matrix B, we obtain
whereG is the 2 by 2n symmetric matrixL L. We next show

Bas=b. () that the inverse of the matri® exists, and we determine it ex-
A virtual displacementsee Refs[13,14]) is any nonzero vector, plicitly.
w, that satisfies the equation LeEmma 1. o _
. Result I: The inverse of the matri& given in Eq.(19) exists and
A(9,9,t)w=0. ® is
When the constraints are nonideal, the work ddnét), by the P J
constraint forceF°, under virtual displacementsy, needs to be G1=L S}‘ (20)
specified through knowledge of tlevectorC, so that,[11]
W) =wTFS(9,8,0=w'C(,4.0) @ e Lo
whereC(q,q,t) is a knownn-vector, and characterizes thature J=(D+E)"=(B'BHVV) ™, (21)
of the nonideal constraint forcé=¢. This is an extension of P=J(1+E), (22)
D’Alembert’s principle. and
Equation(8) can be rewritten as
=J(1+D). 2
(AM~2)(M¥2w) =0, (10) 5=3(1+D) (23)
. . Result 2
Similarly, Eq.(9) can be rewritten as
SE=1-JD, 24
(WTM 1/2)(M_1/2FC)=(WTM 1/2)(M_1IZC). (11) ) ) ) ) ( )
. y which is a property that we shall use for the determination of the
Denotingv =M ¥4, Eq. (10) becomes “scaled” force of constraintfe.
Bu=0. (12) Proof. N -
Result 1 For simplicity, let us writeG™* as

SinceM*? is nonsingularp is then any nonzero vector such that

relation (12) is satisfied. Furthermore, after denotinG, G1= P J (25)
=M~Y2C, Eq.(11) can be written as J s
vTFS=0TCq. (13) Beginning with the conditiols "G =1, we obtain
SinceB has rankk, there aren—k linearly independent vectors, P JjjI+D I I 0
such thaBv =0. Assembling then such vectars . . .v,_y in the 3 sl =1 1+l lo 1l
matrix V, we obtain ) _
which can be written as
VTES=VTC,. (14)
PI+D)-J —P+JI+E)] [I 0
. . i _ _ 26
The matrix V can be constructed by a judicious use of the Gram J14D)—-S —I+S(+E) 0 | (26)

Schmidt procedure.
Consider the linear Eq$6), (7), and(14). These equations can A comparison of the corresponding members on either side of the
be expressed as equality in Eq.(26) shows that
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P(1+D)-J=I, (27) force because of the nonideal nature of the constraints. The ex-
plicit equation of motion with nonideal constraints can then be

S=J(1+D), (28) written as
P=J(1+E), (29)  MG=F+F°=F+MY2IB"(b—Aa)+M>3(1—JIB"B)M ~*2C.
and (40)
—J+S(1+E)=I. (30) We emphasize that E¢40), which givesexplicitly the motion of

) ) ) ) nonholonomic systems with nonideal constraint forces, dugs
Then replacing the matri® obtained from Eq(29) in Eq. (27)  jnvolve any generalized inverses, or any Lagrange multipliers.
and simplifying that, we have Previous investigators, so far as we know, have not obtained
JI+E)(1+D)—J=J(D+E+ED)=1. (1) explicit equations of motion fc_>r non-ideal cc_mstraints. Th_e only
other general equation of motion for constrained mechanical sys-
SinceE=VV', D=B'B, and BV=0, we haveED=VV'B'B tems with nonideal constraints available in the literature to date

=V(BV)"B=0. appears to be the one obtained in Rgf4,12 and[15,16. How-
Thus Eq.(31) can be simplified to ever, the results that have been obtained so far use the concept of
the generalized inverse of a matrix, and the derivations are heavily
J(D+E)=I. (32) dependent on the properties of generalized inverses. The equation

. . obtained herein is(1) explicit; (2) applicable to nonideal con-
From Egs.(17) and(18), it can be seen that treby n matrix straints; and(3) does not use generalized inverses. In the next

B . .
D+E=B'B+VV'=[B"V][s]. Since the matri(B'V] has section we shall compare our result with those obtained in Refs.
full rank, the rank of BT V][ST] isn. HenceD +E has an inverse [11,12.

and from Eq.(32) the matrixJ is given by There are, however, a number of formulations of the equations
. T —— of motion for constrained mechanical systems under the assump-
J=(D+E)""=(B'B+VV')"" (33) tion that the constraints are all ideal, i.e., wh@rn Eq. (40) in

: ; identically zero for all time. It is then perhaps worthwhile com-
thfr?vsgt?é(r?g’s(zg)’ and(29), the inverse of the matris can be paring Eq.(40) for C=0, thereby restricting it to only ideal con-

straints, with formulations that have been obtained by previous
P J J(I+E) J investigators. So, to elucidate our equation further, we compare
Gl=[J S} = ] 1+l (34) the form of the equation obtained by us with those obtained pre-
( ) viously. Though Eq(40) is also valid for nonideal constraints, in
whereJ is given by Eq.(33). OO0 the next paragraph we restrict ourselves, for purposes of compari-
Result 2 By substituting Eq.(28) in Eq. (30), we obtain—J son with other formulations of the equations of motion obtained
+S(1+E)=—J+S+SE=—J+J(1+D)+SE=I, which can be by other researchexnly to when all the constraints are ideal.
simplified to Unlike the results obtained in Beghj2], Chatae\{ 3], Hamel
[7], and Lagrangé8], Eq. (40) explicitly gives the force of con-
SE=1-JD. O (35) straint; no Lagrange multipliers are involved. The use of Lagrange
% ) multipliers constitutes one approach to solving the problem of
From Egs.(19) and (20), the vectorr =[ -], can be uniquely constrained motion. We use in this paper a different approach that

a;+B'b
—agt+tECy

found as is innocent of this notion. These multipliers, which were invented
. P 3 by Lagrange, are an intermediamnathematical devictor solving
s
[Fg (essentigl to either the description of the physical problem of
constrained motion or to the final equation of motion that is ob-

(36) the problem of constrained motion. As such, they are not intrinsic
J S '
Using Eq.(36), the “scaled” force of constraint can be exX-ained, as witnessed by the fact that we make no mention of

panded as Lagrange multipliers in our approach. Another important point of
c_ T difference is that the constraint equations we use to obtain Eq.
Fs=Jas+JBb=Sa+SEG. (37) (40) are more general than those in Appll, Beghin[2], Cha-
From Egs.(23) and(24), Eq. (37) can be expressed as taev[3], Gibbs[6], Hamel[7], and Syngd17] because the ele-
. . ments of the matrixA are allowed to be not just functions gfand
Fs=Jas+JB'b—Jas;—JIDas+(1—-JD)Cs t, but also ofg. This greatly expands the scope of the type of

_1nTh_ _ constraints that we use. However, it entails a more delicate inter-
=JB'b-JDas+(1-JD)Cs. pretation of the concept of virtual displaceme(gse, Ref[14]).

Noting thatD = BTB, the last equa’[ion gives a Simp|e form forFurthermOre, unlike the formulations of Glb[ﬁ] and Appell[l]

the constraint force the coordinates we use to describe the constrained motion are the
sameas those used to describe the unconstrained motion; no
F¢=JBT(b—Bay)+(I-JB'B)C;,. (38) quasi-coordinates are used, and no coordinate transformations are

. . . . ) eeded. Dira¢4] developed a set of equations for the constrained
S'”‘j‘i the acceleration of the uncqq?traln?gzsystem |sidlef|ne ion of hamiltonian systems in which the constraints are not
a=M""F, we have Ba;=(AM" 2)_(M F)=1A(l\/! F)  explicitly dependent on time. Our equation differs from his in that:
=Aa. Using this equality, and substitutir@ by M~2C in Eq. (1) Eq. (40) (with C(t)=0) is also applicable to non-hamiltonian,
(38), we get and dissipative systems, af2) it allows constraints that contain
o al2eC_ npl210T 12 T 1y time explicitly in them. However, Eq(40) assumes thaM is
Fe=MYF =M"JB (b~ Aa)+ M1 -JBTB)M T*C positive definite, while Dirac’s method can handle singular
=FS+FS,, (39) Lagrangians; such Lagrangians are more relevant to the field of
quantum mechanidgor which Dirac developed his equatipand
which gives the force of constrairft® explicitly for the con- are seldom found in well-posed problems in classical mechanics.
strained system. The subscripts used to describe the force of One consequence of the fact that we use the same set of coor-
constraint were all the constraints to be ide@l<0); the sub- dinates to describe the motion of the constrained system as we use
scriptni is used to describe the contribution to the total constraitd describe the unconstrained system is that our equation provides
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the exceptional insight that the total force of constraint is the sum1. By using the relations obtained from Ed47), (46), and
of two forces, as seen from the last two members on the right hand (18), we haveB(JB")B=BJD=B(I—ES)=B—BES=B
side of the last equality in Eq40). The first corresponds to what —(BV)V'S. SinceBV=0, B(JB")B=B. Thus the first MP
would result were all the constraints ideal; the second corre-  condition is satisfied.

sponds to the force caused solely by the nonideal nature of the; pue to Egs.(17) and (46), (JBTB(JB")=J(B"B)JBT
constraints Our ability to obtain the general equation of motion =JDJBT=J(I-E9BT=JB"-JESH. SinceSE=ES, E
exrt))licitly_givle_l_:, an additiolnal insight vl\:/)heGEO. Ik\]lature a%pears =VV' and BV=0 JESH=JSEE and EB"=VV'BT
to be acting like a “control engineer,” because the second termon  _ T Q- " ART T _ 1T

the right-hand side of Eq40) may be viewed as a “feedback =V(BV) =0; thus OB )B(JB')=JB, and the second
control force” proportional to the errorb(-—Aa), in the satisfac-
tion of the constraint Eq.3). We observe that the feedback “con-
trol gain matrix,” M*2JBT, which nature uses turns out to be, in
general, a highly nonlinear, time-dependent functiom,od, and .
t. Such insights into the fundamental nature of constrained motion® USing Eqs.T(17) and (44) we get (]BTB)T,:,(BT,B)JT,: DJ
have been unavailable from previous formulations of the equa- —JD=J(B'B); thus the fourth MP condition is satisfied.
tions for constrained mechanical systems, such as those of Appell woema _ 1RT
Begin, Chataev, Hamel, Gibbs, Jacobi, Lagrange, and Synge. (Sg)fovr\:;tgﬁt;tiasult of lemma 2, after substitutiBg =JB" in Eq.

MP condition is satisfied.

3. Since the matrice® andE are symmetric)J=(D+E) "1, is
also symmetric. HenceBJB")'=BJ'B"=BJB"; thus the
third MP condition is satisfied

Fe=MYB*(b—Aa)+ MY -B*B)MY2C. (47)
3 Connection of Eq.(40) With Previous Results

In this section we show that the equation of motion obtainethe first member on the right of E¢47) is the force of constraint
above is equivalent to the ones previously obtained in Ref§at would be generated were all the constraints ideal, the second

[11,12]. member gives the contribution to total force of constraint because
LEMMA 2. of its non-ideal nature. Sind@=AM Y2, Eq. (47) can be rewrit-
ten as
JB'=B", (41)
c_ L2 U2+ U2y _p+ -1/
whereB™* is the Moore-Penrose inverse of the matBix Fe=MY¥AM™9(b—Aa)+ M™(1 -B"B)M**C. (48)
Proof.

; i -1_n-1
Let us consider a conditio® G G G, From Eq. (4), we have =M !F+M 1F°=a+M Fe.

Hence, the explicit equation of motion of the constrained system

I+D —I1||P J P J||I+D -l
= , can be expressed as
-1 I+E|][J S [J S]| -I I+E
which can be expanded to g=a+M YAAM %" (b—Aa)+M MHI-B B)M YC,

(49)
(1+D)P-J  (1+D)J-S
~P+(I+E)J —J+(1+E)S
P(1+D)-J —P+J(+E)
J1+D)—S —J+S(I+E)

which is identical to the equation given by Udwadia and Kalaba
(Refs.[11,12). When C=0, the constraint forces are ideal and
D’Alembert’s principle is satisfied. Equaticd9) then reduces to

. (42) the result given in Ref49] and[13].

Equating the first element of the second column on either side of

Eqg. (42), we get 4 Examples
(1+D)J—S=—P+J(1 +E). (43) In this section, we provide examples that demonstrate the use of
the equations of motior{40) for systems with nonideal con-
After substituting Eqs(28) and(29) in Eq. (43), we obtain straints. The last example deals with a problem of sliding friction.
(a) Consider a particle of unit mass traveling in a three-
DJ=JD. (44) dimensional configuration space with “given” forcég(x,y,z,t),

o ) f (x,y,z,t) andf,(x,y,zt) and satisfying the nonholonomic con-
Similarly, equating the second element of the second column 8fainty=z2x+ ag(x,t), wherea is a constant angj(x,t) is a
either side of Eq.(42), we get —J+(I+E)S=—-J+S(I+E), given function ofx andt. The initial conditions are taken to be
which simplifies to compatible with the nonholonomic constraint.

_ Since the mass of particle is unity, the unconstrained accelera-
ES=SE (45)  tion is given by
As a result of Eqs(44), (24), and(45), we have )
X f(X,y,z,t)
DJ=JD=1-SE=I-ES (46) a=|V|=|fyxy.zt)|. (50)
T ) z f,(x,y,z,t)
To show thatJB' is the Moore-PenroséVIP) inverse of the

matrix B, we need to prove the following conditions: . . . . .
After differentiating the constraint equation with respect to

1. B(JB")B=B; time, we get
2. JBNB(JIBT)=JBT;
3. (BJB")"=BJBT; X
and [-22 1 0]V |=22Z+agX+ag,, (51)
4 (JB™B)"=JB'B. 7
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whereg, andg; are partial derivatives aj(x,t) with respect tax
andt, respectively. A comparison with Eg&) provides us

A=[-Z% 1 0] (52)
and
b=2z2z+ agXx+ ag;. (53)
SinceM =14,
B=AM 2=A, (54)

In addition, the solution vectors,; andv, to Eq.(12) are

1 1
V=[v; v]=| 2 2|, (55)
ki ko

where,k,; andk, are arbitrarily chosen, witkh;#k,, so that the
column vectorw; andv, are linearly independent.

As previously shown in lemma 1J=(D+E) !=(B"B
+VVT) "1 By Egs.(54) and(55), we obtain(with k;#k,)

K2+ K3+ z%(kq—kp)? 2k k72 — (kg + ko) (Z*+1)
J== 2k, k,Z? KE+K) + (ki—kp)?  —Z%(kyt+ko)(2+1) |,
—(ky+ky)(Z*+1) —Z2(ky+ ko) (2 +1) 2(z*+1)?

whereA = (k; —ky)?(z2*+1)2.
This gives
1

BT_
(Z*+1)

(56)

— 72
0

We could have, of course, started by choosing, &ay;1 and
k,=0 in Eq. (55); we would then have arrived at relatid66)
with much less algebra.

. . . . the ring.
Suppose that the constraint force is nonideal and it does wonﬁw g

described by Eq(57). When =0, and =1, the equation of
motion (60) becomes identical to that given by Udwadia and
Kalaba[11]. We note that here the result is obtained without any
reference to generalized inverses.

(b) Consider a bead having a massSuppose that it moves on
a circular ring of radiuRk as shown in Fig. 1. The motion can be
described by the coordinates,{). The gravitational acceleration,
g, is downwards. We assume that the initial conditions on the
motion of the bead are compatible with the constraint that it lie on

ere the bead not constrained to lie on the ring, its uncon-

under virtual displacements. Let us assume that the work done §y,ined acceleration would be

the constraint force is given, for any virtual displacementby
wTFe=—wTay(uTu)?(u/|u)), (57)

whereu=[x y z]" is the velocity of the particleju|=u'u,

0
f— g N
In this problem, the constraint equationx&+ y?=R?. After dif-

a= (61)

anda, and 8 are constants. In this casg,is a known 3-vector, ferentiating the constraint equation twice, we obtain

and can be written as

. X Y2__ 2
x [x yl[y|= %=V, (62)
C=—ag(uTwh(u/|u)=—ag®+y*+ 2P "y | (58) i ihat
z
A= , 63
After substituting Eqs(50), and(52) through(58) in Eq. (39), we [x vl 63)
obtain
. : ) -2 Y
Fo_ 227X+ gy Xt agyt+ 2z fxfy) 1 ‘
+1 0 {
S, g
(32+y2+ 72) B 12 >2<_+Z i/_
—a——— | ZXx+ZY|. (59) yab——
z"+1 ‘Z(1+Z4)
From Eq.(40), the equation of motion of the constrained system is |
then |
X] [f -z I > X
il fx Jr(22'z$<+ ag X+ ag+2*f,—f, x
7 fi Z4+1 0 R
S,
S22t 72)B- 12 X+z7y
_ao—( y4 ) ?x+2% | (60)
z°+1 'Z(l+z4)

The first member on the right-hand side of E0) is the im-

pressed force. The second member is the constraint force that
would be generated had the constraint been ideal, and the ttfig. 1 A bead of mass,
member results from the nonideal nature of the constraint thatréglius, R
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and - x
. . a
b=—¥2—y2, (64) lg
Since the mass matrid =ml,,
”
B=AM Y2=m~Yqx y]. (65)
. . Bsin(wi)
For any virtual displacement+#0 such thatAw=0, we havew
=[Y,] so that
v
y
v=mray=mq 7 | (66)
Using Eq.(21), (65) and(66), we obtain
1 [ X®m*+y? xy(m?=1)][x] _ . . .
JB"=(B"B+VV") BT=—r1— ) > 2o Fig. 2 A block sliding under gravity on an inclined plane 0<a
m¥2R4 [ xy(m“—1)  y*m*+x° |lY] <m2) that is vibrating vertically with amplitude B and fre-
quency . The coefficient of Coulomb friction between the
m*2[ x - plane and the block is .
==y (67)
Suppose that the nonideal constraint force, due to the rough .
surface of the ring, is given by [—tana ”M = Bw?sinwt. (72)
WTEC= _WTM X , (68) Thus,A=[—tan «1], andbis the scalaBw? sin wt.
Vxe+y? LY By Eq. (8), we have the virtual displacement
for any virtual displacement, whereh is a known function ok, 1
X, y, ¥, andt. W=l ianal (73)
From the calculation in Eq39), the force of constraint on the .
bead can be expressed as where § is any nonzero constant.
Hence, we get
m(x*+y2—-yg) [x]  h(xxyy,t) (xy—yX) [y
Fé=— = - . . V= _M1/2\N_ 1/25 74
R? y VX2 +y? RZ 17X e M %tanal (74)
(69) ; -12_ 112 i
) ) ) ) SinceB=AM™“*=m"““A, using Eq.(21), we have
Finally, by Eq.(40), the equation of motion of the constrained .
i —tan
system is JBT:(BTB_FVVT)—lBT:(m—;{ ) a}[—tana 1
mx [ 0 | mGE+y*-yg)[x| h(xXxy.y.b) . \
Y= |-mg~ 2 t T o 2 19 ~tana
my mg R y VXe+y +mé tana [1 tana] m ,
y-yx [y (70) Which can be simplified to
2 —X|"
) BT =m2cog o 2N (75)
The first member on the right-hand side of E@Q) is the given 1

force acting on the unconstrained system; the second is the COH)e : : :
. ' herefore, the force of constraint, were the constraint to be ideal
straint force that would have been generated had the constraipt’ g the’n be given by ' '

been ideal; and, the last member accounts for the nonideal nature
of the constraint. c — tana 5
(c) Consider a rigid block of masm sliding on an inclined ~ Fi=MY3JBl(b—Aa)=mcos'a| _; [(g—Bw’sinot).
plane that oscillates in the vertical direction with amplitygland (76)
frequency w, the coefficient of Coulomb friction between the In th f Coulomb fricti h itude of the fri
plane and the surface of the block beingSee Fig. 2. We shall " the presence of Coulomb friction, the magnitude of the fric-
assume that the acceleration of the inclined plane is sufficientipnal force is u|F{|, where |z|=+ Vz'z. We note that Cou-
small so that the block does not leave the surface of the planelab’s law of friction is an approximate empirical relati¢see
it moves under gravity. Ref. [18]). The relative velocity of the block with respect to the
In the absence of the inclined plane, the unconstrained equmelined plane is given by=[x xtana]". The frictional force
tions of motion of the block of mas® and under gravity can be is in a direction opposite that of this relative velocity. The work
written as done by Coulomb friction under a virtual displacements then

m O|[x

y

so that the acceleratios, of the unconstrained system is given by© that

, (77)

0 T( o @
W=-w Fil =
mg}, (71) ul .||q|

0 m

a—[0 gl', andM=ml,. | . a_—ulFl[ % 1
The unconstrained system is then subjected to the constrainC=— u|F{| — = —— tanal= — u|Ff|cosa tana|S
namely that the block must lie on the vibrating inclined plane. lal - [x|seca (78)

Hence, the constraint is given by the kinematic relatigih) )
=x(t)tana— Bsinwt, which can be expressed after differentiatiowhere,s= sgnk).
with respect to time as Relation(76) yields
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|FS|=mcosal|(g— Bw?sinwt)|. (79) innocent of the notion of Lagrange multipliers. Over the last 200
o ) years, Lagrange multipliers have been so widely used in the de-
The contribution to the total force of constraint generated by thgjopment of the equations of motion of constrained mechanical
non-ideal nature of the constraint is then systems that it is sometimes tempting to mistakenly believe that
—tana they possess an instrinsic presence in the description of con-
1 strained motion. This is not true. As shown in this paper, neither in
the formulation of the physical problem of the motion of con-
) strained mechanical systems nor in the equations governing their
S

| —mY2cod «

Fri=MY4(1-JB'B)M Y*C=m"?

motion are any Lagrange multipliers involved. The use of
Lagrange multiplierda mathematical tool invented by Lagrange
[8]) constitutes onlyneof the severaintermediarymathematical
S devices invented for handling constraints. And, in fact, the direct
use of this device appears inapplicable when the constraints are
functionally dependent. Lagrange multipliers do not appear in the
physical description of constrained motion, and therefore cannot,
and do not, ultimately appear in the equations governing such
fhotion.

The explicit equations of motion obtained in this paper apply to
general, holonomic, and nonholonomic systems that may have

tana

X[ —tana 1]m‘1’2) m‘l’z( — u|Ff|cosa

= — u|Ff|cosa

tana

=—umcog a|(g— Bw?sinwt)| s. (80)

1
tana

Note that if the block is to remain in contact with the plane w
require @— Bw? sinwt)=0. The equation of motion of the block
sliding on the plane, by Eq$40), is then

mx 0 tana . nonideal constraint forces. These constraint forces may, in gen-
my = mg +mcos a -1 }(gfﬁw sinwt) eral, do positive, zero, or negative work under virtual displace-
ments at any time during the motion of the system. The equations
5 . given here are the first of their kind that are explicit, and that do
—pumcos a tana|(9~ B’ sinwt)s. (81)  notrequire the use of any generalized inverses, nor use of any of

) .. their properties.
We note that each of the three members on the right-hand side of

Eq. (81) has a simple interpretation. And it is precisely to expose

this essential simplicity with which nature seems to operate that

we have desisted from simplifying the equation any further. FReferences
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Applicability and Limitations of
Simplified Elastic Shell Equations
for Carbon Nanotubes

C. Y. Wang This paper examines applicability and limitations of simplified models of elastic cylindri-
cal shells for carbon nanotubes. The simplified models examined here include Donnell
C. Q. Ru1 equations and simplified Flugge equations characterized by an uncoupled single equation

e-mail c.ru@ualberta.ca for radial deflection. These simplified elastic shell equations are used to study static

buckling and free vibration of carbon nanotubes, with detailed comparison to exact

A. Mioduchowski Flugge equations of cylindrical shells. It is shown that all three elastic shell models are in
excellent agreement (with relative errors less than 5%) with recent molecular dynamics

Department of Mechanical Engineering, simulations for radigl breathing vibration modes of carbon nanotubes,.while reasonable
University of Alberta, agreements for various buckling problems have been reported previously for Donnell

Edmonton T6G 2G8, Canada equations. For general cases of buckling and vibration, the results show that the simpli-

fied Flugge model, which retains mathematical simplicity of Donnell model, is consis-
tently in better agreement with exact Flugge equations than Donnell model, and has a
significantly enlarged range of applicability for carbon nanotubes. In particular, the sim-
plified Flugge model is applicable for carbon nanotubes (with relative errors around 10%
or less) in almost all cases of physical interest, including some important cases in which
Donnell model results in much larger errors. These results are significant for further
application of elastic shell models to carbon nanotubes because simplified shell models,
characterized by a single uncoupled equation for radial deflection, are particularly useful
for multiwall carbon nanotubes of large number of laye®Ol: 10.1115/1.1778415

1 Introduction neglected in the two in-plane equations. The major advantage of

Elastic shell models have been effectively used to study m[e)_onnell equations over other more accurate shell equaf

chanical deformation of carbon nanotub@NTs), [1,2], espe- as exact Flugge equations of cylindrical shells3], which do not

. : . . . reply on any of the above four assumptipnis the remarkably
cially buckling of CNTs under axial compressid-5], bending, _: | h ical f D I . iall
[6,4], radial pressurei7,8], or combined loadingg9]. Previous simple mathematical form of Donnell equations, especially due to

= . . .an uncoupled single equation for the radial deflection. Since the
work has shown that critical loading and the associated bUCkl”PQdial deflection is the dominant displacement component for

mode predicted by simple isotropic elastic shell models are 9§y problems, such as buckling and radial vibration of elastic
erally in reasonable agreement with available experiments agghis ' this advantage largely simplifies technical complexity of
molecular ~ dynamics simulations  of singlewall nanotubegjastic shell analysis in many important cases. Here, it is empha-
(SWNTs), [4,9], and multiwall nanotube@MWNTS) of as many  sjzed that this advantage of Donnell equations is even more cru-
as 20 layers[8]. In particular, because elastic shell models argia| when elastic shell models are applied to MWNTs of large
relatively simple and cost-effective as compared to experimemgmber of layers[5,8,9. On the other hand, although Donnell
and molecular dynamic simulations, they have the potential uations are proved to be an excellent approximate model and
offer simple general formulas in some important cases, identifimost indistinguishable from exact shell models in many impor-
major factors affecting mechanical behavior of CNTs, and explatant cases, they indeed led to substantial errors in some cases of
or predict new physical phenomena. On the other hand, almosthctical significance[18—22. Hence, in view of unusual geo-
of these studies are limited to reversible elastic deformation nfetrical and material characteristics of CNTSs, it is necessary to
nanotubes, and do not account for fracture and failure,11]. clarify the conditions under which Donnell equations or other
So far, almost all existing elastic shell models for CNTs arsimplified elastic shell models are applicable for CNTs.
based on the simplest Donnell equations of cylindrical shells. It is The present paper gives a systematic study of applicability and
known that Donnell equations are based on several simplifidimitations of simplified elastic shell equations for CNTs. Here,
tions,[12—17: (1) the contribution of two in-plane displacementseside Donnell model, a simplified Flugge model is also exam-
to the changes in bending curvature is negligiti®;the contri- ined, which is derived from the exact Flugge equatidris],
bution of transverse shear forces to the equilibrium in the circurhased on the last two assumptions of Donnell equations listed
ferential direction is negligible(3) the in-plane inertia is negli- above and leads to an uncoupled single equation for the radial
gib|e; and(4) the pre-stresse@or buck"ng prob|ems onWare deflection,[12,15,17—21 Various problems of static buckling and
free vibration will be discussed with Donnell modghodel ),

To whom correspondence should be addressed. simplified Flugge mode(model 1), and exact Flugge equations
Contributed by the Applied Mechanics Division of AMERICAN SOCIETY OF  (model IIl). Since the applicability of Donnell model has been
e o emics Duries Moy 265YStematically demonstrated for stafic buckling of CNIs<,
2003; final revision, March 16, 2004. Associate Editor: H., Gao. Discussion on tg@mparison between elastic shell models and available experi-
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalfents or molecular dynamics simulations will focus on free vi-
Applied Mechanics, Department of Mechanical and Environmental Engineeringration of CNTs. As will be seen below, the simplified Flugge

University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be del del II hich . h ical si lici fD
accepted until four months after final publication of the paper itself in the ASME100€ (model I), which retains mathematical simplicity of Don-

JOURNAL OF APPLIED MECHANICS. nell model (model ), enjoys improved accuracy and enlarged
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range of applicability as compared to Donnell model, and thus is2.2 Simplified Flugge EquationgModel Il'). It was shown

recommended for static and dynamic problems of CNTs. by Kempner[15,18,20,2] that, in the absence of the in-plane
inertias and pre-stresses in two in-plane equations, an uncoupled
2 Simplified Elastic Shell Models single equation for the radial deflection can be derived from exact

Almost all existing elastic shell models for CNTs are based dfu99€ equations of cylindrical shells by a procedure similar to
J@e derivation of Donnell equation. In the presence of all pre-

the simplest Donnell equations of cylindrical shells. So, let L . 2
begin with a discussion of the assumptions of Donnell equation&/€Sses and radial inertia, after neglecting powedsZQfZR (or
(1—v?D/Eh-1/R? whenD is a material parameter independent

2.1 Donnell Equations(Model I). For almost all important of the thicknes#) compared to unity, this single equation can be

problems of CNTs discussed so far in the literature, tangentigtitten as(see Eqs(6.34a—¢ of [15], or [18—21)):

external loadings along axial or circumferential direction of CNTs

are absent. For example, for MWNTSs, because interlayer friction

is usually so small that adjacent concentric tubes can almost freely

slide to each other, it is assumd8,8,9], that the interlayer fric- D-V

tion is negligible between any two adjacent tubes. In the absence

2
1
4 v2+ E) W+

2D-(1-v) [ ow I*w ,°w
R® IX296*  9x%96? ax®

of any tangential external force, dynamics of the radial deflection P FO 52 V2w
w(x,6,t) of an elastic cylindrical shell of radiuR is uncoupled =V4p(x,0)+F°—V4w+2—xa—(V4w+ g
with other two in-plane displacements(axial displacementand *ox? R dxa6 R?
v (circumferential displacementand is governed by the Donnell
equation[5,8,9]: F9 o PPwW Eh d*w >,
+—2V —2+W ——2—4—ph—2VW )
. , . 52 \ Fg 2 , R a6 R ox at
DVew=V p(x,6)+anX2V w+ 2 R axaov W
where the pre-stress terms are referred to(B®6) of [12].
F9 42 . Ehd'w >, In other words, the simplified Flugge single E8) is based on
Eﬁ w-— EW—Ph—V w (1)  Donnell's assumption$3) and (4) only (partially for the latter,

2
o because the pre-stress termg2)fare approximate in naturebut
where x and # are axial coordinate and circumferential angulanot on the assumptionid) and(2). On the other hand, it is seen
coordinate, respectivelyy is the radial(inward) deflection,p is from (1) and (2) that although the simplified Flugge E() is
the net normalinward) pressureF?, F9, andF?, are the known slightly complicated than Donnell Ed1), it essentially retains
uniform membrane force&alled “pre-stresses’ ph is the mass mathematical simplicity of Donnell Eq1). Hence, it is of great
density (per unit lateral ardaD andh are the effective bending interest to examine the range of applicability of the simplified
stiffness and thickness of the shell, aBdis Young’s modulus. Flugge Eq.(2) for CNTs, with a comparison to the Donnell Eq.
Here, the effective bending stiffneBscan be independent of the (1). In connection with this, it should be stated that, in spite of
thicknessh, and thus not necessarily proportionallt@ube,[4]. known comparison between Donnell equations and exact Flugge
Once the radial deflectiow is determined from(1), other two equations[15,20—22, no detailed comparison has been made be-
in-plane displacements (axial displacemeptandv (circumfer- tween exact Flugge model and the simplified Flugge m@ebor
ential displacementcan be determined from other twaxial and buckling and dynamic problems of elastic shells. Here, we would
circumferential equations, see e.g., Eq$.339 of [12], or Egs. mention that an interesting equation has been suggested by Mor-
(6.13a,6.13pof [15]. The Eq.(1) and the other two equatioiitie  ley [20] which is obtained by neglecting some terms in the sim-
latter will not be used in the present papare called “Donnell plified Flugge Eq(2) and has an elegant form very close to Don-
equations,” while the single Ed1) is also often called “Donnell nell Eq. (1). As commented by Donnell12], “the choice of
equation.” coefficients in Morley’s solution merely to give the desirable re-

The single uncoupled Donnell E¢l) has been widely used in Sults in certain particular applications, rather than deriving them
many problems of cylindrical shells, due to its mathematical sinfitom basic principle as was done in Flugge’s and our ¢dan-
plicity compared to other more accurate shell equations, suchfgl solutions, makes their accuracy somewhat questionable in
exact Flugge's coupled three equations for the displacement coaplications to unchecked problems.” Hence, in the present paper,
ponents (,0,w) (see Eqgs(7a—0 of [13] or Egs.(11)—(13) of we shall focus on the simplified modely and(Il).
[18] for static case As mentioned before, the Donnell equations In order to apply the modél) or (Il) to CNTs, it is sufficient to
are based on four assumptiofi$2—17: (1) the contribution of know the bending stiffnesd, the in-plane stiffnesgh, the mass
two in-plane displacements to the bending curvature is negligibensity per unit lateral argzh, and Piosson’s ratie of CNTSs. In
(2) the contribution of transverse shear forces to the equilibrium particular, these parameters are not dependent of the definition of
the circumferential direction is negligiblé3) the in-plane inertia the thickness, [3,4]. In fact, the effective bending stiffness of a
is negligible; and4) the pre-stressegor buckling problems only carbon SWNT isD=0.85eV, its in-plane stiffness i€h
are neglected in two in-plane equations. The last two assumpticr§60 JIn?, the mass density per unite lateral areapis(2.27

|mp|y that the pre_stresseg,:i, FO, anngg), and in_p|ane iner- g/CfTTg)XO34 nm, andv can be assumed to be equal to 0.2. For

tias (pha?ulat? andphd?u/t?) are eliminated from two in-plane MOre recent studies on Young's modulus and Poisson ratio of

equations, and thus the two in-plane equations have the same f&@Hpon nanotubes and their sensitiveness to diameter smaller than
as their static counterparts without any pre-stresses. In particufa™m. se€23,24.

this means that Donnell Eq1) could give satisfactory results 5 3 Exact Flugge Equations(Model Il ). Exact Flugge

only when the in-plane inertigoho?u/dt* andpha?v/at?) is less  equations will be used in the paper as standard elastic shell model.
important than the radial inertigohd®w/dt?). In addition, as long For static buckling of CNTs, because the general formulas of ex-
as the assumptioi3) is concerned, it is noticed that the pre-act Flugge equations for various buckling problems are available
stresses Rg, F?,, and Ff(’e) do occur in each of all three equilib- in Flugge’s book[13], the exact Flugge equations in the presence
rium equations of more accurate shell mod&dsch as Flugge of the pre-stresses, which are somewhat lengthy, will not be cited
equations, see Eq$5a—0 of [13], or Egs.(10—(13) of [14]). here(see Eqs(7a—9 of [13]). For free vibration of CNTs, on the
Hence, the assumptidid) is indeed a simplifying approximation other hand, the exact Flugge equations of cylindrical shells are
for buckling of elastic cylindrical shells and could lead to an erraelatively simple because of the absence of the pre-stresses, and
as compared to exact shell models such as Flugge equations. are given by(see[16] and[18])
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_ph _ 2 2a2w
—Eh(l )R pre

. mmx
W(X,0)=A smT cosné

marX
u(x,0)=B cosT cosné (5)

marx

v(x,0)=C sinTsinna
whereA, B, andC are some constants representing amplitudes of
radial, axial and circumferential displacements, respectivelis
the axial half-wave number, and is the circumferential wave
number. In particulam=0 represents axisymmetric mode. Sub-
stitution of (5) into Egs. (1), (2), or (3) leads to homogeneous
equations for the coefficier or A, B, andC. Thus, eigenequation
derived by existence condition of nonzero solution determines the
buckling strain, as function of the wave numbarandn. Finally,
the critical strain for buckling is decided as the minimum buckling
strain. Here, strictly speakingy must be nonzero integer for sim-
ply supported end conditions. However, it is easily understood
that buckling of axially uniform modes, which do not strictly meet
simply supported end conditions, can be studied by the eigenequa-
tion based on the modéS) by takingm=0.

3.1 Axial Compression. Let us first discuss buckling of
SWNT (of typical diameter 1.3 ninunder axial compression. It is
shown,[4], that the Donnell Eq(1) (model )) gives good estimate
of the critical stress, while the numbersandn cannot be deter-
mined uniquely by Donnell modell). On the other hand, the
predicted axial wavelength of buckling mode, based on an empiri-
cal assumption[4], that the axial wavelength is equal to the cir-
cumferential wavelength, is found to be in good agreement with
available molecular dynamics simulations. It is well knoWwtg],
that, because linear theories of shell buckling admit a large num-
ber of different buckling modes which correspond to almost the
same buckling stresses, they usually cannot predict the actual
buckling mode without aid of any empirical assumption like that

In order to apply Flugge Eq€3) to CNTs, it is sufficient to
know the bending stiffnesd, the in-plane stiffnesgh, the mass
density per unit lateral argsh, and Piosson’s ratie of CNTs. In
particular, these parameters are not dependent of the definitio
the thicknesd, [3,4]. Here, it is emphasized that, even for stati
problems without any pre-stressédsr which assumption§3) and
(4) are valid, Eq.(2) is not exactly the same as the exact H&S.
because some powerst/12R? (or (1— »?)D/Eh- 1/R? whenD
is a material parameter independent of the thickmedsgmve been
neglected in2) compared to unity. To our knowledge, no detaile
comparison has been made between the simplified Flugge€Eq.
(model Il) and the exact Flugge equatiofmodel IIl) for buckling
and dynamic problems. In particular, in view of unusual geomet
and materials characteristics of CNTSs, it is relevant to compare
simplified shell model$1) and(2) with exact Flugge Eq¥3) and
available experiments or molecular dynamics simulations
CNTs.

mentioned above. Thus, one cannot expect that simplified or exact
Flugge model could give an accurate theoretical prediction for the
nvgvelengths of buckling mode of SWNTs without any empirical
ssumption. Therefore, our focus here is to compare three shell
models and examine whether simplified Flugge @&4is in better
agreement with exact Flugge equations than Donnell(Eq.
Because two key parameters for buckling modes are the cir-
cumferential wave number and the dimensionless axial wave-
&ength(normalized by the diameter® L/(Rm), the dependency
of the buckling strain onl{/(Rm),n) is shown in Figs. 1-3 for
the model I, Il, and Ill, respectively. It is seen from Figs. 1-3 that
. though all three models give similar results fdarger than 4 or
'Eé(Rm) below unity, simplified Flugge modelll) is in much
etter agreement with exact Flugge mod#l) than Donnell
odel(l) for n=1, 2 or 3 and_/(R-m) larger than unity. In fact,
it is found from the data shown in Figs. 1-3 that the relative
errors of the simplified Flugge modél) is about less than 10%
for n larger than 2 oL./(Rm) below 2, while the relative error of
Donnell model(l) is about less than 10% only forlarger than 4
or L/(Rm) below 1. The critical strain given by the three models
for several typical cases is shown in Table 1. In particular, because
?éng SWNTSs of larger aspect ratio exhibit beam-like bucklimg (
=1), the critical strain given by elastic beam-modELUler for-
Piiila) is also shown in Table 1 for larger valuesloffRm). It is
. 2% geen from Table 1 that the simplified Flugge modEl has much
we shall focus on comparison between Donnell matelsimpli- better accuracy than Donnell modél especially whem=2 or 3
fied Flugge modell), and_exact_FIugge modelll ). Throughout which corresponds to the minimum buckling strain in many im-
:he p?per, IW% §ha|1|| ﬁo|r|13|dgr S|rg1ply supported boundary COnB'értant cases. In addition, simplified Flugge modkgl is a better
lons for cylindrical shells given by approximate model than Donnell modél for very long shells for
v=0, N=0 4) which the buckling mode correspondsrie-1 (beam-modg In-
deed, in this case, Donnell E(L) lead to an error in the order of
Thus, for all three models 1, Il, and llI, the buckling modes arenagnitude, while simplified Flugge Ed2) differs than exact
given by Flugge model(lll) or the beam-model by a factor of two. This

3 Static Buckling of Carbon Nanotubes

First, let us examine static buckling of SWNTs. Since agre
ments between Donnell shell modél and available experiments
or molecular dynamics simulations have been demonstrated
viously for various static buckling problems of CNTS8,4,8,9,

w=0, and M,=0.
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Fig. 1 The buckling strain given by Donnell model (1) for the

SWNT of radius 0.65 nm under axial compression Fig. 3 The buckling strain given by exact Flugge model (i) for

the SWNT of radius 0.65 nm under axial compression

conclusion for very long SWNTs shows that simplified Flugge) in which both model(l) and model(ll) are applicable with
model (Il) is significantly better than Donnell moddl) even in  rejative errors not much larger than 10%. On other hand, for larger
extreme cases. L/(Rm) (it is the case when SWNTs are long or moderately Jong

It has been showrg], that the Don- the minimum buckling pressure is decided by 2 and thus the

nell model(1) gives satisfactory estimate of the critical pressure cgiMPlified Flugge mode(ll) is much better than Donnell Model
CNTs. Here, our goal is to compare three shell models and exafh: Heénce, it is concluded that, in any case, simplified Flugge
ine whether simplified Flugge E@R) is in better agreement with modeI(II_) is a better approximate model than Donnell mod!
exact Flugge equations than Donnell Ef). The dependency of for Puckling of CNTs under radial pressure.

buckling pressure onL((Rm),n) (where, by the definition of - .
buckling under radial pressure, n is not smaller thars 2jualita- 4 Free Vibration of Carbon Nanotubes

tively similar for all three models 1, 1l and Ill, and thus is shown Free vibration of CNTs is a topic of major concern, largely
only for the exact Flugge modélll) in Fig. 4. In addition, the because of the usefulness of frequency analysis to Raman spectra
relative errors of the model | and Il compared to the exact modef CNTs,[25—-28. Here, we are particularly interested in compari-

Il are shown in Figs. 5 and 6, respectively. Particularly, the critson between resonant frequencies of radial breathing modes of
cal pressure given by three modéls Il and Ill) are shown in CNTs predicted by elastic shell models and the available data
Table 2 for several typical cases. It is seen from Figs. 4—6 ao#itained by experiments or molecular dynamics simulati®&;

Table 2 that simplified Flugge model gives much small relatives].

errors than Donnell model far=2 andL/(Rm) larger than one, . . . )
while relative errors of both mode({s and Il) are not much larger 4'.1 Radial Breathlng Modes. B_ecagse of complicated vi-
than 10% forn larger than 2. On one hand, far(Rm) smaller bration spectrum, existing data on vibration of CNTs have maln[y
than one, the minimum buckling pressure is decided by (Fig. focused on radial breathing ques of SWNTS and MW.NTS' This
is due to the fact that the radial breathing modes exhibit strong
resonant characteristics in Raman spectra, and the frequency of
radial breathing modes of SWNTs is simply proportional to the
tlig —r——y et . . inversed radius. These features make radial breathing modes a
very useful probe for structure and properties of CNP§—28.
Here, our goal is to examine applicability of elastic shell models
for vibration of CNTs with comparison to available data on radial
breathing modes, and also to examine the accuracy of the van der
Waals intertube interaction coefficient suggested in our previous
work, [5,8,9].
For radial breathing modes, the radial deflectie(t) is spa-
tially uniform and thus independent of and 6. In this special
case, an uncoupled equation can be detained for the radial deflec-
] tion w(t) from all three models I, Il, and lll. In fact, the third
] equation of Donnell equationsee Eqs(8.139 of [15]), or the
B CEEREEEREREL third equation of Flugge Eq3) gives almost the same uncoupled
1  equation forw(t) as

3.2 Radial Pressure.

Buckling Strain

w phl Zazw_o 6
;‘Fﬁ( V)5 = (6)

Euler Beém o
at?

£
1
1
]
'
]
'
'
'
'
'
I

-1 ’ * = ] — 1
10 10
L/ (Rm) where a small terrh?/12R? (or (1— v?)- D/Eh- 1/R?> whenD is a
material parameter independent of the thickneshas been ne-
Fig. 2 The buckling strain given by simplified Flugge model glected compared to unity. For radial breathing mode of SWNTs,

(I1) for the SWNT of radius 0.65 nm under axial compression Eq. (6) gives the breathing frequency
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Table 1 The comparison of minimum buckling strains, predicted by different models for the SWNT of
radius 0.65 nm under axial compression

Model Shell Model
Beam
L/(Rm) Model T Model I Model I Model
0.7 n=2 0.0602 0.0592 0.0585
1 0.0597 n=3 0.0565 n=3 0.0551
n=3
2 0.0661 0.0574 0.0538
3 0.0632 0.0552 0.0478
4 0.0596 0.0470 0.0395
5 n=2 0.0639 n=2 0.0455 n=2 0.0377
6 0.0742 0.0488 0.0400
7 0.0892 0.0556 0.0453
8 0.1083 0.0652 0.0529
9 0.1060 0.0969 0.0540 0.0651
10 n=1 0.0926 n=1 0.0818 n=1 0.0447 0.0527
20 0.0613 0.0235 0.0120 0.0132
50 0.2305 0.0039 0.0020 0.0021
f=230 e (nm/R) @) 320x erglen? .
Co=———— (d=1.42X10"° cm). 9)

which is in good agreement with experimental result 0.1642

=224 cm ! (nm/2R) [25,26, or Mahan’s three-dimensional elas-

ticity result f=227 cnmi'* (nm/2R), [28]. In this case, it is noticed Here the curvature effect and the dependency on radius are ne-
that bending stiffness of SWNTs does not appear because radji@cted and thug, given by (9) has been used for SWNTs of
breathing vibration does not involve bending deformation. various radii.

Let us apply Eq(6) to radial breathing modes of MWNTs and Consider DWNTs and three-wall CNTs. The results based on
compare to Popov et al. results obtained by molecular dynamite elastic model(6), (8), (9) are shown in Figs. 7 and 8, with
simulations,[27]. Since all nested tubes of a MWNT are origi-comparison to Popov et al.’s results obtained by molecular dy-
nally concentric and initial interlayer spacing is equal or vermamics simulationg27]. It is seen that the elastic shell modé},
close to the equilibrium spacing, the van der Waals interacti@8), (9) is in excellent agreement with molecular dynamics simu-
pressure between any two adjacent tubes of a MWNTSs is negdhitions of radial breathing modes for DWNTs and three-wall
gible prior to vibration. When radial vibration occurs, the interCNTs, with relative errors less than 5%. Further, radial breathing
layer spacing changes, and the van der Waals interaction presstequencies of MWNTSs of innermost radii 1 nm are shown in Fig.
(per unit lateral argaat any point between any two adjacent tube8 for various number of nested layers up to 10. Comparison be-
depends linearly on the difference of their radial deflections at thmteen the present Fig. 9 and Popov et al.’s results based on a
point (Aw). Thus, intertube pressure can be calculated as followsontinuum model27], shows that the maximum of relative errors

is less than 25%. Since no details are given for Popov et al. con-
p=cAw (8)  tinuum model,[27], we cannot comment on the difference be-

where ¢ is vdW interaction coefficient. In our previous work,tWeen their results and the present results.
[5,8,9, a value ofc is suggested as follows:
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Fig. 7 Frequencies of radial breathing vibration predicted by
elastic shell models and MD simulation for DWNTSs of various
outer radii

Finally, to examine the coefficiet given by(9), we study the 4.2 Free Vibration of SWNTs. Let us now clarify the range
sensitiveness of radial breathing frequencies on the coefficienbf applicability of Donnell mode({l) and simplified Flugge model
(8). Since breathing frequencies are very high for small-radiyg) for free vibration of CNTSs, in terms of the dimensionless axial
SWNTs, the intertube interaction has little influence on the breatiyavelengthl/(Rm) and the circumferential wave number n. The
ing frequencies of DWNTs or three-wall CNTs of small radilibration modes of a simply supported shetit0) are given by
(such ak;=0.34 nm). Thus, the frequencies of DWNTSs or threety, is the circular frequendy
wall CNTs are insensitive to the coefficient ¢ for small-radius

DWNTs or three-wall CNTs, and comparison with molecular dy- PR .

namics simulations of small-radius CNTs cannot identify the best w=Asin L cosnd-expliw-1)

value of the coefficient. Here, some results are shown in Fig. 10

for a DWMT and a three-wall CNT of relatively large innermost _ mmX ) .

radius 1.36 nm and 1.02 nm, respectively. Because the lowest u=B cos L cosnd-explio-1) (10)

frequency is insensitive to the value gfonly the dependency of

higher frequencies is shown in Fig. 10. It is seen from Fig. 10 that o~ MTX ) oo
a relative error of 20% occurs when the coefficiepichanges by v=Csin L cosng-explio-t)
a factor of 2. Therefore, the excellent agreement given in Figs. 7 . .
and 8 between the model based on the coefficgn(9) and 'Vheremshould be nonzero integer for simply supported end con-
molecular dynamics simulations suggests that the coefficgnt d|t|r$]rc1)s.er?éjcl’osgtuélonatqcf)(:g) ;?]t; Eq:féﬁ)c’e(zt):br?é't('i)n lefg‘fsng)n ero
given by (9) can be regarded as a good value at least for CNTs §pmogeneous equations, XIStel e z
larger radii(not smaller than 1.02 nmThis offers an evidence for solution determine resonant frequencies as function of the num-

the accuracy of the coefficief®) which was suggested 5] and bersm andn.
applied to MWNTs in[8,9].
400 y T v T v T T
Table 2 The comparison of critical buckling pressure, pre- 350
dicted by different models for the SWNTs of radius 0.65 nm or 5 I Circle: Elastic shell model i
nm under radial pressure
- 3 Asterisk. MD simuiation [27] .
Vibration —
Modes Critical Buckling PressuréGP '
Radius Aspect g «P3 € 20
(nm) m n Ratio Model | Model Il Model 11l -
[ %)
4 0.7 15.58 15.16 15.28 § 200
3 1.5 6.29 5.84 5.90 =4
1 5 2.15 1.67 1.68 'r
0.65 2 10 2.00 1.13 151 150
20 1.97 1.48 1.48
0o 2 1.97 1.48 1.48 100
7 0.7 0.077 0.077 0.076
5 1.5 0.035 0.033 0.034 ) ) 1 1 1 . ; 1
5.00 1 3 5 10.90x 10—3 9.90% 10—3 9.90% 10—3 10 " 12 13 14 18 16 17 18
2 10 5.05<10°3 4.19x10°3 4.20x10°3 Radius of the Outermost Tube (unit: A)

20 4.38<10°% 3.31x10°% 3.30x10°° i ) ) S )
Fig. 8 Frequencies of radial breathing vibration predicted by

0o 2 432107 3.31x10°% 3.24x10°% elastic shell models and MD simulation for three-wall CNTs of
various outermost radii
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Fig. 11 The frequency of radial vibration given by exact

Fig. 9 Frequencies of radial breathing vibration predicted by Flugge model (Ill) for the SWNT of radius 0.65 nm

the elastic shell models for MWNTs of the innermost radius 1
nm

the order of magnitude, while simplified Flugge mod#l) is

Here, the frequencies given by the exact mddi€) are shown comparable to exact Flugge modgl) (with relative errors 40%
in Fig. 11 for the SWNT of radiu®=0.65 nm, while the relative These conclusions are qualitatively consistent with those drawn
errors of the frequencies given by two simplified modg)sand for static buckling discussed in Section 3. It is emphasized that the
(I1) compared to the exact modgll ), are shown in Figs. 12 and improved accuracy of simplified Flugge model over Donnell
13, respectively. Similar results for the radis-5 nm, are given model is significant for CNTs because the low-frequency vibra-
in Figs. 14-16. It is seen from Figs. 11-16 that the relative errotisnal modes often have circumferential wave numfer2 or 3.
of the simplified Flugge modéll) are about 10% or less provided Therefore, these results are important for further application of
thatn is larger than one dc/(Rm) is smaller than two, while the simplified shell models to CNTs, especially to MWNTs of large
relative errors of Donnell model) are about 10% or less pro- number of layers.
vided thatn is larger than 3 ot./(Rm) is less than one. Hence, the Here, it should be stressed that one essential shortcoming of
simplified Flugge mode(ll) is a much better approximate shellsimplified shell modelgl) and (Il) is that they give only one
model than Donnell model I. In particular, it is seen from Figs. 1frequency(radial vibratior) for each combinationrg,n), while
and 14 that the critical aspect ratib/(2R)) at which the vibra- the exact shell modélll) gives three frequencies for givemand
tional mode corresponding to the minimum frequency transfemswhich represent radial, axial and circumferential vibrational
from n=2 ton=1 (beam-modgis about 5 for SWNT of radius modes, respectively. Therefore, the simplified shell modgland
0.65 nm, and is larger than 10 for SWNT of radius 5 nm. Ifll) cannot be used to discuss axial and circumferential vibration
addition, for long simply supported shells, the vibrational modeodes. In spite of this, because radial vibration is dominant in
corresponding to the minimum frequency is characterizednby many important problems and the corresponding frequency is usu-
=1 andn=1 (beam-modsl In this case, it is seen from Figs.ally lower than the frequencies of axial and circumferential
12-13 and Figs. 15-16 that Donnell modblleads to errors in modes, the radial vibrational modes are of major concern. An

1: Highest frequency of the 3-wall CNT 10’ j ’
2: Second frequency of the 3-wall CNT 50% n=0 n=1 2
16 3: Higher frequency of the DVWNT
I z
= r & |..W0% Ao, 3.
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5 g
& 10 E’_o- o' 10% - 4
c
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o . i / 8
. 3 2 / 1
120 : : 5 ’ L/ 8
3 : 5 * / 7 -
: : : 1% n=10
; ‘ ! ST /4 A Ay .
1 ; 1 : I 1
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cicy o' 10°
L/{Rm)
Fig. 10 Dependence of the breathing mode frequencies of a
DWNT of inner radius 1.36 nm and a three-wall CNT of inner- Fig. 12 The relative error of radial vibration frequency pre-
most radius 1.02 nm on the vdW interaction coefficient dicted by Donnell model (1) for the SWNT of radius 0.65 nm
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Fig. 13 The relative error of radial vibration frequency pre- Fig. 15 The relative error of radial vibration frequency pre-

dicted by simplified Flugge model  (ll) for the SWNT of radius dicted by Donnell model (1) for the SWNT of radius 5 nm
0.65 nm

example of SWNTs of radius 5 nm are given in Fig. 17 for three )
frequencies given by the exact mod#l ), and single frequency €ITors as compared to exact Flugge mo@#l), while Donnell
given by the simplified mode(l) and (II), respectively, which model(l) leads to errors in the order of magnitude.

indicates that the radial frequency is lower than other taxal 4.4 Axially Uniform Vibrational Modes. The results
and circumferentialfrequencies for almost all giverL((Rm),n)  ghown above do not include the special case of axially uniform
exceptn=0 which means axisymmetric vibrational modes. vibrational modes wittm= 0, which cannot strictly meet the sim-

4.3 Beam-Like Vibration. The above results indicate thatPly supported end conditions. However, it is easily understood
large errors of simplified shell model$) and (1) could occur that axially uniform vibrational modes can be studied by the
whenn=1 andL/(Rm) is much larger than one or two. It is the€igenequation based on the mod&§) by takingm=0. The fre-
case when low-frequency vibrational modes of long SWNTs aflencies given by the exact modél) and the simplified model
concerned. Here, to compare the three models in this special cdseand (1), are shown in Table 4 for axially uniform modem (
let us discuss beamlike vibration of simply supported SWNTs gf0) Of SWNTS of radiu=0.65 nm and 5 nm. Since the case of
larger aspect ratio whose lowest frequency corresponds=th  (M=0, n=1) represents a pure rigid-body motion, it is not in-
andm= 1, [29-37. All three shell models, together with the elascluded in Table 4. It is seen that the frequency fier O (radial
tic beam-model[10], are shown in Fig. 18 for SWNTSs of radius Preathing modpgis higher than all other frequencies given in Table
0.65 nm, as function of the aspect ratib/(2R)). In addition, 4. On the other hand, far=2, the frequencies shown in Table 4

detailed comparison is shown in Table 3 for several relevant cas@¥notonically increase with the circumferential wave number n.
It is found that, for special case of beam-like vibration of CNTSs,

simplified Flugge mode(ll), in which the effect of in-plane iner-

tia is neglected[33,34], leads to as large as 40-50% relative

10
12 ! )
10 Euler Beam
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Fig. 16 The relative error of radial vibration frequency pre-
Fig. 14 The frequency of radial vibration given by exact dicted by simplified Flugge model  (ll) for the SWNT of radius 5
Flugge model (lll) for the SWNT of radius 5 nm nm
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10° ' Table 3 The comparison of beam-like vibration frequencies

Circumferential vibration,n= 0, 1, 2] (n=1), predicted by different models for SWNTs of radius 0.65
. 1 nmor5nm
Axial vibration, n= 0, 1, 2 [[ ]
i \ ”r If [ — ] Frequency(Hz)
=0 \ 1  Radius Beam
5 b (nm) L/(Rm) Model | Model Il Model Il model

0.5 8.21x 10" 8.18x 102 8.16x 1012
1 5.09x 10 508x 1012 4.97x 102
5 151X 10" 150% 102 1.04x 102 1.53x 10%2

Frequency (Hz)

065 10 5.06x 10 476x 101 320x 104 3.82x 10!
50  159x 10'' 208x 10°° 1.47x 10° 1.53x 10
. 100 158x 10" 522x 10° 3.68x 10° 3.82x 10°
Dot line: model | == 0.5 6.80x 10" 6.80x 10 6.78%x 101
Dash-line: model I SR 1 6.26x 10" 6.25x 10" 6.11x 10%
Solid line: model Il 5 5  1.94x 10" 194x 10" 1.30x 10" 1.93x 10"
o T 10 6.19x 10° 6.18x 101 4.28x 10'° 4.81x 10%°
7 o T 50  3.80x10° 271x10° 1.91x 10° 1.93x 10°
100  2.80x 10° 6.78x 10° 4.79x 10° 4.81x 10°
L/(Rm)
Fig. 17 The vibration frequencies given by three shell models
for the SWNT of radius 5 nm
. Table 4 The comparison of vibration frequencies when m=0,
5 Conclusions predicted by different models for SWNTs of radius 0.65 nm or 5
This paper examines applicability of the simplified Flugge and™
Donnell cylindrical shell equations for carbon nanotubes. Stafic™ Frequency(H2)
buckling and free vibration of carbon nanotubes are studied usiRgdius
the two simplified shell models with comparison to the exadfm n Model | Model Il Model Ili
Flugge shell model. It is found that all three elastic shell models 0 5.31x 102 5.31% 1012 5.30% 102
are in excellent agreemefwith relative errors less than 5%with 2 6.31x 108 473x 1010 4.23x 101
recent molecular dynamics simulations for radial breathing modegs 3 1.42% 102 1.26% 102 1.20% 102
of carbon nanotubes. For general cases of static buckling and free 4 2.52x 10% 2.37x 1012 2.29x 1012
vibration, one major conclusion is that the relative errors of the 5 3.94x 10% 3.78x 1012 3.71% 1012
simplified Flugge modelll) are generally less than 10% for n
larger than 1 or 2, or foL/(Rm) smaller than two, while the 0 6.90% 1010 6.90x 10" 6.90% 10'*

. 0 2 1.07x 10" 7.99% 10° 7.15% 10°
relative errors of Donnell modél) are less than 10% only far  5.00 3 2.40% 101 213% 1010 202 100
larger than 3 or 4, or fot./(R.m) smaller than one. This conclu- 4 4.26% 1010 2,00 10 3.88% 10
sion is significant because the critical buckling mode and low- 5 6.66X 10%° 6.39% 1010 6.27% 101

frequency vibrational modes often have circumferential wave
numbern=2 or 3. Hence, simplified Flugge mod@l) has a
significantly enlarged range of applicability compared to Donnell

model(1), and covers almost all important cases of major concerfeam model gives excellent approximate results as compared to
Almost the only missing significant case is the beam-like bucklings exact Flugge shell model and thus the latter is not necessarily
or vibration of long CNTs. In this case, however, simple elastigeeded. Here, we would emphasize that simplified shell models,
characterized by a single uncoupled equation for radial deflection,
will be particularly useful for MWNTSs of large number of layers.
" T N T 1 On the other hand, such simplified shell models are applicable
only for radial deformation of cylindrical shells with simpler end
conditions(such as simply supported endB other words, when
Modet | { axial or circumferential deflection becomes essential or more
complicated end conditions are involved, more accurate shell
models(such as exact Flugge shell modate usually needed.

Euler Beam

Modet il
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Stability Criteria for
wassisas | Nonclassically Damped Systems
o8 L With Nonlinear Uncertainties

. Y. R Yang The asymptotic stability of nonclassically damped systems with nonlinear uncertainties is
e-mail: yangyir@sohu.com addressed using the Lyapunov approach. Bounds on nonlinear perturbations that main-
. . tain the stability of an asymptotically stable, linear multi-degree-of-freedom system with
Department of Applied Mechanics and nonclassical damping are derived. The explicit nature of the construction permits us to
Engineering, directly express the algebraic criteria in terms of plant parameters. The results are then
Southwest Jiaotong University, applied to the symmetric output feedback control of multi-degree-of-freedom systems with
Chengdu 610031, PR. China nonlinear uncertainties. Numerical examples are given to demonstrate the new stability

criteria and to compare them with the previous results in the literature.
[DOI: 10.1115/1.1778719

1 Introduction robustness of nonclassically damped systems with nonlinear un-

Dvnamic analvsis of structures is commonly accomplished certainties. By using a specific Lyapunov function, bounds on
y 1YSIS . y P onlinear perturbations that maintain the stability of an asymptoti-
suming deterministic behavior of model parameters and loa

Math tical modeli f ohvsical d ! ¢ . %Ily stable, linear system with nonclassical damping are derived
athematical modeling of pnysical dynamic Systems in many gy, directly expressed in terms of plant matrices. The main sta-

gineering problems, however, |nclud¢s.some degree of uncert%rm—ty criterion obtained is shown to be less conservative than the
ties due to _structural parameter variations, unmod_eled dynam erion for the stability of almost classically damped system,
and control input constraints. Each of these constraints can lead}

o - o Bposed by Cox and Mor®]. In order to stabilize the second-
severe degradation in performance and even instability. Hence, {}§e, system with nonlinear uncertainties a symmetric output

problem of maintaining the stability of a nominal stable systeeqhack structure is introduced for the control law. As a conse-
subjected to linear and/or nonlinear perturbations has been an @Sence of the structure of the control law, the proposed approach
tive area of research for some time. To obtain stability measurgsn pe employed to guarantee the global stability of the closed-
of linear state-space systems with unstructured and/or structujggy system in the Lyapunov sense. Simple examples are studied
uncertainties, the Lyapunov stability theory is utilized in the litfor demonstrating the merit of the stability measures and to com-
erature(see, for example, YedavalliL], Zhou and Khargonekar pare them with the previous results in the literature.
[2], Siljak [3], Bien and Kim[4], and the literature cited thergin * The following notation will be used throughout this paper.

Stability measures of second-order systems have been relatively N ) ) .
scarce compared to those in the first-order form, even for nominal HBm = n-dimensional Euclidean space
cases. A good account of stability conditions for nominal second- R = nXm real matrix _
order system is presented in Shieh et[&]. Stability robustness Aj(A) = j-th eigenvalue of square matri
bounds on unstructured perturbations of second-order systems s P)(Am(P)) = maximum(minimum) eigenvalue of
presented using the Lyapunov function approach in Hsu and Wu symmetric matrixP
[6]. Robust stability bounds on structured perturbations and de- | "= nxn identity matrix
pendent parametric perturbations are proposed in Cao anfr$hu Ix| = Euclidean norm of vectox
A design procedure is carried out in Diwekar and Yedaya&llifor IAl = speqral norm .Of matmg .
stabilizing the matrix second-order systems with variations in in- A>0 (A<0) = positive (negative definite matrix
ertia, damping and stiffness matrices. In 1997, Cox and Ni8to
studied the stability of a class of nonlinear dynamic syste Main Results
whose linear part is almost classically damped and proposed-a
stability criterion that bounds the degree of the uncertain nonlin- Consider a differential equation governing the motion of an
earity and deviation from classical damping. According to CoRr-degree-of-freedom system
and Moro[9], a linear second-order system is classically damped o . _ ‘
if the damping and stiffness matrices of the system are commuting MX(8)+Dx(t) + Kx(D) =F(x(1),X(1),1) @)
ones. Although the Rayleigh damping models or other classiaaherex(t) e R" is configuration vectorf e R" is a smooth func-
damping strategie&.g., Cox and Mord9]) are commonly used tion of x, X andt; M, D andK e R™" are symmetric positive
in the stability analysis due to their simplicity, they may not gendefinite mass, damping and stiffness matrices, respectively. It is
erally apply to real structures. assumed that there exist positive constantande, such that the

In this paper, we are concerned with the problem of the stabilityonlinear forcing functiorf (x,x,t) satisfies

To whom correspondence should be addressed. IfexDll=elx]+elx],  for all t=to. @)
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F(y(t),t)= (4 ot e Ixlixol+ 2 sl
y(h),t)= M~ (x(t),X(1),t) | €2 781 x| 782HX( l
The following lemma is well knowr{Skelton et al[10]) and 1 2u
will be used in the proof of our main results. K=& 5 82+—81)
Lemma 1 (Skelton et al[10]): Let a symmetric matrixP be —— 2Ax®[IOI] Y
partitioned as 1 2 ) 2u
—5lEt e M= &
o [P Pi 2 Y
| P ' X(t
e
Then the following statements are equivalent:
(i) P>0; Then,V(y(t)) is a Lyapunov function if
(i) P1;>0 andPy,— P[,P{'P1,>0; 5
(“l) P22>0 and Pll_ P12P£21P12>0. K_81> 0, 1_ _82> O, and
THEOREM 1. Suppose that the nonlinear perturbatfosatisfies Y
condition (2); then systen(1) is globally asymptotically stable if 1 24
1( 2u )2+ +2,U«K _ - K—¢&;p ) 82+781)
2\ 827 81 THEL 2 MK, detx >0.
4 Y Y 1 2u 2u
wherew=\y(M), k=\n(K), andy=X\ (D). |t e L
Proof. Introduce a Lyapunov function candidat¥/(y(t)) 12
=yT(t)Py(t), where (12)
2 The inequalities in12) hold if
= K—UEL— ——&p— 7| Ep——¢€ >0.
P y 2 y . (6) MK e y 2 g\f2m A
7 Therefore, if the inequalitys) holds,V(y(t)) is a Lyapunov func-

tion for system(3) and the nonlinear syste is globally as-
SinceM, D andK e R"™" are positive definite matrices, it follows ymptotica)llly sta(bl)e. ystend) is g y

from Lemma 1 that the symmetric matriXis positive definite if T,corem 2 Suppose that the nonlinear perturbatiosatisfies

and only if the symmetric matrix condition (2); then systen1) is globally asymptotically stable if
2u Y
D+ —K——M>0. 7 2yk
v 2u ) e=maXe,e,}< L4 .
K
Taking notice of \/(2K+ y)%+ ;(2#—7)2+(2K+ Y)
Y Ny(M)= Z<n(D)=<\ (D+ Z—MK) ®) )
2u M 2 ~hmESmAm b% ' Proof. Taking the same Lyapunov function candidatéy(t))

=yT(t)Py(t) and employing the very similar ways as the proof of

we see thaf7) holds and therefor®>0. Taking the time deriva-
Theorem 1, we have

tive of V(y(t)) along the solution of systert8) yields

V(y(1) =y () Py(t) +yT(t) P¥(t)
=yT(H)(ATP+PA)Y(t)+2yT(H) PF(y(t),1)

V(y(1)=<—=2(k|x(t)|2+ ulX(D)]?) +2¢| [x(t)]?

© 0 #1022 oot s 2 ol
= —2yT 2 T —|IX X — %
2y (O g 280 YO T2y (PR, Y _ Y
Y == 2[x@llIx®)]7
N L1422
i K—E& — =g —
Since " 2 Y HX(t)”}
. 2p ) 2p . . . 1 2u 2u %)l
T T — T —xT _ = -~ R
X (t)( DM [x()= ==X (ODX() —X (OMX() 56| 1+~ u-"re
=2ul %O 2= (M) [x(D)]? (15)
= u|X(1)]|?, (10) Then,V(y(t)) is a Lyapunov function if
in terms of(2) and(4), we obtain
5 k—e>0, and
V(y(t)) = —2xT(t)Kx(t) — 2X"(t) TMD—M)X(t) 1 2u
K—¢& _ES 1+7
+2(xT<t>+ 2150 | fxct (0.0 det |4 24 2u -0
Y —sell+— u——¢
2 4 4
<=2« x>+ wl%(OI?) +2{ e4llx(t)[|? (16)
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The last inequality i16) holds if

2 1 2u\?
mK—| pt I;K)s—z( _7/") >0 a7
The inequality(17) is met if
YK
yrax for#=z
e<

2’}/ 2 2 2 Y

— [ p(y+26) %+ ux(y—2p)*— u(y+2x)], for p# 5

(y=2p) 2

2vukK 2vyk

V2 (y+26) 2+ pr(y—2p)°+ p(y+2x

Thus, taking notice of

2vk K . [ Y
< =minj k, =i,
5 2 5 5 2 5 2K+’)/ 2
(y+2k) +M(7 w)+(y+2x)
(18)

it is easily to verify that the inequalities ifL6) are met if the
inequality (14) holds. This completes the proof of Theorem 2.

) « '
(y+2k)%+ ;(7— 2p)%+ (y+2k)

stiffness and damping matricd§ and D is not a classically
damped pair, however, the criterion in Cox and M@®dis rela-
tively conservative in comparing with the results in Corollary 1.

3 Robust Stabilization by Symmetric Output Feed-
back Control

In this section we extend the above approach to the study of

Consider a nonlinear system whose mass matrix has been mobust controller design of second-order nonlinear systems. The

malized to the identity, which is a special case of sysiédmn
described as

X(t)+Dx(t) +Kx(t)=f(x(t),x(t),t), (29)

wherex(t) e R", f e R" satisfies conditior(2); D and K e R™"

are symmetric positive definite damping and stiffness matrices,
respectively. By Theorems 1 and 2, it is easy to obtain the follow-

ing Corollary.
COROLLARY 1. Suppose that the nonlinear perturbatfosatisfies
condition(2); then systen{19) is globally asymptotically stable if

1( 2 )2+ L (20)
—|e——¢ g1+ —e,<k,
z\%27 5% 1t e
or
2yk
e=maxXeq, ey} < (21)

V2k+ 92+ k(2= y)%+(2k+ )

wherex=\,(K) and y=\,(D).
Remark 1 For system(19), Cox and Moro[9] worked out a

symmetric output feedback is introduced for the control law. This
idea builds directly upon the work reported in Junkins and Kim
[11] and the literate cited therein.

Consider a class of nonlinear dynamical systems modeled by
the equation of motion

MX(t)+DX(t)+Kx(t)=f(x(t),x(t), ) +Bu(t)  (25)

wherex(t) e R" andu(t) e R™ are configuration and control vec-
tors, respectivelyf e R" is a smooth function ok, X, andt; M,
D, andK e R™" are symmetric positive definite mass, damping
and stiffness matrices, respectiveBie R"™™ is the control influ-
ence matrix. Also, assume that there exist positive constants
ande, such that the inequality2) holds.

In order to maintain the symmetric property of the system, we
introduce the following symmetric output feedback form of the
control law:

U:_(Gly+G2y), (26)

whereG; andG, aremXx m positive definite symmetric gain ma-
trices.

y=BTx

stability criterion that bounds the degree of nonlinear perturbationWith the assumption that the sensors and actuators are perfect,

and the deviation from classically damping. In Cox and M@}

i.e., linear and instantaneous, the closed-loop equations can be

the stiffness and damping matrices are assumed to be positiwétten as

definite and can be written as

K=Ko+K; and D=Dg+D;, (22)

whereK Dy=D¢Ky, i.e.,KgandD, is a classically damped pair,

and there exists a positive constaihsuch that
[Kilsé and ||D4<é. (23)

Based on a special Lyapunov function, Cox and Mi@bderived
a sufficient condition for asymptotic stability of systdfD) that
can be written as

29K
S< . YoKo . ,
V(2K + 0)*+ Ko(2— ¥0)?+ (2k0+ ¥0)

wheree =maxeq,&,}, kKg=Am(Kg) andyy=A\n(Dg). Obviously,
the inequality(24) coincides with the inequality21) if the linear
part of the nonlinear systertl9) is classically damped. If the

e+

(24)
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Mx(t)+(D+BG,BT)x(t)+ (K+BG;BT)x(t)=f(x(t),x(t),t).
(27

Since the gain matrice&, and G, are positive definite, the
control-induced stiffness and damping terB/6,;BT andBG,B"

are positive semi-definite. Therefore, if the system is controllable,
then the linear part of closed-loop systéaY) is at least asymp-
totically stable so long as the gain matrices are chosen to be posi-
tive definite. The following theorem can be derived directly from
Theorem 1.

THEOREM 3 Suppose that the nonlinear perturbatiosatisfies
condition(2); then the closed-loop syste(®7) is globally asymp-
totically stable if there exist positive definite gain matrié@sand

G, such that

&5

Kc>81+ 4#

(28)
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Fig. 1 Schematic of a three-degree-of-freedom vibrator

and It follows that

2u(2\(edrct ped) (ko—e1) +82(2K.—€1)) w=Am(M)=2+v2, y=Nn(D)=0.6, k=A\y(K)=4.
(29) (32)

Application of the stability condition in Theorem 1 yields

>

ve Ap(ke—e1)— &3

where u=\y(M), k.=An(K+BG;BT), and 7y.=An(D

+BG,B"). (e,—5.690356 1)+ 13.656854 ; + 180.091398,<54.627417.
For given boundss; and e, on the nonlinear perturbations, (33)

Theorem 3 can _t_)e used to _determlr_le the output f(_aedback CONEAb M Theorem 2, we have

law (26) to stabilize the trivial solution of the nonlinear system

(25). e=maXe,e,}<0.245808. (34)

. The results are depicted in Fig. 2 where the stability region re-

4 lllustrative Examples sulted from(33) is enclosed by the curv€ and the axes, while
The following simple examples serve to illustrate the usefulneise region given by(34) is enclosed by the lines,, L, and the

of the stability criteria presented here and to compare them wiges. It can be seen from Fig. 2 that the stability bound given by

the existing criterion in the literature. condition(14) in Theorem 2 is relatively conservative than that in

Example 1 Consider a three-degree-of-freedom nonlinear mdheorem 1.

chanical system depicted in Fig. 1. The system consists of thiesample 2 Consider systenl) with

rigid bodies connected by springs and dampers.

The equations of motion in matrix form for the system in Fig. 1 M=l D= 1 —05 K= 40 (35)
can be written as ' -05 2| 0 6/
m;+m, m, O %, c, 0 O Xy Then, we havey=\(D)= :.L/2(3—.\/2), k=Nm(K)=4. Ap-
m, m 0 l||%|+l0 ¢ 0]l plication of the stability conditiori20) in Corollary 1 yields
0 0 myll¥sl [0 0 ¢,)l%s (8,—2.522408 1)°+ 4z, +40.358524,<16.  (36)
kitke 0 K ) Applying the stability condition(21) in Corollary 1, it can be
Y 0 || xg g(x,x) easily computed that
0 k 0 Xo | = 0
* 2 2 | GO e=maxe,,e,}<0.354144, (37)
—Ko 0 ksgtkoJlXsl L=9(x%)

T ) - The corresponding stability region is depicted in Fig. 3. Obvi-
wherex=[x; X, X3]'. We suppose that there exist positive conpusly, the stability region given by conditid®0) is much larger
stantse; and e, such that the nonlinear perturbation functiorthan that given by conditiof21).

g(x,%) in (30) satisfy the following inequality: Since the matriceX and D do not commute, we cannot di-

1 1 rectly employ Theorem 3.1 of Cox and Mof8)]. Let
|9(X,X)|§§81‘X1_X3|+582|5<1_5<3|- (31) 1 0 0 -05
v Di=|-05 o0 [

0 2

Thus, in comparing with systeifi), we have Do=

g(x,%)
[f(x,5)]= 0
—g(x,%)

1 0 1] ; 03
(8 |X4] e |X1|) oask L

<[[|0 0 Of| | bal|+5| %l
1 0 1) |X3|

| X5 . oo2f c
<eql|x][+ e[ X]. L
Obviously, systen{30) is a nonclassically damped system if the
viscous damping coefficiert; is not identical withcs, i.e., ¢, 005
#Cs3. Consider the systert80) with

m;=2 kg, m,=ms=1 Kkg;
¢;=0.9 Ns/m, ¢,=0.6 Ns/m, g=0.6 Ns/m;
ki=4 N/m, k,=5 N/m, kz;=4 N/m, ky=2 N/m. Fig. 2 Predicted stability regions for the system in Example 1

&
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05 ' , ' ' , , freedom systems. Moreover, the symmetric output feedback con-
trol law is introduced to stabilize the second-order system with
04k ] nonlinear uncertainties. Numerical examples have demonstrated
that the new stability criteria are less conservative and more pow-
. erful comparing to those in the literature.

03 C
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Dynamic Response of a Clamped
Circular Sandwich Plate Subject
X.au ¥ {0 Shock Loading

V. S. Deshpande

1 An analytical model is developed for the deformation response of clamped circular sand-

. N. A. Fleck wich plates subjected to shock loading in air and in water. The deformation history is
e-mail: naf1@eng.cam.ac.uk divided into three sequential stages and analytical expressions are derived for the deflec-

o tion, degree of core compression, and for the overall structural response time. An explicit
Eﬂglﬂeefllﬂg DED%ftmelﬂt finite element method is employed to assess the accuracy of the analytical formulas for the
Cambridge University, simplified case where the effects of fluid-structure interaction are neglected. The sandwich
Trumpington Stregt, panel response has only a low sensitivity to the magnitude of the core compressive
Cambridge CB1 1PZ, UK strength and to the degree of strain hardening in the face-sheets. The finite element results

confirm the accuracy of the analytical predictions for the rigid ideally plastic sandwich
plates. The analytical formulas are employed to determine optimal geometries of the
sandwich plates that maximize the shock resistance of the plates for a given mass. The
optimization reveals that sandwich plates have a superior shock resistance relative to
monolithic plates of the same ma$®OI: 10.1115/1.1778416

1 Introduction Deshpand¢6] to clamped circular sandwich plates. First, analyti-

cal formulas are presented for the response of clamped rigid-

Clamped san(_jwmh plates are representative Of. the S”““”f&éaﬂy plastic circular sandwich plates to a uniform shock wave,
used in the design of commercial and military vehicles. For egé

le. th ¢ t struct hi . It | '%uding the effects of fluid-structure interaction. Next, the ana-
ample, the outermost Structure on a ship COmprises piates we al predictions of the response of sandwich plates are com-

to an array of stiffeners_. _The s_uperior p_erformance of sandwi_ red with FE predictions for the case where the effect of fluid-
plates relative to monolithic solid plates is well known for applisyrctyre interaction is neglected: This loading represents shock
cations requiring high quasi-static strength. However, the 'eS|8ading in air. Finally, the analytical formulas are used to deter-
tance of sandwich plates to dynamic loads remains to be fullfine the optimal designs of sandwich plates that maximize the
investigated in order to quantify the advantages of sandwich d@yock resistance in air for a given mass and the performance
sign over monolithic design for application in shock resistafjain of these optimal sandwich plates over monolithic plates is
structures. quantified.

The response of monolithic beams and plates to shock type
loading has been extensively investigated over the past 50 years or

so. For example, Wang and Hopkifsl and Symmond$2] ana- 2 An Analytical Model for the Shock Resistance of
lyzed the response of clamped circular plates and beams, resRefamped Sandwich Plates

tively, under impulsive loads. However, their analyses was re- .

stricted to small deflections and linear bending kinematics. By Fléck and Deshpandé] have developed an analytical model

direct application of the principle of virtual work for an assumedPr the response of clamped sandwich beams subject to air and

deformation mode, Jones presented approximate solutions fiderwater shock loading. This model is now extended to analyze
simply supported and clamped bearf@), and also simply sup- the response of clamped axisymmetric sandwich plates to a spa-

ported circular plateg4], undergoing finite deflections. tially uniform air or underwater shock.

Recently, Xue and Hutchinsofs] carried out a preliminary Consider a clamped circular sandwich plate of rad®us/ith

finite element(FE) investigation of the resistance of clamped ciridentical face-sheets of thicknebsand a core of thickness as

cular sandwich plates with a foamlike core to shock loading witﬁho"t\{n 'nl.';'g'f 1 }I;jhetfacet-;heetg are made f(;otm a'lrlgfldllldeally
the effects of fluid-structure interaction neglected. By employing astic so_ll_ho Y€l Stringt fE' ensityp , E}BI _enfle 1al urlt_ed f
series of FE calculations they demonstrated that near-optimiz {pIner - The core IS faken o be a compressibie ISolropic Solic 0

circular sandwich plates offer a higher resistance to shock IoadiC talgnlt) fstarlgg td;fovmﬁ r']'; ;Té?:laéxcoanggirgssdontothae d%onrsifiig-a
than monolithic plates of the same mass. In parallel studies, Fle[c . . % ¢ d densificati ﬁ up d iaid
and Deshpandgs] proposed an analytical model for the respons [on strainep ; beyond densification the core Is treated as rigid.

. . ) . Eleck and Deshpandé] split the response of the sandwich struc-
of clamped sandwich beams to shock loadings including the (?f

. : . - tyre into three sequential stages:
fects of fluid-structure interaction and showed that the analytlceld q 9

predictions are in close agreement with FE calculatiprk, (i) Stage I—fluid-structure interaction phase,

In this study we extend the analytical method of Fleck and (i) Stage ll—core compression phase, and
(iii) Stage lll—plate bending and stretching phase.

*To whom correspondence should be addressed. Here, we assume a similar separation of time scales for the sand-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF wich plate deformation history.

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- S . . .
CHANICS. Manuscript received by the Applied Mechanics Division, September 3$tage |—The initial fluid-structure interaction phase ) )

2003; final revision, January 20, 2004. Editor: R. M. McMeeking. Discussion on the G. |. Taylor [8] developed the solution for a one-dimensional
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal\gave impinging a free-standing plate to compute the momentum

Applied Mechanics, Department of Mechanical and Environmental Engineeri ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will ansmitted to.the plate by the S_hO_Ck pulse. Fleck and Deshpande
accepted until four months after final publication in the paper itself in the ASM ] followed this approach and similarly computed the momentum

JOURNAL OF APPLIED MECHANICS. transmitted to the sandwich beam by treating the outer face of the
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face-sheets where h=h/c, ¢c=c/R, p=p./p;, I=I/(RJoiyps) and o

=ou./osy. However, ifU g is too high such that. as given by

(5) exceeds the densification straig, thene. is set equal tap

and the model does not account explicitly for the additional dis-

sipation mechanisms required to conserve energy. Rather it is as-

sumed that inelastic impact of the outer face against the combined

core and inner face leads to the additional dissipation. After the

core has compressed by a strainepf the core height is reduced

) ] to (1—e€.)c. An approximate estimate of the tinig, for this

Fig. 1 Geometry of the clamped sandwich plate second stage of motioftalculated by neglecting the mass of the
corg is given by[6]

sandwich beam as a free-standing plate. Their analysis also holds_— T.
for the circular sandwich plate, and we briefly review the relevant Tc= —7——
equations. RVpilory

The pressur@ at any point in the fluid of density,, engulfed
by the pressure wave travelling at a velocity is taken to be
(starting at timet=0)

_ —t/0 =y — —
P=Po€ % @) I 45c%he, ,
where p,, is the peak pressure ardithe decay constant of the % 1- 1- W ' otherwise.

wave. When this pressure wave hits a stationary rigid plate at

: if 12.2<40c?hep

I\)l ‘
e

normal incidence it imparts an impul$e (6)
=2 * ~U0gt=2p @ 5 This timeT, is typically small compared to the structural response
- o Po€ = 2Po0, @ time and thus the transverse deflection of the inner face of the

sandwich plate in this stage can be neglected.
to the plate. The factor of two arises in relati@® due to full Stage Ill—Plate bending and stretching phase
reflection of the pressure wave. At the end of Stage I, the sandwich plate has a uniform veloc-

If instead, the pressure wave impacts a free-standing plate, fyeexcept for a boundary layer near the supports. The plate is
imparted impulse is less thdnand can be estimated as followsbrought to rest by plastic bending and stretching. The problem
When the pressure wave strikes a free-standing plate of thickngggler consideration is a classical one: what is the dynamic re-
h made from a material of densipy; , it sets the plate in motion sponse of a clamped plate of radiBswith an initial uniform
and is partly reflected. At the instant the plate achieves its magtansverse velocity ? The structural response is broken down into
mum velocity, the pressure at the interface between the plate ai@ phasesti) small displacement analysis first considered by
the fluid is zero and cavitation sets in shortly thereafter. The m@yang and Hopking1] and(ii) large displacement analysis
mentum per unit aredy,,s transmitted into the structure is then(j) Small displacement analysis
given by When the transverse displacement of the plet®) is less than
(3a) the total thickness I2+c, the dynamic response is governed by

bending and transverse inertia of the plate. Wang and Hopkins
where showed that the plate response comprises two sequential phases.
f= g0 (30) Phas_e I_comprises _statipnary plastic hinges at the supports and
’ plastic hinges travelling inwards from each clamped support. Af-
and y=p,.c,0/(p;h). It is assumed that this transmitted impulséer the moving hinges have coalesced at the center of the plate,
imparts a uniform velocity .= ../ (psh) to the outer front face continued rotation occurs about the central hinge until the plate is
of the sandwich plate. brought to rest in phase II.

In the present model, the effect of the fluid after the first cavi- We now introduce the appropriate nondimensional geometric
tation event is neglected. This is consistent with the observatiparameters for the sandwich plate
that the secondary shocks have a much smaller effect on the struc-
ture compared to the primary shock wave, see C8le
Stage II—Core compression phase

At the start of this phase, the outer face has a velagityhile
the core and inner face are stationary. The outer face compre
the core, while the core with compressive strengthdecelerates

lrans= ¢,

==, e=cl =" and A= n 7
=g t=tll-e), h=_andh=—"- (7

— €

ad the nondimensional material properties of the core

the outer face and simultaneously accelerates the inner face. The p= &, and o= 2. (8)
final common velocity of the faces and the core is dictated by Pt oty
momentum conservation and the rafi®f the energy losU, in The nondimensional structural response tifn@nd blast im-
this phase to the initial kinetic energy;%/2p:h of the outer face puise| are
is given by
B Uost  1+m _Eleﬂy _El—_ ©)
Y= 122 2ph) 24 “) RN ps RVpiory

wherem= p.c/(p:h) is the ratio of the mass of the core to the" the small deflection regime, the maximum central deflection
mass of a face-sheet. This energy lost is dissipated by magfcthe inner face of the sandwich plate and the structural response
dissipation in compressing the core and thus the average throulifile T are given by Eqs(4.99 and(4.100, respectively, of Jones

thickness straire, in the core is given by 4]. Noting that the plastic bending momekit, of the circular
- - sandwich plate is given by
|2§2 h+? (5) (1—5 )202
€c= — _ c _
° 2octh oh+p Mo=o——p—+onhl(1-ejeth],  (10)
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these equations reduce to (a)

Ms
- M,
= ﬂ —0.28 |2 52_ ' (11a) P circumscribing yield locus
R CCZaIl( 2h +m inscribing yield locus
and exact yield locus
— T Oty _4 . X
== ?fo.seézal, (11 o
where
a,=(1+2h)2-1+7, (12a)
and
2h+ p
ar= — (12p)
2h+o (b)

(i) Large displacement analysis . hine vield 1
The above analysis ignores the buildup of membrane actio ! T crenmsabiig yied foous

associated with the lateral deflection of the clamped plates. JOninscribing yield locus
[4] has taken this into account by assuming that the plate deflec
from the initial undeformed configuration with a velocity profile
which decreases linearly from a maximum value at the center 1
zero at the supports. The analysis in Jofékis given for a
simply supported circular plate and can be easily extended 1
clamped circular plates by assuming that stationary plastic hingt
form at the center and at the clamped supports of the plate. Plas
dissipation is both by rotation about discrete plastic hingesandk Lo e !
uniform radial stretching of the plate due to its transverse dis -t
placement between the clamped supports.
The yield locus of an axisymmetric sandwich element subjecteu
to a circumferential membrane ford¢, and a circumferential Fi L . -
ig. 2 Sketches of the exact, inscribing and circumscribing

bending momenM, is well approximated by yield loci of (a) the sandwich plate and (b) the monolithic plate.
M N Here, M, and N, are the fully plastic bending moments and
0, 0 1, (13) axial loads, respectively, of the plates.

exact yield locus

+
Mo No

whereM, is the plastic bending moment specified ) andN,

; X . . for an inscribing yield locus. A number of criteria can be devised
the circumferential plastic membrane force given by

for the transition from the small to the large deflection analysis.
No=2hoy+(1—€)cCoe, (14) For example, the transition can be assumed to occur at an impulse

level where both analyses predict equal displacements. It will be

where we have assumed the strength of the foam is unaffecteddpbwn subsequently in the comparisons with the FE calculations
core compression. Analytical formulas for the deflection anghat for most practical values of displacement or impulses, the
structural response time of the circular plate can be obtained ‘a}‘ge disp|acement solution suffices. Thus, we propose here to use
approximating the above yield locus by either inscribing or cCithe large displacement solution over the entire range of impulses.

cumscribing squares as sketched in Fig) 2Employing a proce-  The circumferential tensile straiq, in the face-sheets due to
dure similar to that detailed in Jon¢4] the maximum central stretching is approximately equal to
deflectionw of the inner face and structural response timef a

i i i 1
clamped circular sandwich plate are given by Em=§W2- 17)
ry 242
—_ o 1+ = ¢ _ (158) Neglecting the strains due to bending, an approximate failure
2h+o 3celalas ' criterion for the sandwich plates is given by setting the face-sheet
tensile straine,, equal to the tensile ductilitg; of the face-sheet
and material.
_ T 2 _g 2.1 Response of a Monolithic Clamped Plate. Similar ex-
T=a; &tanfl TN (150) pressions exist for the deflection and structural response time of a
1¢2

monolithic clamped circular plate. For monolithic plates, no core
respectively, for the choice of a circumscribing yield locus, and byompression phase exists and Stage Il of the deformation history
vanishes. Again the analysis is divided into the small and large
_ tay 4 1222 displacement regimes. Consider a monolithic plate of thickkkess
W= —— 1+ ——=——-1/, (16a) and radiusR made from a solid material with yield strengify .
2h+o 3 cCaia; Then the analysis of Wang and Hopkirlg implies that the maxi-

mum central deflectiomv and the timeT to attain this deflection
are given by

T= \/Et o 2 1 160 W
“%2 N3t an 3ce Caqay )’ (160) -
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and

Xl =

_ [R\3
=0.28|2§2(ﬁ> , (18



and _
| (Tfy

=— _ 22)
— T Jow — [R)? Vo= — ’ (
= = c Pt
T R\/ p 0.36 g(H) . (180) h

) ) ] ] to the outer face-sheet of the sandwich plate and by giving an
Next consider the large displacement regime. The yield locstial velocity

for any plate element of the monolithic circular plate, subject to a

circumferential membrane fordd, and bending momeri¥l, is IR Oy
given by Vo= NV, (23)
M 2 N . L
(M_e) n N_gzl’ (19) uniformly to the monolithic plate.
° ° 3.1 Constitutive Description. Unless otherwise specified,

whereN,=Hoy and M,= a¢H?/4. The maximum central de- the material properties of the sandwich plates are taken to be as
flectionw of the clamped circular plate and the structural responé@llows. The face-sheets of the sandwich plate are assumed to be
time in the large displacement regime can be calculated in tAede from an elastic ideally plastic solid with yield strength,
manner detailed in Jon¢d] by approximating the yield locus by 2 Yield strainey and densityp;. The Young's modulus is speci-
either inscribing or circumscribing squares as sketched in Figgd by Es=oy/ery. The solid is modeled as a J2 flow theory
2(b). Under the assumption of an inscribing yield locus, the norsolid. The core is modeled as a compressible continuum using the
dimensional deflectiom and structural response tirffeare given foam constitutive model of Deshpande and FIgtR]. This con-

by stitutive law employs an isotropic yield surface specified by
H — /R% o—0o.=0, (249)
W= 242
W_(ﬁ)( \ 1+1.073%¢ (ﬁ) _1)* (20)  \where the equivalent stress is defined by
and a2 1 2, 22
- - 2 o _l+(a/3)2[ae+a Um]' (24b)
T=0.519tan*| 1.039 g(ﬁ) } (200) Here,o.= \/33”3”72 is the von Mises effective stress wih the

o ] ) S ~ deviatoric stress tensor amg,= o,/3 the mean stress. The yield
Similarly, the assumption of a circumscribing yield locus gives strengtho, is specified as a function of the equivalent plastic

H > R12 strain using uniaxial compression stress versus strain data. Nor-
W= (_)( \ /1+ _Tz{:z(_) _ 1), (21a) mality of plastic flow is assumed, and this implies that the “plastic
R 3 H Poisson’s ratio” v,= — €3,/ €%, for uniaxial compression in the
and 1-direction is given by
_ 2
= tant \ETg all (21b) ”p:—lﬁ (7/3?)2 ' (25)
/6 3 °\H| | (a

N . . ) Numerical values for the reference material properties for the
Again, it will be shown via FE calculations that the large displacesangwich plate were taken to be as follows. The face-sheets are

ment solution is adequate over the entire range of deflections. 3ssymed to be made from a stainless steel of yield strangth
In the analytical formulas given above, we have ignored shearsog Vpa, yield straine;y=0.2%, elastic Poisson’s ratio

deflections of the plates. For the slender sandwich plate facen 3 gng density;=8000 kgm 3. The strength of the core is

sheets lt/R—0) and monolithic platesH{/R—0) under consid- (51en to be representative of that for a lattice material such as the
eration here, Jones and Gomes de Olivgl@ have shown that et tryss[13], made from the same solid material as the face-

the shear deflections are negligible. Thus, it suffices to considg§{eets. Thus. the isotropic core yield strength is taken to be
only the bending deflections of the plates as done above. Also, '

strain-rate effects in the parent material have been neglected in the o.=0.5007%y, (26)

current analysis. As a first-order approximation, Perrone aq\% — : ; ;
. rep= is the relativ nsity of th re. As the refer-
Bhadra[11] have shown that the effect of strain rate sen5|t|V|t)én§eecpa Sep C\/\//Z ftasl%:% 1e(ia(te ecc()jree setzsci)ty)t fs%ooigm§3t) \?vitﬁ €
, Alie., c

2ted with he araim-ate n 6 beam at the reproséniative trafi: 32 GING @ plastic Poissor'sratia,—0. The plastic crush
. P sﬁengthaC of the foam core is taken to be independent of the
verse deflection &/3. > . - e . .
effective plastic strain up to a densification straj0.5: beyond
densification, a linear hardening behavior is assumed with a very
large tangent modulus,;= 0.2E; . Further, the core is taken to be
3 Finite Element Study elastically isotropic with a yield straia.y=0.2% and an elastic

| . Foisson’s ratiov.= 0.
n order to assess the accuracy of the above analytical model, a
finite elementFE) study was conducted with the effects of fluid- 3.2 Details on the Finite Element Method. All computa-
structure interaction neglected. In the limit of no fluid-structuréons were performed using the explicit time integration version of
interaction (#=0 and{=1) it is assumed that the entire shockhe commercially available finite element code ABAQUS version
impulsel is transferred uniformly to the outer face of the sandé.2. The plate was modeled using four-noded axisymmetric quad-
wich plate and to the full section of the monolithic plate. It igilateral elements with reduced integratidalement typeC AX4R
worth mentioning here that Xue and Hutchingéhdemonstrated in the ABAQUS notation Numerical damping associated with
that impulsive loading of clamped circular sandwich plates sufolumetric straining in ABAQUS explicit was switched off by
fices to capture the response of these plates subject to pressatting the bulk viscosity associated with this damping to zero;
versus time histories corresponding to most practical shoadking the default viscosity in ABAQUS results in substantial arti-
loadings. ficial viscous dissipation due to the large volumetric compression
In all the FE calculations presented here, loading correspondiafithe core. For a typical plate of geomety: 0.03 andh=0.1,
to a nondimensional impuldeis specified by imparting an initial there were 2 and 8 elements through the thickness of the face-
uniform velocityv,, sheets and core, respectively, and 100 elements along the Radius
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i : FUPESCELEL bt strength o=0.05 and densification strain €,=0.5 and an as-
: ’,"' sumed face-sheet material ductility €;=0.2. Contours of the
0.6k i s maximum normalized central deflection ~ w of the inner face-
B y sheet subject to a normalized impulse 1=10"2 are included.
T The symbols denote the sandwich plate geometries selected
04 £ J for the FE calculations.
: finite deflection, circumscribed
~ = =~ finite deflection, inscribed
(1071 - ; . . P . . . )
small deflection are given in Fig. &). In the FE simulationsT is defined as the
o FE time taken to reach the maximum deflection and written in non-
o . + + + t L L . dimensional form via9). For the range of impulses considered

_ here, the response of the plate is governed by stretching and the
10°7 structural response time is approximately independent of magni-

tude of the impulse. It is seen that the FE predictions of the struc-

tural response tim& are also in good agreement with the analyti-
Fig. 3 Analytical and FE predictions of  (a) maximum central  cal model employing the inscribing yield locus. Again the small
deflection and  (b) structural response time, of a monolithic deflection analysis is not relevant for realistic levels of shock im-
plate with aspect ratio  R/H=50 as a function of the applied pulses. Thus, in the subsequent discussion we only present com-
impulse parisons with the finite deflection solution and neglect the small
deflection analysis.

Mesh sensitivity studies revealed that further refinements did not4.2 Sandwich Plates. Comparisons of dynamic finite ele-
improve the accuracy of the calculations appreciably. ment simulations and analytical predictions have been performed
on sandwich plates made from the reference materials specified
4 Comparison of Finite Element and Analytical Pre- above. The comparisons between the analytical and FE predic-
dictions tions are carried out in two stages. First, for a fixed impulse, the
response of the sandwich plate is investigated as function of the
4.1 Monolithic Plates. Comparisons between analytical ancplate geometry and second, the response of a sandwich plate with
FE predictions of the dynamic response of monolithic plates maégepresentative geometry is studied for varying levels of impulse.
from the same material as the face-sheets of the reference sandror the purposes of selecting appropriate sandwich plate geom-
wich plate (i.e., an elastic perfectly plastic solid with a yieldetries for the FE calculations, we plot a design chart for sandwich
strengtho 1y =500 MPa, yield straire;y=0.2%, an elastic Pois- plates subjected to a normalized impulse 10"3, with an as-
son’s ratioy=0.3 and a material density;=8000 kgm %) are sumed face-sheet material ductili;z=0.2. The design chart
presented in this section. The dependence of the normalized makiown in Fig. 4 has been constructed using the analytical model
mum central deflectioiv of the plate upon the uniformly applied with the circumscribing yield locus. Contours of the maximum
normalized impulsé is shown in Fig. ), for a plate with aspect normalized central deﬂe(_:tiom of the_ inne_r face of the sandwich
ratio R/H=50. In the FE simulationsy is defined as the peak plates along with the regime of tensile failure of the face-sheet are
value of the central deflection versus time trace. Analytical préhown on the chart. Twelve plate geometries in the range 0.03
dictions of this maximum deflection employing the small deflecsh=<0.3 and 0.0%¢=0.06 (as indicated in Fig. pare selected
tion analysis and the finite deflections analyses with the circurfer the FE calculations. This range of plate geometries is repre-
scribing and inscribing yield surfaces are included in Figr)3 sentative of practical plate geometries, and the analytic predic-
While the inscribing yield surface predictions are in good agregons for the central displacements of the inner face of the sand-
ment with the FE results over the range of impulses investigatédch plate are in the range 0.86Ww=0.2.
here, the circumscribing yield surface model underpredicts theComparisons of the FE and analytical predictidiscribing
deflections. Further, for realistic levels of the shock impulse, théeld locus for the central deflectiow of the inner face-sheet as
FE results are captured accurately with the finite deflection anafynctions ofh are shown in Fig. &) for c=0.03 andc=0.04,
sis employing the inscribing yield locus. subject tol =10~ 3. Similar to the monolithic beam case, in the
The analytical and FE predictions of the normalized structur@E simulationsw is defined as the peak value of the deflection
response tim@, as functions of the applied normalized impulse versus time trace. Figurél® shows comparisons of the analytical
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Fig. 6 Analytical and FE predictions of the (@) maximum cen-
Fig. 5 Analytical and FE predictions of the maximum central tral deflection w of the inner face-sheet and (b) core compres-
deflection w of the inner face-sheet of sandwich plates with sion €. as a function of the applied impulse for sandwich
reference material properties subjected to a normalized im- plates. ¢=0.03 and h=0.1 and the sandwich plate is made from
pulse /=1073. (a) w as a function of h for two valuesof C. (b) w the reference core material, with both ideally plastic and strain
as a function of ¢ for two values of h. hardening face-sheets.

- — T model and consequently the analytical model overpredicts the de-
and.FE predlctllons q’ﬁversgsc f0f3plates withh=0.06 and 0.2, flections and core compression at high values of impulse.

again for the fixed impuls¢ =10"". In all of the above cases | the FE simulations, the structural response tifrie defined
good agreement is seen between the analytical and FE predictiof$the time taken to reach the maximum deflection and the core
with the discrepancy inv between the analytical and FE predic-compression timd. is defined as the time taken to first attain the
tions not exceeding 5%. As in the monolithic plate case, the angsa| through thickness straie, in the core. Comparisons of the
lytical model employing the circumscribing yield locus underpreznaiytical and FE predictions of the normalized structural re-

dlclilse)t(?igr?giz:trlogié resentative sandwich plate of geometr sponse timd and the core compression firiig as functions of
— P p 9 Yare shown in Fig. 7 for the sandwich plate witk-0.03 andh

— _ ; ; ; —4
=0.03 andhjso.l, SUbJeCF to impulses in the range * 50 . =0.1. Good agreement between the analytical and FE predictions
=<1=3.2x10"". A comparison of the FE and analytical predicig seen for the core compression time and, similar to the case of

tions of the maximum deflectiow and core compressiog, Ver-  the monolithic plate, the inscribing yield locus model is in good
sus| are shown in Figs. @) and Gb), respectively. In the FE agreement with the FE predictions of the structural response time.
simulations, the straie, is defined as the final through thicknessrne normalized core compression tiffig is at least an order of

nominal strain at the center of the plate. The choice of an inscrip]- gnitude smaller than the structural response fimehis sup-
ing yield surface for the analytical model leads to good agreem rts the assumption of a separation of time scales for the core

with the finite element predictions at low impulses, while 2 ompression phase and the plate bending and stretching phase in
higher impulses the circumscribing yield surface appears to giyg, analytical model

better predictions. Figure(B) shows that the analytical calcula-

tion also substantially overpredicts the core compression in the4.2.1 Effect of Strain Hardening Upon the Dynamic Response

high impulse domain. Similar to the sandwich beam case analyzedSandwich Plates. The analytical models discussed in Section

in Qiu et al.[7], these discrepancies can be rationalized by recaf- and the FE calculations detailed above, both assume ideally
ing that the analytical model neglects the reduction in momentuphastic face-sheet materials. On the other hand, structural alloys,
due to an impulse provided by the supports in the core compreghich are expected to be employed in shock resistant sandwich
sion phase. With increasing impulse this assumption is no longaanstruction, can have a strong strain hardening response. The
valid as the higher core compression gives rise to significaeffect of strain hardening of the face-sheet material on the sand-
stretching of the outer face-sheet at the supports and thus to a lvish plate response is investigated here by suitable modifications
in momentum. This effect is not accounted for in the analyticalf the FE model. The face-sheet material is assumed to be made
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Fig. 7 A comparison between analytical and FE predictions of
the structural response time T and core compression time T,
as a function of the applied impulse, for sandwich plates with
¢=0.03 and h=0.1 made from the reference materials

Fig. 8 A comparison between the analytical and FE predic-
tions of the maximum central deflection w_of the inner face-
sheet of sandwich plates with ¢=0.03 and h=0:1, subject to a
normalized impulse /=10"% as a function of the normalized
core strength o

from a elastic plastic material with yield stress and strajy ~ core strength but overpredicts the deflection of the plates with the
=500 MPa and ;y=0.2%, respectively, and a density; Weaker cores. Time histories of the plastic dissipation of the entire
=8000 kgnT 3. The strain hardening response is assumed to gandwich plate and of the core alone, each normalized by the
linear with a tangent modulus, /oy = 10; this high rate of strain INitial kinetic energy of the outer face-sheet of the sandwich plate
hardening is representative of the AL6XN stainless steel. The cé¥& Shown in Fig. @). These curves reveal two stages of defor-
properties are unchanged from the reference material case. Mation. In the first stage, plastic dissipation occurs primarily in
Consider a sandwich plate with core made from the referentiee core, with the outer face-sheet approaching the inner face; at
material and elastic strain hardening plastic face-sheets, with glee end of this stage both face-sheets are moving at approximately
ometryc=0.03 anch=0.1. The normalized maximum deflectionthe same velocity. Subsequently, plastic dissipation occurs prima-
w and core compressiog, are plotted againsﬁin Figs. 6a) and rily within the face-sheets, with the dissipation in the core increas-
6(b), respectively, along with the deflections and core comprel€d only gradually with time. It is worth noting that the plastic
sions of the sandwich plates made from the reference materidigSipation in the core at the end of the first stage is nearly inde-
(with elastic-ideally plastic face-shegtdhe strain hardening re- pendent of the core strength. Further, this stage Igsts longer for the
sponse of the face-sheets has only a small effect upon the deflégaker cores. Consequently, the core compression phase overlaps
tion and core compression of the sandwich plate. This can Wath that for the face-sheet deformation for the choice of a sand-
rationalised by recalling that the circumferential strain in the faca¥ich plate with a weak core. o
sheets ise,~0.5W2~4.5% for w~0.3. This level of straining _Finite element predictions of the plastic dissipation at the end of
does not increase the yield strength of the face-sheet matel4f first stage of the deformatidhe., the plastic dissipation cor-
appreciably for the strain hardening considered here and hencerﬁ%oond'?g up to the knehe in the plastic d|SS|pff;\t|on.verSl;s:‘|mes
response is only mildly sensitive to the strain hardening behavioyves of Fig. %)) are shown in Fig. &) as a function o é;e
of the face-sheets. This conclusion should be moderated for @SS rat'gE:PcC/(Pfh)' for the choices of core streng
case of annealed face-sheets for which the flow strength at &-04 ando=0.01. These calculations were conducted on plates

uniaxial strain of 4.5% may be significantly above the yieldVith the above geometry subject to a normalized impulse
strength. =103, The ratiom was varied by changing the density of the
e material from 80 kgt to 1600 kgniS. The figure reveals

t the plastic dissipation at the end of the core compression
ge is independent of the core strength and increasesnyiit
%Pllent agreement with the analytical predictions, 4.

4.2.2 Effect of Core Strength Upon the Dynamic Responsetcﬁ)[:
Sandwich Plates. In the calculations detailed above, the COrgq,
strength was held constant. Here we investigate the effect of ¢
strength on the sandwich plate response. Results are presente
sandwich plates of geometig=0.03 andh=0.1, subjected to a 4.2.3 Comparison of the Dynamic Response of Clamped
normalized impulsd =10 3. Other than the core strength, theSandwich Plates and BeamsComparisons between FE and ana-
material properties of the sandwich plates were unchanged frdyfical predictions of the impulsive response of clamped sandwich
the reference material properties. The normalized core strengttPeams have already been presented by Qiu €f7al.Here we
was varied from 0.01 to 0.08, with a densification strainheld compare the analytical and FE predictions of the defleationf
fixed at 0.5; cores weaker than=0.01 were not considered asSandwich plates with these existing results for sandwich beams.
numerical difficulties were encountered in such cases. Consider a clamped sandwich beam of sparc2mprising two

The maximum normalized deflection of the inner face of thiglentical face-sheets of thicknelssand a core of thicknessmade
sandwich platév is plotted against the normalized core strength from the reference materials described above. Qiu dt7alpre-
in Fig. 8. The FE results indicate thatis relatively insensitive to Sented FE results of the maximum normalized midspan defection
the core strength. Analytical predictions wf employing the in- W=W/L of such sandwich beams with geometry=c/L=0.03
scribing and circumscribing yield surfaces are included in Fig. 81dh=h/c=0.1 as a function of the applied normalized impulse
the analytical model employing the inscribing yield surface agreés=1/(L \p;o¢y). These results are plotted in Fig. 10 along with
reasonably well with the FE predictions for plates with the higthe corresponding sandwich plate results. We note that the FE
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Fig. 9 (a) FE predictions of the time histories of the normal-
ized plastic dissipation in sandwich plates for three selected
core strengths. (b) Ratio ¢ of the plastic dissipation in the core
compression stage to the initial kinetic energy of the outer face

as a function of the mass rato m for two selected core
strengths. The sandwich plates in both cases have geometry
€=0.03 and h=0.1 and are subjected to an impulse /=1073.
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Fig. 10 Analytical and FE predictions of the maximum central
deflections w of the inner face-sheet for clamped sandwich
plates and beams, as a function of the applied impulse. Both

the sandwich plates and beams have a geometry ¢=0.03 and
h=0.1, and are made from the reference materials.
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Fig. 11 Design chart for a clamped sandwich plate made from
the reference materials for a fixed maximum central deflection

of the inner face  w=0.1. Contours of the applied impulse  / and
nondimensional mass M are displayed. The underlined values
denote the nondimensional impulse values while the arrows
trace the path of the optimal designs with increasing M.

predictions of the maximum deflections of the clamped sandwich
beams and plates as functions of the applied normalized impulse
are approximately equal when the half-spgarof the sandwich
beam is equated to the radifsof the sandwich plate. The ana-
lytical predictions(employing the inscribing yield locusf the
deflections of the beanj¥] and plates are included in Fig. 10. In
line with the FE predictions, the analytical predictions for the
beams and plates are approximately equal.

5 Optimal Design of Sandwich Plates Subject to Shock
Loading

In the preceding sections we have demonstrated that the finite
deflection analytical formulas for the response of the clamped
sandwich plates are in reasonable agreement with FE calculations.
We now employ these analytical finite deflection formulas to de-
termine the optimal designs of sandwich plates that maximise the
resistance of a sandwich plate of given mass to shock loading
subject to the constraint of a maximum allowable inner face de-
flection. The optimization is conducted by assuming that the entire
shock impulse is transmitted to the sandwich pldte L). This is
representative of shock loading in air where the acoustic imped-
ance of air is much less than that of the steel outer face-sheet of
the sandwich plate as detailed in the Stage | analysis of Section 2.

To help with this optimization, it is instructive to construct a
design chart relating the sandwich plate geometry to the shock
impulse for a specified deflection. Such a design chart with exes
andh is plotted in Fig. 11 for a normalized deflection=0.1 of
the inner face of the sandwich plate by employing the circum-
scribing yield locus analytical expressions. The chart is plotted for
sandwich plates with reference materials properties, i.e., a core of
relative densityp=0.1 and strength specified §86). Contours of
the nondimensional madegl of the sandwich plates have been
added to Fig. 11, where

=2hc+cp, (27)
andM is the mass of the sandwich plate. The arrows in Fig. 11

trace the trajectory ofd;h) which maximizesl for a givenM
with increasingM.
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7 have been compared with dynamic FE results with the effect of
fluid-structure interaction neglected and the analytical model used
6F to determine optimal designs of the sandwich plates. The main
findings include:
5t 1. FE calculations demonstrate that the time scale for core
compression separates from the time scale for plate bending/
4} stretching of the sandwich plate, as assumed in the analytical
10° model.
"3l 2. the analytical model employing the inscribing yield locus
agrees well with the FE predictions at small deflections
2+ while the FE results are in better agreement with the analyti-
monolithic plate cal predictions employing the circumscribing yield locus at
- - - - sandwich, 5 = 0.05 larger deflections.
L A sandwich, 5=0.1 | 3. for realistic levels of plates deflections, the presence of
strain hardening representative that for most structural alloys

has a negligible influence on the sandwich plate response.

0 L L Il Il Il L L
0 0005 001 0015 002 0025 003 0035 0.4 4. both the FE calculations and the analytical model predict

M that the compressive strength of the core has only a limited
Fig. 12 A comparison of the maximum shock impulse sus- 'nﬂl.Jence on_ the SandW'Ch. plate rESponse.' .
tained by monolithic plates and by optimal designs of the sand- 5. optimal designs of sandwich plates sustain larger shock im-
wich plates subject to the constraints ~ w<0:1 and w<0:2 for pulses than monolithic plates of the same mass assuming
two relative densities  p of the core material that the face-sheets of the sandwich plate are made from the

same solid as that of the monolithic plate.

The maximum normalized impuldg,,, sustained by these op-
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A Continuum Theory That Couples
Creep and Self-Diffusion

In a single-component material, a chemical potential gradient or a wind force drives
self-diffusion. If the self-diffusion flux has a divergence, the material deforms. We formu-
late a continuum theory to be consistent with this kinematic constraint. When the diffusion
flux is divergence-free, the theory decouples into Stokes's theory for creep and Herring's
theory for self-diffusion. A length emerges from the coupled theory to characterize the
relative rate of self-diffusion and creep. For a flow in a film driven by a stress gradient,
creep dominates in thick films, and self-diffusion dominates in thin films. Depending on
the film thickness, either stress-driven creep or stress-driven diffusion prevails to coun-
terbalance electromigration. The transition occurs when the film thickness is comparable
to the characteristic length of the materidDOI: 10.1115/1.1781176

Z. Suo

Division of Engineering and Applied Sciences,
Harvard University,

Cambridge, MA 02138

g-mail: suo@deas.harvard.edu

1 Introduction self-diffusion. Sections 2—4 describe the kinematics, energetics,
a?n_d kinetics of the theory. Section 5 gives the coupled partial

. . " T : lifferential equations for the velocity field and the chemical po-
g;‘s g‘égrr‘fp‘r’gg’soijg'zg'e for e(;‘r?g“gfs’s?bfg'%2'$:§?rﬁtmistg%‘;egmia| field, and identifies the characteristic length in the theory.
the injection of atoms into the filnfi1]. Impinging atoms may not ections 6 discusses examples of flows driven by stress gradient,

have enough time to find equilibrium positions on the film surwInd force, and atomic injection or emission. Stress gradient-

face, and may diffuse into the film. Oxidation leads to analogo%\;ven channel flow is dominated by creep in thick channels, and

Self-diffusion can generate stress in a single-component m

. : o self-diffusion in thin channels. Section 7 discusses an aniso-
phenomena. For some materials, during oxidation, atoms m,

. - X S ropic rule to place diffusion flux divergence as strain rates in
emit from the materials, causing tension in the mater{&k,For various directions.

other materials, notably silicon, atoms may inject into the materi- That creep and self-diffusion in some materials result from the

I in mpression in the materi Electromigration S .
as, causing compressio e materigl, Electromigratio same atomistic process has been known for a long time. In a

provides yet another compelling example. The conduction el%?dﬁjid, self-diffusion and creep are different macroscopic manifes-

trons motivate atoms to diffuse, generating tension upstream qtlons of the same microscopic fact: Molecules change neighbors

Co?hpreismn downsttredafm%h terial d d the def eadily in the liquid. Einsteifi12] related the Brownian movement
e stress generated In the matérial depends on the detormaypi macroscopic particle in a liquid to the viscosity of the liquid.

mechanism of the material. Only elastic property enters the COffe Stokes-Einstein formula, derived by Einstein using Stokes'’s

sideration _|f_|nelast|c deformatiofi.e., creepis elthe_r so slow as continuum solution, has since been applied to diffusion of mol-
to be negligible, or so fast as to relax the stress field locally oA les in liquids, including self-diffusion

hydrostatic state. For electromigration along a thin line, encapS”'Nabarro[ls] and Herring[8] related creep in a polycrystal to

lated in a stiff dielectric, it was thought that local stress relaxes {Q,¢_gitfusion mediated by the motion of vacancies. By itself, the
a hydrostatic state Iong_before diffusion along the line reache%tion of vacancies does not change the crystal shape, b,ut the
steady state},5,6]. Experiments, however, have shown large deseation and annihilation of vacancies at the grain boundaries do.
viatoric  stresses, [7]. Indeed, the initial discovery of congequently, creep in the polycrystal is fast when the self-
electromigration-induced stress was made in a wide aluminyg,sivity is high and the grains are small. When the grain size
film, which could only sustain in-plane stresspg, approaches the molecular dimension, the Nabarro-Herring for-
Th|s_ paper formulates a theo_ry to couple self-dlffu_slon anHmuIa for polycrystals reduces to the Stokes-Einstein formula for
creep in single-component materials. The new theory will Comaﬂi‘guids, except for a numerical factor. Similar comments apply to
Stokes’s creep and Herring's diffusion as special cases. Stokggs cople creep[14], mediated by atoms diffusing on grain
creep, as formulated in fluid mechanics, describes a velocity figld ;ndaries.
and a pressure f.ield.; it. neglects self-diﬁusipn. Herring’s theory, Needleman and RiceL5] formulated a theory for polycrystals,
(8], for self-diffusion is in terms of the chemical potential, a scayhere atoms diffuse on grain boundaries and creep in grains. Here
lar; it makes no attempt to equilibrate stress tensor field. _creep can result from the motion of dislocations. The two pro-
Our theory parallels that of nonreciprocal diffusion in multi-cesses, self-diffusion and creep, occur in different places, but
component solid solutionsi.e., the Kirkendall effegt due to  coyple through a kinematic constraint. For two grains meeting at a
Darken[9] and Stephensofil0], and extends our previous one-grain boundary, the creep in the two grains accommodates the
dimensional theory[11]. The theory rests on a kinematic con-divergence of the diffusion flux on the grain boundary.
Stl’aint: the diVergence in the Self'diﬁusion ﬂUX must be accom- Our theory neg|ects the microstructure. Regard'ess of the spe_
modated by deformation. The remainder of this section recallsqgic microstructure, when a wind force motivates atoms to dif-
few historic highlights of the mechanistic picture of creep anf;se, the material must deform to accommodate the divergence of
- the self-diffusion flux. The main advantage of the theory is that
MECHANIGAL ENGINEER&Tor publication n the ASME GURNAL oF AppLiEDME.  SITPIE and enlightening solutions may be obtained for coupled
CHANICS. Manuscript receiveg by the ASME Applied Mechanics Division, FebruarPrOblems' The main dra\_NbaCk is that the_theory may lead to
4, 2004; final revision, March 17, 2004. Associate Editor: R. M. McMeeking. Diswrong predictions at the size scale approaching or smaller than the
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMeekimticrostructural feature size. The new theory can be applied, with

Journal of Applied Mechanics, Department of Mechanical and Environmental Engj; ; i ;
neering, University of California—Santa Barbara, Santa Barbara, CA 93106-50 d’rtues and vices of a continuum theory, to complex materials, and

and will be accepted until four months after final publication of the paper itself in thi® Crystalline materials when atoms also diffuse in grains, among
ASME JOURNAL OF APPLIED MECHANICS. other situations for which the Needleman-Rice theory is not in-
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Fig.1 The marker velocity v defines the conve«_:tion flux, v/Q. Fig. 2 The material is subject to three types of load: the wind
We can also independently measure the net atomic flux ~ N. The  force F, in the volume, the traction ¢, on the surface, and the
atomic flux in excess of the convection flux defines the diffu- chemical potential on the surface

sion flux J.

tended. In particular, we will use the new theory to analyzggr?:? :;?réz(?z?'th]gecngfr;lgéh;g'efguzlﬁg Qlejl);dlfflﬂsjstroli kinematic
electromigration-induced creep in Newtonian liquids. Markers at different locations may move at different velocities.
] ) When two markers move away from each other, atoms have to be
2 Kinematics inserted in the space between them. When two markers move

When the two rate processes occur in separate places, creefPfard each other, atoms have to be removed from the space
grains and diffusion on grain boundaries, there is no ambigui tween them. The gradient of the marker velocity field defines
about their distinct contributions to mass transport. When diffl€ strain-rate tensor:

sion and creep occur in the same continuum space, how can their d.= 3(0- o) 3)
contributions be distinguished? We must give operational defini- _ LR

tions of creep and self-diffusion without referring to the microlf m; is the unit vector pointing from one marker to the other, then
structure. Following Darkefg], we imagine that markers are dis-M;dijm; /() is the number of atoms inserted or removed per unit
persed throughout the materiéFig. 1). The markers in the time, per unit area normal to and per unit distance along the di-
material are analogous to leaves on a river. The flow of wategctionm; . The strain rate is the sum of that due to difoSidﬁ,,
carries the leaves, but is unaffected by their presence. The motiid that due to creepl,—cj :

of the markers defines convection. The atomic flux in excess of c D

convection defines diffusion. The markers should be small com- dij=dij +dj . 4)

pared to the size scale in the flow of interest, but large comparedas suggested by Eq2), the divergence in the diffusion flux,
to the atomic dimension so that the markers themselves diffuge | causes the divergence in the marker velocity. We assume that

negligibly. , _the divergence in the diffusion flux causes an equal strain rate in
We adopt the Eulerian approach. Let (X,,X3) be the coordi- )| three directions:

nates of a fixed space. The field(x;,X,,X3,t) is the velocity
vector of the marker at positiorx{,x,,x3) at timet. LetQ) be the
volume per atom in the body. Imagine a plane fixed in space and 3
perpendicular to the axig; . The convection fluxp; /), is the . S

number of atoms moving with the marker across the plane, péperedi;=1 wheni=j, and ;=0 wheni#]. _ )
unit area per unit time. The net atomic flux; , is the number of A combination of Eqs(2)—(5) gives the creep strain rates in
atoms across the plane, per unit area and per unit time. We dgFmS of the marker velocity field:

independently measure the marker velocity and the net atomic =10 40 )= Lpi.s 6
flux. The difference between the two fluxes defines the self- 7= 23050~ 30k - ©)
diffusion flux J;, namely, The creep strain-rate tensor is symmetric and traceless.

Ni:‘]i+vi/Q' (1)

The net flux is the sum of the diffusion flux and the convectios ENergetics
flux. Figure 2 illustrates three types of load on the material. We
To demonstrate the new features of the theory with minimuidentify them by the ways they supply power to the material. The
complication, we neglect elasticity. Following Balluffié], we wind forceF; supplies power F;J;dV, with the integral over the
also neglect strains due to the space occupied by point defeatfume of the material. The tractiai supplies powerftjv;dS,
such as vacancies or free volumes; enough dislocations climbwth the integral over the material surface where the traction is
other defects move to maintain the point defects close to equiliprescribed. The chemical potentjalis the free energy difference
rium concentrations, which are typically small. Consequently, Between an atom on the material surface and an atom in a refer-
fixed volume contains a constant number of atoms at all time. Teace body(a bulk under no stregsThe chemical potential is a
volume per atom,(}, is constant. The net atomic flux isscalar field defined on the material surface, in the same spirit as
divergence-freeN, (=0, so that the traction is a vector field defined on the surface. We assume
BEN— @) local equilibrium: The chemical potential of atoms in the material
kk Kk immediately beneath the surface equals that of atoms on the sur-
A repeated subscript implies summation over 1, 2, and 3;face. Let the unit vecton; be normal to the surface and point to
comma before a subscript indicates partial differentiation. Equtre outside of the material, ad¢h; be the flux at which the atoms
tion (2) has a clear interpretation. Imagine a volume fixed idiffuse out the material. The chemical potential acts on atoms in
space. When, , >0, atoms diffuse out the volume; for the vol-the same way as the voltage acts on electrons. When atoms diffuse
ume to maintain a constant number of atoms, convection mumit of the material and join the reference bddg., when atoms
carry atoms into the volume, so that the markers converge. Timve across the chemical potenkigdhe chemical potential sup-
opposite is true whed, ,<0. In this theory, the material is in- plies power— [uJ;n;dS, with the integral over the material sur-
compressible, but the marker velocity has a divergence to coface where the chemical potential is prescribed.

Q
diDj:_ = kb » (5)
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We next identify driving forces for the two rate processes, fol- Df;
lowing an approach often used in constructing continuum theories Ji = OKT’ (13)
of multiple rate processes and thermodynamic forces, @],
We state the principle of virtual power in the form of the balancehereD is the self-diffusion coefficienk Boltzmann’s constant,
between power dissipation and power supply: andT the temperature. The creep strain rate relates to the devia-
toric stresses as
f (S,]dﬁ-i-fl.],)dV—O—f )\(vk,k+Q‘Jk,k)dV si'
di=5".
7
:f FiJidV+f tivids_f wdindS. Q) where 7 is the viscosity. For linear creep, is constant. For non-
. ) linear creep, a standard approach is to assumertiga function
o e B e n o afonesgh e he efecive sieso,~ (35,5, /2)1 ot he ffecive
. - ’ i C_ cqC 1/2 H C
cotas o odefpoerdisspaton. Ecuetotnes he o S (GASCH)"S Tt o )
creep driving forces;; , as the power-conjugate of the creep Stra"l}ite measured a/nder g simole stress state
rate. Becausdﬁ is a symmetric and traceless tensor, without loss P ’
of generality, we require thag; be a symmetric and traceless ) ) o
tensor. Eq.(7) defines the diffusion driving forcef;, as the 5 Governing Equations and Characteristic Length
pOWer'COnjUgate of the diffusion flux. The second integl’al en- |nserting the creep |a\(\z|_4) and creep strain-rate express(@)]
forces the kinematic constraint, E(®), with A as the Lagrange into the force balance Eq9), we obtain that
multiplier.
Becauses;; is a symmetric and traceless tensor, atﬁdrelates [7(vij+vji— %vk,kaii)]ﬁa,i:o. (15)

to the markfer velocn_y field by Eq(6), we confirm thatsiid%q Inserting the diffusion law13) and diffusion driving force expres-
=sjv;,;. Using the divergence theorem, we can express(Bq.

as sion (11) into the kinematic constrain®), we obtain

(14)

(16)

D
_f (S|J+)\5|J)’]U|dv+j ((S|]+)\5|])n]_t|)l)|ds Uk'k__{k_-r(':k—kna'k) K

When the diffusion flux divergence vanishes, the marker velocity
+f (fi—Fi—Q)\,i)JidV+f (ON+p)Jdin;dS=0. (8) divergence also vanishes, =0; Eq. (15) reduces to Stokes’s
equation for creep, and E¢L6) reduces to Herring’s equation for
This equation holds for arbitrary marker velocity and diffusiorself-diffusion. In generaly, # 0, and Eqs(15) and(16) are four
flux field, with no constraint. Consequently, the power baland®upled partial differential equations that govern the marker ve-
requires that locity v; and the mean stress Each point on the material surface
) requires four boundary conditions: three conditions of either ve-
(sijtA &) =0, in volume (9 locities or tractions, one condition of either chemical potential or
the diffusion flux component normal to the surface.

(ST A3j)n=t, on surface (10) The theory has a characteristic length. Wierand » are con-
fi=F;+Q\N;, in volume (11) stant, Egs.(15) and (16) are linear. Leto, be a representative
stress scale in a boundary problem, @nlde the length scale to be
n=—Q\, on surface. (12) determined. Scale the stressesdyy, the velocities byA oy /7,

Equation(9) and(10) recover force balance equations. In familiathe wind forces by{doy/A, and the spatial coordinates by.

terms, the creep driving forcg; is the deviatoric stress tensor, theEquations(15) and(16) become dimensionless and parameter-free

Lagrange multiplien is the mean stress, and the combination Provided

oii=s;;+od;; is the Cauchy stress tensor. Equatiqid) and N T

(112) re]cover]Herring’s equations for the diffusion driving force, A=VDQ/kT. (17)

[4,8]. The quantity— Qo is the free energy change associated@he length characterizes the relative rate of diffusion and creep,

with transferring an atom in the stress-free reference body toaad is independent of the scale of the stress.

point inside the material under the mean strest short,— Qo For polycrystals, when creep is facilitated by diffusion, either

is the chemical potential inside the material. Its gradient, togethiarough grains or along grain boundaries, the viscosity scales with

with the wind forceF;, drives diffusion. To maintain local equi- the grain sizedy as n=de§/42DQ, [20], so that the character-

librium, the chemical potential in the material just beneath thtic length scales with the grain sizd,=d,/\42. For simple

surface matches the prescribed value on the surface. liquids, the self-diffusivity is estimated by the Stokes-Einstein for-
Following the established usage in mechanics, we intend theula,[12], D=kT/6wa», wherea is atomic radius, so that the

phrase “virtual power” to mean that Eq7) holds true provided characteristic length scales with the atomic sike; ({d/67a. It

all the kinematic relations are satisfied, and that no constitutiv@important to determine this length for more complex materials,

relations are assumed between the kinematic quantities and $aeh as amorphous metals and polymer melts.

force-like quantities. We could have as well followed an equiva- If the creep data under the uniaxial tensile stress state fit the

lent approach by invoking stress potential and strain rate potentighwer law,d =Bc?,, whereB andn are constants, the function
. ; . ; ar ) )
[18]. This paper considers isothermal phenomena. Were we inter

ested in phenomena with nonuniform temperature fields, V\ﬂals given by

would follow the practice of the nonequilibrium thermodynamics, 1 c

working with the entropy productiori19]. 0oe)= ggw1, Of 7(dg)= 3BTA(d0) T T (18)
e e

o For power-law creep, with a constant diffusividy, the solution to
4 Kinetics Egs.(15) and(16) has a remarkable scaling structure. bgtbe a
Familiar isotropic kinetic laws are prescribed for diffusion andepresentative stress scale in a boundary problrsBar ,
creep. The diffusion flux is proportional to the diffusion driving7, = 7(o,), andA, be a length scale. Scale the stress field by
force: o, , the strain-rate field by® , the velocity field bydSA, , the
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Fig. 3 A conductor film, sandwiched between dielectrics, is Fig. 4 A thin conductor subject to a through-thickness wind
subject to an electron wind force and a stress gradient. The force. The diffision flux is in the same direction as the wind
stress gradient can cause both a self-diffusion flux and a creep force, and the marker velocity is in the opposite direction. Ten-
flow. sion is generated near one face of the film, and compression

the other.

wind force field byQ o, /A, , and the spatial coordinates By, .
In terms of the dimensionless fields, the governing EBS—(17)  dominates in thin films. Recall that scales with the grain size for
have only one parameter, the power inagexprovided we identify polycrystals, and with the atomic size for liquids.

the lengthA , with Eq. (17), and replacey with 7, in the expres- In the presence of both the wind force and the stress gradient,
sion. For a power-law creep material, the length depends on th@ combined flow due to creep and diffusion vanishes when
stress levebr, . For polycrystals this length relates to a lengjth

2
identified by Needleman and Ri¢&5], A, = \L%/3d,. These au- F+|1+ H_Z)QVO-ZO. (20)
thors also tabulated the experimental data for the lehgtior 12A
several metals. The contribution of creep in countering electromigration depends
on the film thickness. This effect is small in the exiting technol-
6 Examples ogy. To enhance the creep effect, we have to accelerate creep

relative to diffusion, so that the length becomes much smaller

6.1 Flow in a Film Driven by Stress Gradient and Electron than the film thickness. For exampld, approaches the atomic
Wind. In an interconnect line encapsulated in a dielectric, whefimension for a liquid metal. The effect of creep can probably be
the electron wind drives atoms to diffuse toward the anode, comlemonstrated in laboratories, but there is no clear way to imple-
pression develops near the anode, and tension develops neamibet the effect in the electronic industry. Such an implementation
cathode. The stress gradient drives atoms to flow toward the caffould call for a material with both a large creep rate and a high
ode, in the direction opposite to the electron wind. It was discoelectric conductivity.
ered that the stress gradient could counter the electron wind, so
that net mass flow vanishefdt]. This discovery has since become 6.2 Stress Generated by Electromigration Through Film
an effective means to avert electromigration failure; see recefttickness. Figure 4 illustrates a metal film sandwiched between
reviews,[21,22. In their original papef4], Blech and Herring two other conductors, with electric current through the film thick-
asserted that mass flow stops when the driving force for diffusioress. The two outside conductors do not suffer electromigration,
vanishes, namelyf-+QVo=0, whereF is the electron wind but the film does. This setup idealizes a contact. The electron wind
force, andVe the stress gradient. This assertion neglects a dailyrce, F, now in the x5-direction, causes atoms of the film to
experience: The stress gradient also drives creep flow in a chandi€use from one side to the other. Consequently, a state of stress
(e.g., in pumping water through a pipeGiven that the stress is generated, tensile on one side and compressive on the other. The
gradient can drive both a creep flow and a diffusion flow, wilktress state is biaxiad;;;= o,; all other stress components van-
creep flow be also significant enough to counter electromigratioish. The mean stress componentois- 2014/3. The stress is the

To answer this question, consider a conductor film, thicknefisnction of the depthg;(X3), and is to be determined.
H, sandwiched between two dielectri¢sg. 3). Let the axisxz be The diffusion flux is a long thexs-direction, given by
normal to the film, and the two faces of the film coincide with the
planesx;= *=H/2. We will first analyze a steady flow subject to a J :i( F Q aLll) (21)
constant electron wind fordeé and a constant stress gradiéft. 3T 0kT 3 dxz)’

For simplicity, we assume that both diffusivity and viscosity a'Because the net atomic flux vanishes, the markers move in the

constant. e : e oV
In the steady flow, the only nonzero component of the mark@irection opposite to the dlfus"’” fluxg=—J5. The diffusion
velocity is in the flux direction, and varies in the thickness dire lux induces a strain rately; = _(9/3)‘9‘]3/‘”3'. The de_zwatonc
tion: that is,v,=v3=0 andv; =uv,(xs). Consequently, the veloc- STESS component is;;= /3. Tge creep strain rate Is propor-
ity field has no divergence, and convection and diffusion déional to the deviatoric stresslj,=o,,/67. The film is con-
couple. Of the pair of the governing equations, ) is satisfied strained by the refractory metals, so that the strain rates vanish in
automatically, and Eq(15) reduces tonazvl/ax§+Vo—=O. This the two lateral (_jlrec_tlona:ln: d,,=0. The strain rate is the sum
is an ordinary differential equation for the velocity profilg(xs). of that due to diffusion, and that due to creep. The sum vanishes:

The gradient in the hydrostatic stress can induce a shear stress. 2DQ oy op

Assuming the no-slip boundary condition at the conductor/ KT ol + ™ =0. (22)
dielectric interface, we obtain the familiar parabolic velocity pro- 3 7
file: v,=((H/2)2—x3)Vol27. This is a second-order differential equation of;(Xs).

The flow in the film has two contributions: the creep flQY Atoms do not diffuse in or out the refractory conductors, so that

= [T12),dxs=H3V /127, and the diffusion flowQP=HJ, the diffusion flux vanishes at the two faces of the film. Subject to

—H(D/QKT)(F+QV). First consider flow under the stresgthese the boundary conditions, the solution to the differential
gradient alone, in the absence of the wind foFceThe ratio of €duation is

creep flow to diffusion flow is 3FI sinh(xa/1)
QC/QP=H?%12A2, (19) on(Xs) =~ 55 coshH/2l)" (23)
whereA is the length defined by E@L7). For a flow driven by the The characteristic length is= 4D 7Q73kT, which differs from

stress gradient, creep dominates in thick films, and diffusidhe length identified in Section 5 by a numerical factor. The stress
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surplus adatoms, p >0 doe " ) sinh(H/2l) 08

— <+« 1\ 49Q] (H/21)coshH/2l) —sinh(H/2l) * (28)

compression Injection If atoms emit or inject preferentially at one of the film surfaces,
flux the film will bend. The above analysis can be extended to calcu-

late the rate at which the bending curvature increases.

6.6 Effect of Nonlinear Creep. Again consider the stress
generated in a semi-infinite material by atomic injection or emis-
) ) . sion at the surface. Under the biaxial stress stater o5,, the
Fig. 5 An excess of the chemical potential on the surface ivalent st S The lateral trai t d§
drives atoms to inject into the material, leading to compressive equivaien iress ige=|oryl. . ela era creep s ra|n.rae. 1
stress =B/2|014" 'o11. The combined strain rate due to diffusion and
creep vanishes:

ZDQ {920'11 B n—1
vanishes at the middle of the film, tensile on one side, and com- T KT ol + §|011| 011=0. (29)
pressive on the other. When the diffusivity or viscosity is large, s
electromigration is rapid, and the material creeps slowly, so thahe solution of the boundary value problem is

the magnitude of the stress is large. — 2Un-1)

X , (30)

L

3up
6.3 The Effect of Elasticity. When the electric current just T11(Xg) =~ 50,
starts, atoms have yet migrated much, and the stress in the film is
negligible. This time-dependence is absent in the above solutid¥th
The problem arises because we have neglected elasticity. In this
. : . o 2 2(n+1)QD
case, the geometric change is small, and we can include elasticity I, = — ) (31)
easily. The biaxial stress causes an elastic strain d%lte[(l n—1 V9[3u/20[""BkT
—v)/E]do,1/dt. The combined strain rate due to diffusion, creefrhis length differs from the length identified in Section 5 by a

and elasticity vanishes: numerical factor. Compared to the linear creep, the power-law
DO o o 1-v do creep modifies both the decay length and the decay function. For
oot ru tu - U g (24) @ large value ofh the stress is substantial over a depth several
9kT ox5 67 E 4t timesl, .

The problem now has a time scate 6 (1— v) »/E. The stress no
longer changes instantaneously, but builds up gradually. The stress A .: ;
distribution given by(23) is the steady state, reached over the timz Anisotropic Placement Rule
scaler. Equation(5) has been called the isotropic placement r{d4].
We caution that this rule must be modified if atoms can be re-

6.4 Stress Generated by Atomic Injection or Emission moved and inserted preferentially on some planes. For example,
The chemicalpotentigl on the surface can be varied in severafFig. 6 illustrates a polycrystalline aluminum film, of columnar
ways, by applying a stress normal to the surface, by creating eiain structure in the direction of the film thickness, and the native
cess number of adatoms with an impinging flux, or by creatingxide covering the film surfaces. Aluminum diffusion is fast along
excess number of vacancies by oxidation. A surplus or deficit the grain boundaries, and negligible on the film surfaces. Conse-
the chemical potential will motivate atoms to diffuse in or out thguently the divergence in the self-diffusion flux will place atoms.
material, leading to biaxial compression or tensi@ig. 5. Let We now extend the theory on the basis of an anisotropic place-
the bulk of the material occupies the half-spagec0. The stress ment rule.
is prescribed by the chemical potential;= o5,= —3u/2Q), on Recall that, according to EqR), the divergence in the diffusion
the surface, and vanishesags— — . Equation(22) governs the flux causes the divergence of the marker velocity field. The issue

stress as a function of the depth, giving is how to proportion this divergence in various directions. Our
3 anisotropic placement rule stipulates that
§7
0'11()(3):_ EquX:i/l) (25) dﬁ):_BI]Q‘Jk,k (32)

The chemical potential of the surface atoms sets the magnitudd 1€ the coefficient;; weigh the placement in different direc-
the stress field. The stress decays exponentially over the Iéngthions: We require the tensg; to be symmetric with a unit trace,
Bii = 1. Consistent with this placement rule, the creep strain-rate
6.5 Lateral Expansion or Contraction of a Free-Standing (€nSor relates to the marker velocity field as
Film. Next consider a free-standing thin film. When the film dﬁ:%(vi 050~ Btk (33)
thickness is on the order of the lendththe lateral constraint is _ A ’
partially relieved, and the film will expand or contract. The lateralhe creep strain-rate tensor is symmetric and traceless.
strain rated,, is independent of positiors. The strain rate is the ~ The statement of power balance still takes the form of &5.
sum of that due to diffusion, and that due to creep: However, the creep dissipation rate now becomgﬂgcjzsijviyj
2DO 2o - — BijSijvkk- This will modify Eqg. (8) by replacings;; +X 6;; in
= — 211 —u (26) the two places byg;; + (A — B¢Spq) 8 ; the rest of Eq(8) remains
9kT dx3 67 unchanged. We now identif\(~ B,4Sp) as the mean stress so
Force balance requires that the resultant force vanisht N=0+ BpaSpq=Bpqopg. It 1s the chemical potential
H dx.=0 Th lution to the ordi diff tial = B,q0pq that enters Herring’s equations of diffusion driving
f.—H‘.Tll(X3) X3=U. The solution to the ordinary difierentia equa'l‘orce, Eqgs.(11) and (12). We may also wish to introduce anisot-
tion Is ropy into the kinetic laws, Eqg€13) and (14), which we will not
(%) ( 3,u) (H/2I)coshxz/l)—sinh(H/2I) @7 pursue here. | — Hux d aced
011(X3)=| — 5+ — . As an example, when diffusion flux divergence is place
20] (H/2l)cosh(H/2l) = sinh(H/2l) equally in thex; andx,-directions, but not irx;-direction, we let
The lateral strain rate is B11=B2»=1/2, and all other components vanish. Consequently,

650 / Vol. 71, SEPTEMBER 2004 Transactions of the ASME



References

[1] Chason, E., Sheldon, B. W., Freund, L. B., , Freund, L. B., and Hearne, J. A,
2002, “Origin of Compressive Residual Stress in Polycrystalline Thin Films,”

Phys. Rev. Lett.88, p. 156103.
x X [2] Vermilyea, D. A., 1957, “On the Mechanism of Oxidation of Metals,” Acta
2

Metall., 5, pp. 492—-495.

X3

[3] Prussin, S., 1972, “Generation of Stacking Faults and Prismatic Dislocation
—_— > Loops in Device-Processed Silicon Wafers,” J. Appl. Phy, pp. 2850—
F 2856.

[4] Blech, I. A., and Herring, C., 1976, “Stress Generation by Electromigration,”
Fig. 6 An aluminum film has a columnar grain structure, with Appl. Phys. Lett. 29, pp. 131-133.
top and bottom surfaces covered by the native oxide. Under an [5] Korhonen, M. A., Borgesen, P., Brown, D. D., and Li, C. Y., 1993, “Micro-
electron wind force in the plane of the film, aluminum atoms structure Based Statistical Model of Electromigration Damage in Confined
diffuse fast on the grain boundaries, but negligibly on the film Line Metallization in the Presence of Thermally Induced Stresses,” J. Appl.
surfaces. The divergence of the diffusion flux will place atoms Phys.,74, pp. 4995-5004.
in the x; and x,-directions, but not in the  x,-direction. [6] Suo, Z., 1998, “Stable State of Interconnect under Temperature Change and

Electric Current,” Acta Mater.46, pp. 3725-3732.
[7] Wang, P.-C., Cargil, G. S., Noyan, I. C.,, and Hu, C.-K., 1998,
“Electromigration-Induced Stress in Aluminum Conductor Lines Measured by

the chemical pot_entlal in the material b_ecomeSQ(o_'ll ) X-ray Microdiffraction,” Appl. Phys. Lett.,72, pp. 1296—1298.
+ 02,)/2. The work is done by the stresses acting in the directiong) Herring, C., 1950, “Diffusional Viscosity of a Polycrystalline Solid,” J. Appl.
where mass insertion or removal occurs. Phys.,21, pp. 437—445.

[9] Darken, L. S., 1948, “Diffusion, Mobility and Their Interrelation Through
8 Summary Free Energy in Binary Metallic Systems,” Trans. AIME75, pp. 184-201.

. . . . [10] Stephenson, G. B., 1988, “Deformation during Interdiffusion,” Acta Metall.,
Both convection and diffusion contribute to mass transport. 3 pp. 2663-2683.

Identify convection by the motion of markers dispersed in the€11] Suo, z., Kubair, D. V., Evans, A. G., Clarke, D. R., and Tolpygo, V. K., 2003,
material. Creep and self-diffusion couple because the markers “Stress Induced in Alloys by Selective Oxidation,” Acta Mate31, pp. 959~
must move to compensate for the diffusion flux divergence, Eq. 974 o .

(2). We stipulate rules to place the diffusion flux divergence t 12] Einstein, A., 1926]nvestigations on the Theory of the Brownian Movement
various planes; two versions are given: isotropic rule Gyand reprinted by Dover Publications, New York.

. . . . [13] Nabarro, F. R. N., 1948, “Deformation of Crystals by the Motion of Single
anisotropic rule Eq(33). We define the driving force for creep lons,” Report of a Conference on Strength of Soli@sistol), pp. 75-90.

and diffusion by a statement of power balance, &}. subject to  [14] coble, R. L., 1963, “A Model for Boundary Diffusion Controlled Creep in
the kinematic constraint. The theory leads to partial differential  Polycrystalline Materials,” J. Appl. Phys34, pp. 1679—1682.
equations for the marker velocity field and the chemical potentidhs] Needleman, A., and Rice, J. R., 1980, “Plastic Creep Flow Effects in the
field, Egs. (15 and (16). The pair of equations generalizes Diffusive Cavitation of Grain Boundaries,” Acta MetalR8, pp. 1315-1332.
Stokes'’s creep and Herring’s diffusion. A Iength characterizes th@B] Balluffi, Rf.f W., 1953, “The ﬁugersatugatio;ognd Precipitation of Vacancies
; ; ; During Diffusion,” Acta Metall., 2, pp. 194-202.
relative rate of fjlfoSIOH and creep, E(Z]].7)._ Several boundary_ Ht7] Suo, Z., 1997, “Motions of Microscopic Surfaces in Materials,” Adv. Appl.
value problems illustrate the theory. In particular, a stress gradient ™ ;. 34 pp. 193-294
can drive both a diffusion flow and a creep flow. Diffusion flow [1g] cocks, A. C. F., Gill, S. P. A., and Pan, J. ., 1999, “Modeling Microstructure
prevails in a thin channel, and creep flow prevails in a thick chan-  Evolution in Engineering Materials,” Adv. Appl. Mech36, pp. 81-162.
nel. The transition occurs when the channel thickness is compg9] de Groot, S. R., and Masur, P., 198&nequilibrium ThermodynamicBover
rable to the characteristic length of the material. Publications, New York.
[20] Frost, H. J., and Ashby, M. F., 198Reformation-Mechanism Map®erga-
mon Press, Oxford, UK.
Acknowledgments [21] Rosenberg, R., Edelstein, D. C., Hu, C.-K., and Rodbell, K. P., 2000, “Copper
This work was supported by the ONR MURI grant entitled I\S/Ie_tagiozationzfzogg I—;g; Performance Silicon Technology,” Annu. Rev. Mater.
. . - . ci., 30, pp. —-262.

Prime Rellar_]t_C_oatlngs, t.)y NS.F through gfa”t CMS_9820713’[22] Suo, Z., 2003, “Reliability of Interconnect Structures,” pp. 265—-324 in Vol-
and by the Division of Engineering and Applied Sciences at Har- ~ ;e g interfacial and Nanoscale FailursV. Gerberich, and W. Yang, eds.
vard University. Discussions with D. V. Kubair, A. G. Evans, J. R. (Comprehensive Structural Integrjty Milne, R. O. Ritchie, and B. Karihaloo,
Rice, and F. Spaepen were helpful. editors-in-chief, Elsevier, Amsterdam.

Journal of Applied Mechanics SEPTEMBER 2004, Vol. 71 / 651



Sandwich Plates Actuated by a
vwies | Kagome Planar Truss

J. W. Hutchinson Kagome truss plates have properties that suggest they should be uniquely effective as an
actuation plane for sandwich plates: a Kagome truss plate has in-plane isotropy, optimal
Division of Engineering and Applied Sciences, stiffness and strength, and its truss members can be actuated with minimal internal resis-
Harvard University, tance. In this paper, sandwich plates are studied that are comprised of one solid face sheet
Cambridge, MA 02138 and one actuated Kagome face sheet joined by a pyramidal truss core. Various aspects of

the actuation behavior of these plates are investigated, including internal resistance and
strains resulting from actuation and efficiency of actuation. Single and double curvature
actuation modes are investigated. Contact is made with analytic results for actuation
modes with long wavelengthDOI: 10.1115/1.1778720

1 Introduction Simulations of various periodic actuation modes of these infinite

. . Kagome structures have been performed for a range of member
Recent studies of planar trusses based on the ancient Kago spect ratios. In its most general form, the approach is numerical.
basket weave pattern have shown that these truss plates h& e

many properties that make them desirable for actuation planes 8§alculation requires the formulation of a "super element” rep-
sandwich plates1,2]. In this study, we begin by analyzing the' enting a unit cell followed by the assembly of the complete

actuation characteristics of a single Kagome truss piéig. 1) structure as a union of the super elements. The scaling of the
g 9 : energy required for actuating the unloaded structure with aspect

an_d fccinllcf)w with lgé\factuaﬁont anzlyss ofta sta(rj\d&/wch pla]Ee COMatio of the truss members is investigated. Bending and stretching
prised ot one solid tace sheet and one actuated kagome tace s'%?r%’ns in the members induced by actuation are also determined.

jmq.ﬁg g%gg)g:g%a; ::3:: gg&iigéﬁ)be constructed from the uF r actuation modes with wavelengths long compared to the
cell shown in Fig. 1b). The 120 deg symmetry of the structur mber length, the response computed with the numerical ap-

X L . roach is compared to actuation predicted by an analytical long

ensures in-plane elastic isotropy assuming all the truss mem elength approximation outlined in a previous stydy.
are identical. Here, only solid circular members are considered, 0 ’
lengthL and radiuR. The Kagome-backed solid skin plate can be
constructed from the unit cell depicted in FigcR In the present
study we limit consideration to plates with identical solid circula® Planar Kagome Structure
truss members of length and radiusR both for the Kagome face 5 1 The Planar Kagome Structure. Consider the infinite
and the core. The solid skin thickness is denoted by addition,  5nar Kagome structure shown in Figal having members of
to further limit the number of parameters in the system, we COjinqih | and solid circular cross-sections of radi@sand under-
sider only plates in which both face sheets and the core membggi, . in_plane displacements. The unit cell of such a structure is
are constructed of the same material with Young's mod#us qpqn in Fig. 1b). The members are modeled as Euler-Bernoulli
Poisson's ratiov and yield streswy . The Kagome-backed sand-peams with clamped conditions at each node representing welded
wich plate in Fig. 2 has isotropic bending and stretching stiffnesginis j.e., the displacement and rotational degrees-of-freedom are

The feature of the planar Kagome truss in Fig. 1 that makesye same for all beams meeting at a given nofletuation of any
most a_dvantaggous fpr actuation Is th_e ability to actuate membﬁﬁémber comprises an elongation or contraction of the member by
to achieve arbitrary in-plane nodal displacements with minimal i aine if the member were unconstrained. In other words, the

internal resistance. Among infinite isotropic planar truss Strugeyation straine is equivalent to a stress-free transformation
tures, a pin jointed planar Kagome truss is optimally stiff and; 4in

strong to overall stressing. Although it has kinematic mechanisms,
it is nevertheless able to carry arbitrary states of overall stress2.2 Actuation Methodology. The actuation of beam mem-
Members of a pin jointed Kagome truss can be actudted, bers is modeled via the so-called cut-stress-reweld scheme em-
elongated or shortengdvith no internal resistance, or equiva-ployed by Eshelby in his study of the transformation strains in
lently, with no redundant stresses. When joints are welded, as véllipsoidal inclusions[6]. To actuate a given member, envision
be assumed throughout this paper, actuation of a member dtfes following steps:
encounter internal resistance, but minimally so as will be shown.
Welded joints also suppress the kinematic mechanisms and result’
in a structure with substantial in-plane buckling resistance. These™
and other aspects of the Kagome structure are explored elsewher%,
[1-5]. '
In this study, we aim to explore the details of actuation of the
planar Kagome truss and the Kagome-backed sandwich plate.

Remove the actuating member from the structure.

Allow the member to actuatelongate or contragfreely by
straine.

Place equal and opposite force& wR?e on the ends of the
member to deform it back to its original configuration.
Place the member back into the structure and “weld” it in

place.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 5. Release the fo’C‘?S from the eznds of th? member by applylng
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- equal and opposite forcdsrR<e to the joints at the mem-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, October ber ends.
15, 2003; final revision, January 14, 2004. Associate Editor: R. M. McMeeking.
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMe@hus, the cut-stress-reweld procedure is equivalent to analyzing

ing, Journal of Applied Mechanics, Department of Mechanical and Environmem%l| complete truss subiect to ual and it tuation for
Engineering, University of California—Santa Barbara, Santa Barbara, CA 9310 -e ompiete subje €q opposite actuation forces

- > . .
5070, and will be accepted until four months after final publication of the paper it’séﬂ‘f mqgnm"deEWR e applied to the joints at the ends of the re-
in the ASME DURNAL OF APPLIED MECHANICS. spective member.
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Fig. 2 (a) The Kagome plane and tetrahedral core of the
Kagome plate structure. The solid members are the Kagome
A face members, and the dashed members the tetrahedral core
/ \ members. (b) The Kagome plate structure. (c) The unit cell
/ \ used for the Kagome plate analysis.

/ (apart from rigid-body motiop the problem would be solved in
\ the usual manner by solving the system of equations represented
/ \ ”
(/ \ Now consider periodic boundary conditions represented by
\ ) constraints of the form

\ / aijUjZO. (3)

\ / The details of the actual periodic boundary conditions imposed for
\ / in-plane nodal displacements and rotations are included in the
\ / Appendix. It is important to note that once the appropriate peri-
\ / odic boundary conditions are imposed on thHisplacements/
\ / rotations periodicity of forces/momentss satisfied by the solu-
\ / tion. For the periodic cell in Fig. 3, the forces acting on a node
N 7/ along one edge of the periodic cdltorresponding to internal
) \V/ forces in the structupewill be equal and opposite to those acting
on the equivalent node on the opposite edge, for a displacement
Fig. 1 (a) The Kagome planar truss. (b) The unit cell used for figld which sgtisfies the periodic conditions outlined in _the Appen-
the Kagome planar truss analysis. The dashed lines are the dix. The displacements themselves are not, in general,
outline of the cell. The solid lines are truss members of the unit periodic—we consider, for example, a displacement field corre-
cell. sponding to a constant strain. Thus, there are some cases for
which the strains, forces and moments, will be periodic, but not
the displacements.
To impose these additional conditions, Lagrangian multipliers
2.3 Enforcement of Periodicity. Our goal is to simulate pe- &€ employed. The modified energy functional now takes the

riodic actuations of an infinite structure by modeling the behavid®™™:

of just one periodic cell subject to periodic boundary conditions. 1
Consider the potential energy functional for a periodic cell: o= > Kijuiu;— k?uj —Niajju; 4)
1 The systems of equations resulting from minimization of the en-
o= > Kijuiu;— k?uj (1) ergy functional with respect to displacementsand the Lagrang-

ian multipliers\; are

whereK is the conventional stiffness matrix of the structusds Kiju;=kP+\jay; (5)
the vector of displacements and rotations at the nodes of the struc- _

ture, andk® is the vector of applied nodal forces and moméitts 3;ju;=0. ©)

this situation these correspond to the virtual actuation forces déew consider periodic actuations of the infinite structure. The
scribed earlier If the structure were isolated and unconstrainedctuation forces exert no net force or moment on the structure.
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Now consider a target field of in-plane nodal displacemafis
The aim is to determine how well this field can be recreated by
actuating members of the Kagome structure. Calculate elongations
‘e and displacements via the relations:

=AUl ®)

ﬁi=AijEj (9)

X X X X X where A" is the Moore-Penrose generalized inverseApfalso
called the pseudo-inverse Af [7]. Then,éis the vector of mem-

X X X X X X ber actuations which minimize the squared error betweemd

ud. If there exist multiple vectors of actuations that minimize this
squared errorg is such a vector of minimal lengtfi.e., [¢ is
minimized.

2.5 Example Target Displacement Fields. The simulations

X X X X X X X X X outlined above were run for several target displacement fields. The
objective is to assess the ability of the structure to achieve specific
actuations and to determine the associated energy required and
stresses induced. The periodic cell used for these simulations is
shown in Fig. 3. It contains a total of 100 unit cells. The axes used
for describing the displacements fields described here are the
{-axis and thep-axis shown in Fig. 3. It is important to note that
the target displacement fields are all consistent with the periodic
displacement boundary conditions.

The first target displacement field is described by

s
ul=Age; sm( L_g) ) (10)
Here,A, is an amplitude factog, is a unit vector aligned with the
-axis, andL, the length of the periodic cell in thé-direction.
This target field is a displacement in tiielirection that is every-
where positive except along the edges0 and{=L, of the pe-
riodic cell where it is zero and reaches a maximunfgé, along
the line {=L /2 of each periodic cell. In this case, the displace-
ment field is repeated in every periodic cell. This target field is
depicted in Fig. 4. The Moore-Penrose best-fit actuations for this
displacement field are calculated as described above. For this pe-
riodic cell, the number of nodal displacements in the target field is
640, while the number of members actuated is 600. One would
Fig. 3 The periodic cell used for the planar Kagome truss expect some error between the target and achievable fields, how-
simulations ever the actual displacements differ from the target displacements
by less than 1% of the maximum target displacement. The actua-
tions are quite close to the actuations predicted by the long wave-
length approximation outlined in previous woifld,]. In this long
This means that if the energy functional given @Y above is wavelength theory, the actuation straif, of a member connect-
minimized over the periodic cell, the energy of the infinite strudng neighboring nodes | and J is"™=(ud(x') —ud(x))t, /L
ture is also minimized. Thus, it is possible to simulate the behawheret, is the unit vector parallel to the member and directed
ior of the infinite structure by modeling just the periodic cell withfrom J to | andu,, is the displacement derived from the target
the appropriate boundary conditions. displacement field.
A second target displacement field is described by:

2.4 Calculation of Actuations. The objective is to probe
how effectively the planar Kagome structure can achieve arbitrary T i
in-plane deformations through actuation of its members. To this ul=Ag(e,+ en)Sin(L—) sin .
end, periodic actuation of the structure is simulated as described ¢
in previous sections for actuation of each member in the perioditere,e, is a unit vector aligned with the-axis andL ,, the length
cell, tracking the nodal displacements in a matrix of influencef the unit cell in they direction. This displacement is zero along
coefficients,A. Theijth component of this matrix is thieh dis- all of the edges of the periodic cell and reaches a maximum of
placement resulting from the actuation of ftie member. To gen- Aq(e;+e,) at the center g=L,/2,{=L,/2) of each periodic
erate this matrix, displacements are calculated at each of the nodels The target displacement field can be seen in Fig. 5. The
in the periodic cell resulting from a unit actuation of each membédoore-Penrose best-fit actuations are predicted quite well by the
in that cell. long wavelength approximation. In this example, the maximum

As this simulation is linear, once the matrix of influence coefdiscrepancy between the actual displacements of the nodes and
ficients, A, has been constructed, the displacements of the nodhe target displacements is less than 2% of the maximum target
from actuation of any combination of members is easily computetisplacement. For simulations run for a target displacement field

. (11)
7

as in the same direction, but with a wavelength half of thaitf)
(in both the and » directiong, this maximum discrepancy is less
Ui=Aj; € (7) than 10 7. The critical difference between the two sets of target
displacement fields is that the field described by) with the full
wheree is a vector of member actuations. wavelength has a jump in slope across the boundaries between
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Fig. 4 The target field described by u I=Aqe,sin(wgL,). The Fig. 5 The target displacement field described by u I=Aq(e;

arrows show the displacement vectors of the nodes. +e,)sin(mf/L)sin(mn/L,). The arrows show the displace-
ment vectors of the nodes.

periodic cells(and, as a result, a jump in actuafofor the dis- identifying the “best” subset of actuation members remain to be

placement field with the half-wavelength, the slope of diSpIaceé'stablished. The behavior of planar Kagome structures with lim-

ment_ IS contlnuogs across per!odlc cell boun(_jarles. . ited numbers of actuation members will be considered in subse-
A final target displacement field of interest is described by quent work

Ug=Pole; (12)

This corresponds to a constant straingfin the £ direction. This 3  Energy of Actuation of Planar Kagome Structure

field is shown in Fig. 6. In this example, the actual displacements . R .

of the nodes match the target displacements almost perfectly—the-1 Energy of Actuation. One of the motivations behind
maximum discrepancy is less thanf0of the maximum target the selection of the Kagome structure for actuation is the desire to

displacement. Note that for this displacement field, the slope fﬂ)@d a structure_ that can be actuated with mlnlma! internal resis-
. . . . : ilance to actuation. Here, we present the total strain energy stored

in"the planar Kagome structure actuated to achieve the target dis-

2.6 Actuation of Selected Kagome Members. In practical placement fields described above. In the limit of a pin-jointed
applications it will generally be desirable to manufacture struécagome structure, actuations can be achieved with no internal
tures in which only a small subset of the members will be actuesistance, although mechanisms will also exjdi, For the
ated. The Moore-Penrose actuation scheme can be applied iKegome structures considered here, simulated with Euler-
similar manner in such cases. This procedure is outlined in S&ernoulli beams welded together at their ends, the energy of ac-
tion 4.4 for the Kagome plate structure. Given a restriction on ttigation is expected to be due primarily to elastic bending of the
number of members to be actuated, systematic procedures eams.
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Fig. 7 The energy of actuation of a beam. The rest of the struc-
ture resists the imposed actuation strain €7, generating an
elastic strain of £€ and an internal force F=¢®EA.

of actuation in this case is therefore 1#2J?EAL, and this is
chosen as the reference energy for each member in the energy
calculations and comparisons below.

Actuation of multiple members does not pose any energy ac-
counting difficulties—the total energy of actuation can be calcu-
lated by adding up the contributions from each individual mem-
ber, with the elastic strain of each member calculated in response
to all the actuations. In some circumstances, the work done by an
individual member may be negative—the actuations of other
members may result in the structure actually assisting, not resist-
ing, an actuation. However, the overall energy of actuation will of
course always be positive. Thus, the relevant energy ratio calcu-
lated for energy comparisons is

#members
2- _78?8?—EiAiLi
~ i=
= #members . (13)

1
El 5 (1)’ EiAL;
=

This energy ratioV is plotted for several slenderness ratios in
Fig. 8 for the target displacement fields shown above. For a struc-

ture with energy storage dominated by bending enéiggan be

Fig. 6 The target displacement field described by u  ;=Aqle,

0.008
0.007 |
The strain energy of actuation is calculated in a straightforwar o AEHE) sine (/L) sine (m/L)

manner depicted in Fig. 7. Consider an actuating member
length L, cross-sectional ared, and Young’s modulu€. The b
imposed actuation strain of' is the strain the member would 0005
undergo if the member were free to actuéifethe structure of- W k
fered no resistangeAs the structure will have some resistance t¢  0.004 |
the actuation, the member will undergo some elastic strain that\ .
denotes®. The axial forceF experienced by the member is then ~ 0.003 ¢
easily calculated af=¢s°EA. The work done by the actuator B
(acting on the structuyeis the work of this axial force acting 0.002 -
through the actuation strain’, —1/2:®TEAL, and it is stored as F

0.008 |-

Ao e sine (m;/[z)

elastic strain energy in the structure. 0.001 A cgz
r 0
3.2 Reference Energy. Now consider the work done by the o L= ‘ A R L
same actuator, undergoing the same actuation sifaibut in this 0 0.001 0.002 0.003 0.004 0.005

case consider the structure to be rigid—that is, consider a strt (R/LY

ture that will completely resist the actuation. This corresponds to

fixing both ends of the member as it is actuated. In this situatiopig, 8 Normalized actuation energy for the target displace-
the total strain of the member is zero, sb+e"=0. The energy ment fields, as a function of  (R/L)?
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035 bending and stretching strains are plotted as a function of slender-
[ ness ratio for the target displacement fields described above. The
03 [ - . maximum actuation straif,,, is used to normalize the induced
; Ao(—e?'en) sing (nG/L,) sine (/L) bending and stretching strains. The relatively larger bending
025 L strains will restrict the levels of actuation due to fatigue.
el i 4 Kagome Plate Structure
'max 02 -
A [ 4.1 The Kagome Plate Structure. Consider a solid face
max 45 [ sheet of thicknesg backed by a planar Kagome structure. Core
X members attach to the face sheet and Kagome plane to form tet-
o4 L rahedral units, as shown in Fig. 2. The Kagome planar members
and the core members have solid circular cross sections of radius
R and are all of the same length As a result, the core thickness
0.08 ¢ A 2 sine (/L) is H.= y273L. While in some applications it may be desirable to
F 0% & use solid face sheets and Kagome planar sheets of different mate-
e — rials, for the purposes of this study we restrict the structure to be
0 001 002 003 004 005 006 007 008  of gne single isotropic material of Young’s ModulBEsand with a
@ R/L Poisson’s ratio ofv=1/3. The unit cell used in this analysis is
shown in Fig. Zc).
0014 The stiffness matrix of the unit ce{Fig. 2(c)) of the Kagome

plate structure is simulated through the use of a composite ele-
ment comprised of beam and shell elements. We model the
Kagome planar and core members as three-dimensional Euler-
Bernoulli beams, with six degrees-of-freedom at each node. The
behavior of the solid plate is simulated via linear shell elements in
S I ) the commercial finite element package ABAQUS|. The in-
Emax 0008 |- A, EZsme (/L) plane behavior of these elements is plane stress, while the out-of-

0012 - AO(EZ*'E;) sine (nG/L ) sine (/L )

001 -

A i plane behavior corresponds with linear plate thef®y, as these
Emax 0008 [ are flat shell elements.
I Since the sandwich plate will generally be subject to applied
0004 transverse loads, the Kagome planar truss in its role as a face
i sheet must carry substantial in-plane loads in addition to undergo-
0002 | ing_ gctuatipn_. For Fhe sandwich pla_te to carry transverse loads
BRI efficiently, it is desirable for the solid and Kagome plane face
sheets to have comparable in-plane stiffness. The in-plane stiff-
0 U b ness of the Kagome planar truss is isotropic, with the relation
(b) 0 001 002 003 004 005 008 007 008  hKapyeen average in-plane strains and the overall stress resultants
RIL given by
Fig. 9 (a Maximum bending strain normalized by maximum £11= s*l(Nlr vNyy), &= S*l(szf vNiq),
actuation strain for the target displacement fields, as a function
of R/L. (b) Maximum stretching strain normalized by maximum £1,=S Y1+ v)Ny, (14)
gfctlu?e/\tLlc-Jn strain for the target displacement fields, as a function with S=EA/(J3L) and »=1/3. Equating the in-plane stiffness of

the solid sheet and that of the Kagome sheet described 4y
leads to the following relation between the face sheet thickness
and member radius:

shown to scale with the slenderness ratio squard, X%, while ¢ R\2
for a statically overdetermined structure, such as a fully triangu- . l(_) (15)
lated sheet\V is expected to be of order unity, independent of the L J3iL

slenderness ratio and whether pin jointed or weld jointed. Thgyis yejation will be used to specify the face sheet thickness for

energy associated with actuation of the Kagome structure 5, \arious member radii used in the examples detailed below.
clearly much smaller than that energy of a fully triangulated truss

grid. The energy associated with actuation of an isolated beam in4.2 Actuation and Periodicity of the Infinite Kagome
a Kagome structure is investigated in work by Wicks and GueBlate.. First consider an infinite Kagome plate structure. The

[5]. For such actuationsV scales linearly with slenderness, withobjective of this section is to probe how well the shape of the
energy equally partitioned between stretching and bending. Ho@#lid face sheet can be controlled by periodic actuations of the

ever, for the target fields considered heféclearly scales as the Members of the planar Kagome face sheet. Actuation is simulated
square of the slenderness via the same cut-stress-reweld scheme outlined in Section 2.2. For

the infinite plate, periodic target and actuation fields are consid-
3.3 Strain Levels Induced by Actuation. As the structures ered and a corresponding periodic cell is adopted for performing
will generally undergo cyclic actuations, investigation of straithe computations. The details of the periodic boundary conditions
levels for fatigue design is also required. One quantity of interefsir out of plane behavior are given in the Appendix. The periodic
is the maximum stretching strain occurring in the structure dboundary conditions, in addition to those suppressing rigid-body
vided by the maximum actuation strain. For a bending controlledotions, are imposed via the use of Lagrangian multipliers, as
structure, this ratio is also expected to scale with slenderness raimwn in Section 2.3, resulting in solutions that show periodicity
squared. Of more interest is the ratio of maximum bending straifi the forces and moments exerted on the boundaries of the peri-
to maximum actuation strain—which is expected to scale lineardic cell.
with the slenderness ratio for bending controlled structures. TheseAs in the planar Kagome case, a simulation is run for a unit
trends are seen to hold in Fig. 9 where the normalized maximwstongation of every member of the Kagome plane. Core members
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Fig. 10 Periodic cell used for Kagome plate simulation

are not actuated. In this case, the vertical displacements of the

nodes of the solid face sheet are assembled into a matrix of inflig- 11 Best-fit displacement field calculated using Moore-
ence coefficient®. Theijth component oB is the vertical dis- Penrose analysis for target field w  “=A,¢%,

placement of théth node of the solid face sheet resulting from a

unit elongation of théth member of the Kagome plane.

The linearity of the theory allows the displacements of the 2m¢
nodes from arbitrary actuatio@longation or contractionof any Wd:AOez sin( —) (20)
combination of members to be calculated easily oeis L,
assembled: whereL, is the length of the unit cell in th¢-direction. This

displacement field has zero displacement along two edges of the
wi=Bi;€; (16) periodic cell, corresponding =0 and/=L,. Along these same
wheree is the vector of member actuations awdthe vector of €dges, the slope in thedirection takes the value of2Aq /L, .
vertical displacements of solid face sheet nodes. This displacement field takes on a maximum valueohoe, at
Now consider a target field of the vertical displacements of tHe=L¢/4 and{=3L /4. The achievable displacement field shown
solid face sheet displacement fistd. We wish to determine how ' Fi9: 12 again matches the target field. . .
well this field can be recreated by actuating members of theONe final target displacement field of interest is described by
Kagome plane. The Moore-Penrose generalized inverse is em- 2 27y
ployed in a similar manner as before to calculate elongaféons Wd:Aer sin( L_) sin( 3 ) (21)
and displacement® via the relations ¢ K
~ Note that, unlike the previous target displacement fields, this field
& =Bw/ (17)  involves a nonzero Gaussian curvature of the solid face sheet. The
achievable field shown in Fig. 13 also matches the target field.

Wi =Bj¢ (18) . ,

4.4 Comparison With Long Wavelength Theory. The
whereB' is the Moore-Penrose generalized invers@oHere,&  best-fit actuations for the displacement fields described above
is the vector of member actuations which minimize the squaré@dve been compared with the actuations predicted by the long
error betweerw andw?. As before, if there exist multiple vectors wavelength approximation outlined in previous wofk]. In this
of actuations which minimize this squared eri@is such a vector long wavelength theory, the extensional straih, of a member is
of minimal length. e’ =—Hx st t; wherew is the curvature tensor associated with

4.3 Example Target Displacement Fields. The simulations V_"d (kS5=w",p) andt, is the unit vector specifying the orienta-
outlined above were run for several target displacement fields. T#@n of the member. _ _
periodic cell used for these simulations is shown in Fig. 10. |t Meémber actuations calculated via the Moore-Penrose analysis
contains a total of 64 unit cells. The axes used for describing tffgf the case of constant curvature agree well with actuations pre-
displacements fields described here are the sames andy-axis  dicted by the long wavelength theory. As this is a displacement
used in the planar Kagome examples. It is important to note tHigld with infinite wavelength, the agreement is not surprising.
the target displacement fields imposed are all consistent with #hstuations for the simulation corresponding to the sinusoidal dis-
periodic displacement boundary conditions described in the Ap-
pendix. As in the planar Kagome examples, the displacements
themselves are not, in general, periodic, while the stresses, stre
and curvatures are periodic. Here we consider, for example,
displacement field corresponding to a constant curvature—the
ternal forces are periodiéwith periodicity size of the periodic
cell), while the displacements are clearly not periodic.

The first target displacement field is described by Fig. 12 Bestit displacement field calculated using Moore-

. . d_ ;
wi= A%, . (19) Penrose analysis for target field w Age,sin(@m il Ly

Here, the displacement corresponds to the vertical displacement of
the nodes of the solid face sheet corresponding to a state of ¢
stant curvature ok, = 2A, with Aq as the amplitude factor argj
the unit vector perpendicular to the plasdigned with thez-axis).
The Moore-Penrose best-fit actuations for this displacement fie
are calculated as described above. The achievable displacen
field is shown in Fig. 11—only the achievable field is shown, as
is indistinguishable from the target field. There are 384 membe
that are actuated in this simulation and only 209 target nodai
displacements. However, the rank®fis only 194, so itis inter- gjg 13 Bestfit displacement field calculated using
esting that the achievable field is so close to the target field. Agore-penrose analysis for target field w 9= Age, sin (27 ¢/ Ly
tuation energy and strains will be discussed in Section 5. Xsin (27 5/ L,). The faceting of the solid sheet is an artifact of
The second target displacement field is the plotting—the actual shape of the solid sheet is smooth.
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placement field(20) are also predicted well by the long wave-
length theory. This displacement field has a wavelength of eigl
unit cells. Actuations were also calculated for a sinusoidal dis
placement field with a wavelength of only four unit cells:

. _[Am¢

w=Aye, sinl —|. (22)
L,

The actuations predicted by the long wavelength theory sho

more discrepancy in this case, as would be expected, but the la

est actuation strains are not in major disagreement.

4.5 Actuation of Selected Kagome Members. As a practi-
cal matter, it will usually be the case that only a small subset ¢
the Kagome face members will be actuated. The Moore-Penro
actuation scheme described previously can still be used to pro
how well such structures can achieve the target displaceme
fields.

Consider there are onlyl members which have been identified
for actuation. The matriB contains the displacements of the solid
face sheet nodes corresponding to all member actuations. Thyg
we can construct a new matrB* that contains only thé col-
umns corresponding to the members to be actuated. Then the ¥g§- 14 The members which are allowed to actuate in the
tical displacements of the face sheet nodes are again easily cabinalysis of actuation of selected Kagome members. Only the

lated according to Kagome plane is shown. The dashed members are the mem-
bers selected to actuate.
where nowe* is the vector of actuations of those members that
can be actuated. structure. The work done by the same actuator, undergoing the

Consider a target displacement fisld. The minimum length, same actuation strai’, in a perfectly stiff structure is, as before,
minimum squared error set of actuations for Memembers is  1/2(¢T)2EAL. This energy is taken as the reference energy for the
~  oxtod energy calculations presented below. As with the planar Kagome
& =Bij ;. (24) truss, actuation of multiple members does not pose any energy
Here, B* T is the Moore-Penrose generalized inverseBsf The —accounting difficulties—the total energy of actuation can be cal-
vertical displacements of the solid face nodes are also easily cgilated by adding up the contributions from each individual mem-

culated: ber. The relevant energy ratio calculated for energy comparisons is
- - again given by(13) wheree{ are computed for each specific set of
Wi =Bjjej . (25)  actuationssT .
Reconsider the target displacement field that corresponds tcAs noted earlier, for a structure with energy storage dominated
constant curvature: by bending energy in the beam members, the energy Vetzan

(26) be shown to scale with the slenderness ratio squardd,)€. It is
important to note that the sandwich plate comprised of the

Now, however, assume that only members of the Kagome planedagome face with a solid face sheet is indeterminate—not only

the row corresponding to~L /2 can actuate. These members arare the joints welded, but a solid face is intrinsically indetermi-

located in the middle of the periodic cell, as shown in Figi@l4 nate. It can be anticipated that this indeterminacy will result in

The Moore-Penrose best-fit displacement field is shown in Fig.

15. Note that the structure displays only local curvature along the

wi=Aql%; .

line {=L,/2.
Reconsider also the target sinusoidal displacement field:
2
wi=Aqe, sin(L—g . (27)
¢

Here, however, assume that only the selected members of
Kagome plane are actuated corresponding to those aligned in rc
having {~L /4 and {~3L,4, as shown in Fig. 14). These
members lie within the zones of maximum curvature magnituc
of the target displacement field. When the Moore-Penrose analy
is run under these conditions, the resulting displacement field 1s

displayed in Fig. 16. While the shape looks very similar to that ipjg. 15 The bestit displacement field when limited members

Fig. 12 achieved by activating all the members of the Kagomge allowed to actuate for the target displacement field w @
face, the curvature in Fig. 16 is nevertheless limited to regionsa ;2e,

where members are actuating alofigL /4 and{~3L /4.

5 Energy of Actuation of Kagome Plate Structure

5.1 Energy of Actuation. The strain energy of actuation is
again calculated in the manner depicted in Fig. 7 and the work
done by each actuator is1/2:° "EAL where " is its actuation Fig. 16 The best-fit displacement field when limited members
strain ands® is the elastic strain it experiences as a consequen@@ allowed to actuate for the target displacement field w ¢
of all actuations. This work is stored as elastic strain energy in tkeAqe, sin (2w ¢/ L))
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Fig. 19 Maximum stretching strain normalized by maximum
Fig. 17 Normalized actuation energy for the target displace- actuation strain for the target displacement fields, as a function
ment fields, as a function of R/L of R/L

somewhat larger actuation energies than those predicted for beciéntly large deflections due to nonlinear coupling between bend-

ing dominated structures. The energy ratias plotted against the ing and stretching in the solid face sheet whenever shapes with
slenderness ratio for the truss members in Fig. 17 for the thrB@nzero Gaussian curvature are actuated. This nonlinear effect is
target periodic displacement fields described above. It is clg2®t considered in this paper. Thus, the results for doubly curved
from this plot that the Kagome-backed sandwich plate offers cofhapes presented here are restricted to small deflections.
siderably more resistance to actuation for modes with curvature in
two directions than to actuations that bend the plate solely in op
direction. Nevertheless, compared to the reference energy, the
tuation energy is still small. A more meaningful interpretation ofy
the actuation energy will be given in Section 5.2. Similar tren
are seen in Figs. 18 and 19, where the maximum bending
stretching strain quantities for these displacement fields are plWl'th
ted as a function of slenderness ratio. =
Plates actuated to produce double curvature will necessarilym
limited to smaller actuation strain@nd thus displacementso
ensure they do not undergo plastic yield. It is important to no
that the results here for the double curvature plate have been CoR?
puted using linear theory. Large resistance will arise for suffi-

5.2 Comparison of Two Energy Quantities. In most appli-
Stions, a multifunctional role of these actuating structures is an-
ipated where the structures will be required to both change
ape and carry and lift significant loads. Here an approximate
culation is presented of the relative energies to perform these
different functions, highlighting the significance of structures
low resistance to actuation.

or specificity, consider a cantilevered Kagome plate structure
ength ¢ subjected to a load per unit lengghat free end. Now
imagine that, via actuation of Kagome members, the cantilevered
d is raised a distane®, . The work per unit length done to raise

S load scales as

Wp"N“PéA: P8A€ (28)

where g, is the typical actuation strain for a member near the
e . . clamped end. The energy per unit length stored as strain energy in
P A, sine (2"@/[4{;) Sine (2’“1/[47,) the Kagome plate structure due to resistance to actuation scales as

Wa~KEAe4 (29)

whereA is the member cross-sectional area &rid a small frac-
tion of unity for structures with low internal resistance to actua-
tion, such as those reported above.

The structure must be designed to be able to carry the load per
(@n/L,) unit lengthP. For an optimally designed structure, we anticipate
that face yielding or buckling will be an active constraifit(].

With o as the critical stress in a Kagome memlksst by either
buckling or yielding, the member must be sized to satisfy a rela-
tion that scales as;AL~PL¢{. Thus, to carry the applied load,
the member cross-sectional area will be sized according to the
scaling law

- .
A € sine

02 -

07‘-uI-‘--\..‘.l‘..w.u.m.u|.‘..\..‘.| A%P€/0'C, (30)

0 001 002 003 004 005 0068 007 o008 The maximum allowable actuation is also related to this critical
stresso, according to

R/L
. . . . : . ep~fo,/E. (31)
Fig. 18 Maximum bending strain normalized by maximum ac-
tuation strain for the target displacement fields, as a function of Here, f is the factor relating actuation strain and the maximum
RIL strain induced in the structure due to actuation as plotted for the
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Kagome structures earlier in the paper. In most instances, the ct - ®*------ Y ———— *------

dition limiting actuation is likely to be yielding in bending, at least / / /
for the Kagome structures, but the possibility of buckling of mem / / /
bers under compression must also be considered. Now calcul 1‘ B ,‘ ,‘
the ratio of the energy stored in the structure due to actuation / /) D /

the amount of energy required to raise the load: / / /

W, KkEP(salo. Kk(Elo.)eh o - ¢ . fomm o *&—————- -/
Wp  Penl ea T (32) ,’I
’
For the Kagome sandwich plates analyzed in Section 4, typic ’ 1
values off are about 10, as the maximum induced bending strairz® / A C /

in the Kagome plane are about 10% of the maximum actuati(e“1 / /’
strain. Values ok depend upon the specifics of the actuation, bt/ /
because of their low resistance to actuation they typically ran¢ * o ————"———-—- & ———-—- ’
from about 1/100 to 1/1000 for the Kagome structures. Thus, ftc  ~— == Bl

such structures, the energy required to raise the applied loads vvin %

be 10-100 times the energy stored as strain energy in the struc- 1 a periodic structure. A, B, C, D are equivalent periodic
ture. The sandwich plates subject to double curvature offer songg%‘s_ The dots correspond to nodes along the edges of the
what more internal resistance to actuatida=(1/40), but values perjgdic cells. e; and e,, are unit vectors sligned with the edges
of f are also lower {~2) such that the energy stored in internabs the periodic cells.
resistance is still relatively low, i.eW,/Wp~1/20. In this fun-
damental sense, the Kagome plate structure offers minimal inter-
nal resistance to the actuation.
(i) — (D) (1)
6 Concluding Remarks Up =Uo +Usa Uca™ (@gat ca) X (A6)
. . ) Now consider the rotations at each node in A. Denote these as
Sandwich plates employing as the actuation plane a Kagome
planar truss have been studied to assess their effectiveness and =) . (A7)
efficiency in the dual role of a load carrying structure capable of .
actuated shape changes. The advantage of the Kagome platigtiarly for B, C, and D:

truss in this application is its in-plane stiffness and strength A=+ wga (A8)
coupled with its low internal resistance to actuation. The sandwich _ .

plate offers more internal resistance than the isolated Kagome &Y =)+ wea (A9)
plane. Nevertheless, an actuated plate designed to carry specific : :

loads can achieve a wide variety of shapes with relatively low )= By + wpat woch. (A10)

expenditure of energy to overcome the internal resistance cogs
pared to the work expended in raising the loads. It remains to
seen from prototypes that are currently under construction, as

as from further theoretical work, just how large the actuated am- . _
plitudes can be and the range of modes shapes that can be pro- ul=u§’+ ugat wgaxr®. (A1)
duced. This is especially true for double curvature mod
that require greater expenditure of energy to overcome inter
resistance.

w consider the edge joining cell A and cell B. With the dis-
cements of the nodes along the top of A equal to the displace-
nts of the nodes along the bottom of B:

?re,(l) is along the top of A andi) along the bottom of B.
We can writer V=r®W+L e , whereL, is the length of the
periodic cell in thee, direction.

Now, equate the displacements along the edge joining C and D:
Acknowledgments " q P o g g€l g
. . . (= (i
This work was supported by the grant Multifunctional Yo +Uca® @caXr=Up +UcatUgat (wgat eca) X
Mechano-Electronic Materials(N00014-01-1-0528 and by (A12)

the Division of Engineering and Applied Sciences, Harvard Rearranging and simplifyingA12) leads to:
University.

Uy’ —ul =uga+ weaxr—weax L, e, (A13)
Appendix Comparison ofA13) with (A11) above yields:
Periodic Displacement Boundary Conditions. Consider a wcpXL,e,=0=wca=wcal, (A14)

periodic structure such as that shown in Fig. ALl. With A as the
reference periodic cell and” the vector from the origin in A to

theith node in A, we denote the displacements of the nodes in
as uf’=uf +uca+ ecaxr (A15)

up'=uy’ . (A1) Here,(J is along the right of A andj) along the left of C.

Now we can writer =r@+L e, whereL, is the length of

e periodic cell in thes, direction.

Equating displacements of nodes along the edge between cells

Now equate the displacements of nodes along the edge between
c&lls A and C:

Let B, C, and D be neighboring periodic cells, as shown in Fi%
Al. We denote the displacements at the nodes in those cells a

ug)=ul’+uga+ wgaxr® (A2) B and D yields
Ul =ul)+ ugat weaxr® (A3) uy) +ugat wgaX (r'+L,e)
ul)=ud+uga+ wgaxr® (A%) =uf+Ucat Ugat (@pat wca) X1, (AL6)

u8)=ug)+UCA+ wepXr. (A5) Rearranging and simplifyingA16) yields:

Combining(Ad) with (A3) or (A5) with (A2) yields g’ —ug’ =ucat @A X1V —wga X Le; . (A17)
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Comparison ofA17) with (A15) with above yields 0+ wea= @) + wgat oca (same as(A23)). (A24)

wppX L 8=0= wpp= wpp; - (A18)  Finally, equating rotations at nodes along the edge joining cells A
So, for edges parallel te,, displacements are related by and C:
: . D G
uy)—uf) = uga+ wpae, X1 (A19) 0= ¢y + wca= @'+ wcse, (A25)

i ()= #(0) (i) i i
Now,dwrlter ={e,+2z"k and note thak is perpendicular to References
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Size-Dependent Eshelby’s Tensor
for Embedded Nano-Inclusions
Incorporating Surface/Interface
Energies

The classical formulation of Eshelby (Proc. Royal SociéB41, p. 376, 1957) for em-
bedded inclusions is revisited and modified by incorporating the previously excluded
surface/interface stresses, tension and energies. The latter effects come into prominence at
inclusion sizes in the nanometer range. Unlike the classical result, our modified formu-
S. Ganti lation rend_ers the elastic state _of an emb_edded inclus'ion si_ze-dependent making possible
the extension of Eshelby’s original formalism to nano-inclusions. We present closed-form
expressions of the modified Eshelby's tensor for spherical and cylindrical inclusions.
Eshelby’s original conjecture that only inclusions of the ellipsoid family admit uniform
elastic state under uniform stress-free transformation strains must be modified in the
context of coupled surface/interface-bulk elasticity. We reach an interesting conclusion in
that only inclusions with a constant curvature admit a uniform elastic state, thus restrict-
ing this remarkable property only to spherical and cylindrical inclusions. As an immediate
consequence of the derivation of modified size-dependent Eshelby tensor for nano-
inclusions, we also formulate the overall size-dependent bulk modulus of a composite
containing such inclusions. Further applications are illustrated for size-dependent stress
concentrations on voids and opto-electronic properties of embedded quantum
dots.[DOI: 10.1115/1.1781177
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1 Introduction that then can be utilized to capture at least part of the length scale

. . . . effects likely to be prominent for embedded nano-inclusions.
Eshelby’s linear elastic solution of an embedded inclusiti, The literature on Eshelby’s tensor and related problems is in-

has a distinguished place in the history of mechanics, materiﬁz

) . . : e l ed rich and extensive. While we can hardly do justice in our
science, and solid-state physics. Characterized by its insightful .o of all pertaining work, attempt is made in Section 2 to

thought experiments, Eshelby’s classic solution of the embedd ntify some pertinent literature. To make this article self-
inclusion has been fruitfully used in diverse areas and problemsQfntained, a brief description of Eshelby’s main conclusions in the
physical sciences, e.g., localized thermal heating, residual straifgssical elasticity context are also reviewed. In Section 3, we
dislocation-induced plastic strains, phase transformations, ovekgiimulate the general problem of an embedded inclusion incorpo-
or effective elastic, plastic and viscoplastic properties of compogting surface energy and related terms. Some simple closed-form
ites, damage in heterogeneous materials, quantum dots, miGgpressions can be obtained for inclusions of constant curvature
structural evolution; to name just a few. In this work, we seek t@.e., spherical and cylindrical shape¥hat is the object of Sec-
modify the classical elasticity original solution of an embeddetion 4. The inhomogeneity problem is briefly discussed in Section
inclusion to include surface/interface energies, tension aBdafter which several applications of this work are presented in
stresses. In the following we will simply use the word “surface’Section 6 closing finally with summary and conclusions in Section
to signify both the free surface of a void in a material or thé&.

interface of a solid inclusion with that of the surrounding host

matrix. As has been done tacitly in most elastic problems, the

original elastic solution of the embedded inclusion ignored surface

energies of the inclusion—for fairly good reasons. Surface engr- Background

gies only enter physics when surface to volume ratio becomesB f introducti id localized arbitrarily shaped
appreciable. For most technological probletuastil recently in- y way ol introduction, consider a focalized arbitrarily shape

clusions were of the order of microns and rarely were one coFF—gion (@) in a material undergoing a stress-free inelastic defor-

cerned with nano-inclusions or related size effects. At the micrgjaion: Such strains are referred to as either transformation

and higher length scales, the surface-to-volume ratios are neéﬁr-ams‘[l]‘ or eigenstraing2]. Various physical examples of such

gible and indeed Eshelby’s original assumptions hold true and g rains are thermal expansion, dislocation mediated inelastic

d hi luti In short. in th ¢ K K to d Rain, swelling strain, magnetomechanical strains, lattice mis-
oes Nnis solution. In short, In the present work we seek 1o e”.Yr‘?atch, and so forth. If the inclusion is removed from the material

Eshelby’s tensor in the context of coupled surface-bulk elastimgﬁd allowed to relaxthus enacting the eigenstraimo stress is
Comributed by the Abpiied Mechanics Division ofiE A . generated. However, due to the presence of the matrix or sur-
ontrioute Yy the Applie echanics Division ol MERICAN CIETY OF H H . H H H
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- roun.dmg material, the final relaxed E|aSFIC state OT the InCILl.Slon
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Novem-a_dmItS a state of S_tress- When the material properties of t_h_e inclu-
ber 25, 2003; final revision, February 13, 2004. Editor: R. M. McMeeking. Discussion and the matrix are the same, the problem of determining the
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekirgdastic state is often referred to as Eshelby’s first problem. The
Journal of Applied Mechanics, Department of Mechanical and Environmental Engi- ; ; ; : : ;
heering Universty of Calfornia—Santa Barbara. Santa Barbara, CA 93106.5070, genario where the inclusion elastic properties are different than

will be accepted until four months after final publication of the paper itself in thép'os.e of t.he matrix is Eshelby’s S.econd problém W_hiCh case
ASME JOURNAL OF APPLIED MECHANICS. the inclusion is referred to as an “inhomogeneityThis nomen-
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clature was introduced by Muf&]. Eshelby’s interior or exterior
tensor(S or D) relates the eigenstrairz{) to the actual straiie)
in and out of the inclusion],1,3,4:

e(X)=9(X):e*(X) XeQ (1a)

X3
r 3

D Interface
/' (To!ls -p‘s)

e(X)=D(X):e*(X) Xe&Q (1b)

Both boldfaced and index notation will be used as convenient.

Eshelby’s tensor, in classical elasticity context, depends solely on

shape (i.e., aspect ratigsof the inclusions and is thus size-

independent. Furthermore, for the family of ellipsoidal shaped in-

clusions (including spheres, cylinders, sphergidthis tensor is

uniform within the interior of the inclusion. The latter fact greatly

facilitates, for example, the calculation of effective properties of

composites containing ellipsoidal inhomogeneities. For the sake

of completeness, some additional details on classical Eshelby’s

tensor are recorded in Appendix A while an exhaustive account

can be found in Refs[1-4]. For nonuniform eigenstrains the Fig. 1 Schematic of the problem

Eshelby tensors are integral operators while for uniform eigen-

strains numerical values can be established either analytically or

numerically (depending upon the geometrical and material sym-

metry complications recent work of RahmafB81] who presents simplified calculations
Since the original appearance of Eshelby's pajidrseveral of Eshelby type tensors for polynomial eigenstrains.

works have extended, modified and applied the concept of Eshel{7) Enriched elasticity: the classical theory of elasticity itself

by’s tensor to a diverse set of physical problems. There exist gx@s been modified in several ways. Micromorphic elasticity takes

tensive reviews of this subject hence only selected representativ® account additional microdegrees-of-freedom such as indepen-

papers are cited to establish appropriate context. We will, ho@ent rotations, dilations, and shears. An extensive account of these

ever, allude to some review articles; the references of which mdfeories can be found in Ering¢82]. As far as inclusion problem

or less contain an updated account of this topic: are concerned, it appears that the only two solutions that exist are

.due to Cheng and H83,34] who, respectively, solve the spheri-

(1) Anisotropicity: Several works have modified the Class'%al and cylindrical inclusion problem. Based on the latter work,

Elorlglnally isotropig formulation to incorporate anisotropic be- harma and Dasgupfa5] have formulated the overall properties
avior. Progress has largely been made only in the plane case. ZAn . .
. 2>t micropolar composites.

excellent, but somewhat dated, account of these aspects is given'in
the now classic monograph by Muf2]. Some more recent In addition to the aforementioned group of papers, several other
works, which also contain extensive list of references on this sutyorks exist in the context of nonlinear behavior and of course in
ject, are: RU5] who discusses arbitrary shaped inclusions in application areagsuch as effective medium theories, phase trans-
isotropic half and full plane, Li and Dunfs] address coupled formations, stability, among otheysA review of those works is
field anisotropic inclusion problems, Pan and Yaji who beyond the scope of this paper. The following monographs, re-
present a semi-analytical method for application to embeddegw articles, books and references therein are recommended for
quantum dots and Faux and Pearf8hwho have also applied an the interested reader: Muf@], Nemat-Nasser and Ho86], and
anisotropic formulation to quantum dots. Markov and Preziodi37], Weng et al[38], Bilby et al.[39], and

(2) Inclusion shapes: Chili9] has considered parallelepipedMura et al.[40].
inclusion. Rodin[10] considers the general polyhedral inclusion.
So do Nozaki and Taygl1]. . . .

(3) Bonding conditions of inclusion: The original assumptios 1he General Size-Dependent Inclusion Problem in
in Eshelby’s work is that the inclusion is perfectly bonded to th€oupled Bulk-Surface Elasticity
matrix, i.e., the normal traqtions are continuous anq so are theConsider, for now, an arbitrary shaped inclusiél) embedded
displacements. Under certain conditions these conditions mustjR&, infinite amount of material. By definition of an inclusion, we
relaxed(e.g., grain boundary sliding, diffusive sliding, etdvari- g nhose a prescribed stress-free transformation strain within the
ous researchers have considered the imperfectly bonded inclusi@finain of the inclusior(Fig. 1). Consider the eigenstrain to be
e.g., Furuhashi et a[12], Ru and Schiavon¢13], Zhong and jniform. As a departure from the classical solution, we now re-
Meguid [14], Qu[15,16 and Kouris et al[17] to name a few.  qyire that the interface of the inclusion and the matrix be endowed

(4) Coated inclusions: Frequently for technological reasons ifyith g deformation-dependent interfacial enerfy,The interfa-
clusions are embedded in a matrix with a coatingwhich may  ¢ja| or surface energy is positive definite. This quantity is distinct
be developed due chemical interaction with the matixfew  from the bulk deformation-dependent energy due to the different
representative works in this area are: Walddi@], Luo and Weng  ¢oordination number of the surface/interface atoms, different bond
[19], Cherkaoui et al[20], among many others. lengths, angles, and a different charge distributiei]. Within

(5) Coupled problems: Due to possible applications in sensgfe"assumptions of infinitesimal deformations and a continuum
and actuator technology, a large body of work has focused @B|q theory, the concept of surface stress and surface tension can
coupled problems, e.g., magnetorestrictive inclusions, piezoelggs clarified by the following relation between interface/surface

tric media, etc. See, for example, the works by TE3H, Ru[22], t t d the def tion-d dent f
Deng and Meguid 23], Mikata [24], Li and Dunn[6], and Pan ;(riss)sbsnsoraj, and the deformafion-cependent surtace energy,

X4

[25,26].
(6) Nonuniform eigenstrains: SendecKgj7] and Moschovidis , dr
[28] considered general polynomial eigenstrains. Their work is o°=T,l°+ P (2

useful for both nonuniform loadings as well as for taking into

account interactions between inhomogeneities. Asaro and Barnéfere applicable, superscripsand Sindicate bulk and surface,
[29] and Mura and Kinoshit430] addressed polynomial eigen-respectively. Hereg® is the 2x2 strain tensor for surfaces or
strains in an anisotropic media. Note also must be made of timterfaces)? represents the identity tensor for surfaces whiés
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the deformation-independent surface/interfacial tension. It isHere “H” is the Heaviside function an€ is the classic fourth-
worth pointing out that the concepts of surface tension, surfaoeder stiffness tensor. We defizéx) to be of the form

stress, and surface energy are often confused and used inter-
changeably. Only for liquids are all three the same. For solids, {2(x)>0[x= 0}
they are vastly different and must be carefully distinguished. See, {z(x)<O0|x & Q}. (8)

for example, the excellent review article by Ibdeti]. A further

source of confusion often is the sign of the surface stress. Th
latter can be negative but not the surface energy. Conceptual mis-
takes abound if one equates the surface stress to the surface en
ergy. The determination of the surface tension and the surface
elastic constants is often nontrivial and a discussion on this can be 9

found elsewhere, e.g., Ibad#1], Miller and Shenoy{42], and It can be readily seen that the eigenstrain and the underlined
Gurtin and Murdoct{43]. Some brief comments on this are alsqerm appear as a body force. Note that in classical elasticity the
provided in Appendix C where the properties used in subsequegdt underlined expression in E), i.e., [¢®.n] is typically
numerical calculations are listed. __omitted since the jump in the normal tractions is ze%0) is the
Having introduced the essential concept of surface elastiCifjjrac delta function whilez(x)=0 defines the interface. How-
the governing linearized isotropic equations can be written follovgyer, taking cognizance of E¢a), i.e., coupling interface elas-
ing Gurtin and co-workers[44,43 who (along with previous +icity with bulk elasticity, we must rewrite Equatici9) as
works) can be credited for setting the theory of surface elasticity
on a rational mechanics footing. The equilibrium and isotropic _ R " - . o
constitutive equations of bulk elasticity are written as usual: V.0"=V.(C:) = V.{C:&"H(z(x))} + &(z(x)) div, OJ 0.

eTaking the divergence of Eq7) we obtain

V.6?=V.(C:e)-V.{C:e*H(z(x))}— [ 6®.n] 8(z(x)) =0.

dive®=0 (39) (10)

oB=\I3Tr(e)+ 2ue. (3b) psing the .underlined term as representing a body f(?rce in con-
junction with the elastic Green'’s function, we can write the dis-
At the interface, the concept of surface or interface elastie!8s placement field due to both the eigenstrain and the surface effect
45], is introduced which is excluded in the classical elasticitgs

formulation:
[0®.n] + divs 05=0 (%) e j G(y—x).(V.AC: e H(D}aV,
05= 71+ 2( S~ 75) €5+ (N4 70) Tr(£9)12. (4b) '
Here, A and u are the Lame’ constants for the isotropic bulk + LGT(y—x).divS o'(y)ds,.

material. Isotropic interfaces or surfaces can be characterized by
surface Lame’ constants®, u° and surface tensior,,. n is the
normal vector on the interface. It is to be noted that only certain (11)
strain components appear within the constitutive law for surfacasmore rigorous treatment of the interface conditions in &

due to the X2 nature of the surface stress tensioe., strains (11) is provided in Appendix A. Her& is the Green’s tensor for
normal to the surface are excludedhus, I? represents the 2 isotropic classical elasticityAppendix B. The underlined term

X 2 identity tensor whild® represents the same for bulk 2nd rankindicates the extra surface terms that we have incorporated in the
tensor. Tr indicates the trace operation. The square brackets in figsent work. The first integral in E¢L1) is simply the classical

(4a) indicate the jump of the field quantities across the interfacpart. As customany,1,36], we make use of Gauss theorem to cast
In absence of surface terms, Eg) reduce to the usual normal Eg. (11) in a more attractive form:

traction continuity equations of classical elasticity. “gdivepre-

sent the surface divergence. To define this further and well as tl . . . o

role of surface identity tensdf (i.e., the 2x2 nature of surface “=f (C:£7):(,®G (y—x))dV,+ f G (y—x).div, 0°(y)dS,.
tensorg, it would be convenient to first recall certain projection v il
tensors P°) employed by Gurtin et al44]:

(12)

Ps=1—n®n. (5)  Here we have also used the rule tHgiG(y—x) = —V,G(y—X).

. . . . . Invoking the linearized strain-displacement lage= sym{V @ u},
Here | is the three-dimensional identity tensor and we hav e can then write

dropped the superscript “3.” This surface projection tensor maps
tensor fields from bulk to surface and vice versa. For example, the

surface strain tensor projected into such a tangent space would be  ¢—g: ¢* + sym| V.® f GT(y—x).div, &*(y)ds, | .
written ase®= P5¢P®. This notion of projection tensdand related s ’ Y

tensor machinery of superficial and tangential tensehsgantly g

allows one to mix bulk and surface tensors in the same equations. (13)
To clarify the notion of surface divergence, consider a vegtor

The surface gradient and surface divergence, then, take the fdgré We have invoked the definition of the classical size-
lowing form, [44]: independent Eshelby tens¢t,2], based on which the firghon-

underlined integral in Eq.(12) reduces to the classical expression
in Eqg. (1). The notation, syfy}, represents the symmetric part of a
(6) second-order tensof, e.g.,

. : . . symA}= 7 {A+AT}.
Noting that the transformation strain is only nonzero within the o . . .
inclusion domain e 1), we can write the bulk-constitutive law Further simplification does not appear feasible without addi-

V.v=VvP®
divg(V)=Tr(Vgv).

for the inclusion-matrix as follows: tional assumptions regarding inclusion shape. Note now that Eq.
(13) implicitly gives the modified Eshelby’s tensor for inclusions
oB=C:{e—e"H(z(x))}. (7) incorporating surface energies. This relation is implicit since the
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surface stress depends on the surface strain, which in turn is Hhere we have used the fact that 1/R, for spheres wher®, is
projection of the conventional straifz) on the tangent plane of the radiusK® is defined by us to be the surface elastic modulus

the inclusion-matrix interface. In the next section, using @9)  and is given as 2(°*+ 1) while K is the usual hydrostatic modu-
we will derive explicit expressions for cylindrical and sphericalus, \ +2 /3.

inclusions. For now, however, it is worth noting some general For an infinite circular cylindrical inclusion, in addition to the

features of the new Eshelby tensor. plane-strain conditions we haweas 1/R, hence
In terms of the surface projection tensor the surface divergence s
of the surface stress tensor can be written as e ' ! s To y
e=Se —3K,RO(S.I)Tr(PSsP) 3K’R0(S'I)' (20)

divs o°= dive{ CSPSePS+ 7,PS}. (14)

The surface divergence of surface stress tensor can only be
form if the classical “bulk” strain asvell as the projection tensor
is uniform over the inclusion surface. Consider th44]:

d—rllg_reK/S is the plane-strain surface modulus+2u® while K’

Is 2(\+ u)/3. Note that for the interior solution, Eshelby’s inte-

rior tensor(S) must be used while for exterior solution the corre-

sponding exterior versiofD) is required.

divg P5=2kn. (15) Substituting the well-known components of the classical Es-
helby tensors for both spherical and cylindrical shapag, we

Here « is the mean curvature of the inclusion. For a general ell btain the following simple expressions for spherical and cylin-
soid the curvature is nonuniform and varies depending upon the

. - ; : . ; ok
location at the surface. Only for the special cases of spherical a écfl |nilu3|ons subjected to a dilatational eigenstraf)=e3,
cylindrical shape is the mean curvature uniform hence leading 33~ ¢ - o ) )

to conclude the following: Spherical inclusior(in spherical polar coordinates
PropPosITION Eshelby’s original conjecture that only inclusions of 3KMe* — 2+ R

the ellipsoid family admit uniform elastic state under uniform o0 ©
eigenstrains must be modified in the context of coupled surface/

A T TR TS AR
0

interface-bulk elasticity. Only inclusions that are of a constant (21a)
curvature admit a uniform elastic state, thus restricting this re- M % 3
markable property to spherical and cylindrical inclusions 3K —270/R, | R,

property p Y e (r)= 2" 3K 2KR, | T° r>R, (21b)

0
3KMe* — 27, /R, 2R§\

4 Inclusions With Constant Curvature (Spheres and S =€4s(1) =~ Zuwr g Hsp-| 73| = Ro-
Cylinders) (2l

Spherical and cylindrical inclusions are endowed with a comylindrical inclusion(in cylindrical polar coordinates
stant curvature and thus according to the previous section must

admit a uniform elastic state in coupled bulk-surface elasticity. _ )= 3K'Me* — 75 /R, | <R -
The new Eshelby’s tensor will, of course, be size-dependent be- e (1) =egp(r _ZMM+3K/M+K/S/RO|r o (229)
cause of the presence of curvature terms.
Due to the constant curvature, E4.3) can be simplified con- 3K'Me* — 70 IR, R§
siderably. The surface divergence of the surface stress can be sim- en(r)= 2" 3KV K SR, | 12| R (22)
. N . (0]
ply taken out of the differential and integral operators. The surface
integral is converted into a volume integral and we can then write: 3K'Me* — 7, IR, Rg
=— —{r>
ego(T) 207+ 3K VA K'SIR, | 2 r>R, (22)
— Q. 1. . _ . 8
e=S:g"—-C sym{ V,.oC: vaX@)G(y X)dVy} 2T £,/r)=0. (22)
Wherever applicable, superscrigisandM will be used to repre-
16 sent inhomogeneity and matrix properties, respectively. The ex-
(16) pressiong21)—(22) are exceptionally simple but clearly illustrate
where scalar & is defined from the relation: that elastic state is now size-dependent. The surface/interface ten-
< sion is a residual strain-type term which, for example, should not
o°=sP impact the effective properties of composite. The effect of surface
- s . .
=5=1,+ (A\S+ %) Tr(PePS) (17) elasticity appears througk® which (as shall be seen in Section

6(b)), leads to a size-dependent change in overall hydrostatic
In the underlined integral term we have multiplied and divided byroperties of a composite. By making the radius of the inclusion
the elastic stiffness tensor to conveniently cast the term enclodarhe we can trivially retrieve the known classical solution. Inter-
in the curly brackets in terms of the classical Eshelby tensastingly, although their treatment of a spherical precipitate was
Additionally we have used the surface constitutive [@g. 4b)). much more specialized, we can make contact with the results of
We can rewrite Eq(16) in the following simpler form: Cahn and Larchd46]. Using an assumed displacement type
o 1. method they(only taking into account surface tensjgoresented
£=Se"—(2ks)C 1 (S). (18) exactly the expression in Ed21a) with the surface elasticity
Equation(18) can be made more explicit by noting that an isotroeffect (K®) set to zero.
pic fourth tensorA, displaying the symmetries characteristic of
the elastic stiffness tensor can be written in terms of two scalars
a, and a, as: A =2a416;; 6t as(8id, + 6, 0;). It is then ,
straightforward to ]s,how théA:I=(3a1+]2a2)I V\J/hiCh, after sub- 5 A Note on the Eshelby’s 2nd Problem(Inhomogene-
stituting C™*:1=(1/3K)! in Eq. (18) directly leads to the follow- ity)

ing for spherical inclusions: Since the classical result for the strain within the inclusion is
s 2y uniform for ellipsoids, Eshelbyl] was able to devise an elegant

e=S et — (S:1)Tr(PSePs) — 0 (sh). (19) method to mimic an inhomogeneity by an inclusion containing a

3KR, 3KR, fictitious eigenstrain. The so-called equivalent inclusion method
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Fig. 2 Stress concentration as a function of surface properties and void radius. (a) Solution
with surface modulus =2K*, Al [1 0 0]. (b) Solution with surface modulus =nominal K* for Al [1
0 0]. (c) Classical solution without surface effects, i.e., K=0. (d) Solution with surface

modulus =2K* Al [1 1 1]. (e) Solution with surface modulus =nominal K*, Al [11 1].

simply entails equating the elastic state of an inhomogeneity to T oo 1/1-2KS3KMR,
that of an inclusion albeit with the aforementioned fictitious S.C.=— = +§ W) (25)
eigenstrain, i.e., O r=R, M Ro
CM:{e”+e—g'}=CH:{e"+ &) (23a)
e=Se". (230)  |n this section we have set, =0, to study the effect of surface

£” is the externally applied strain. Since for spherical and cylirlastic constant<®. Results can then also be presented indepen-
drical shapes the modified Eshelby’s tensor with surface effectsdgnt of loading conditions since the surface tension is a residual
also uniform, the equivalent inclusion method embodied in Eqgtress type of effect. Note that E@S) trivially gives 1.5 as the
23(a,b) can be easily applied to study the size-dependent elasti¢ess concentration for the classical elasticity case when either
state of inhomogeneities. Unlike the classical case, this fortuity, 8drface modulus is small or void radius is relatively large
was seen in Section 3, does not extend to ellipsoids. As an dfypically>25nm). The numerical results are presented for Alu-
ample, for a cylindricainhomogeneityree of any external load- Minum using free-surface properties computed by previous re-

ing but containing a dilatational eigenstrain, the interior radigiearcherg[42l—using molecular dynamics simulationhe sur-
stress can be reduced to face properties are highly dependent upon crystallographic
direction while ours is an isotropic formulation. The object of this
—2uMe* —K"%e*IR,— 7, /R, section, however, is to simply use some realistic values to illus-
2(uM+ uH+AH) + KSR, @4) trate the physical effect. The stress concentration of the spherical
cavity under hydrostatic tension is plotted as a function of the
6 Applications cavity radiusR, in Fig. 2 for two different set of surface proper-
. . . . . . ties (corresponding t¢1 0 0] Al and [1 1 1] Al). To investigate
The incorporation of surface size ef‘feqts n the_ |nc_Iu5|on Pro% proader range of surface properties, curves of surface modulus
lem automatically reopens all the existing application areas ice that of AI[1 0 0] and Al [1 1 1] are also shown.

Eshelby teg_sor nowhextendalt_)le to the nanors]ca]!_e. In the presgpl * arameters as obtained from manipulation of data from
paper we discuss three application areas: the first two are agan _ s
demic although classic in mechanics while the third is, currentlg@fr_ 6ar21$788’3/enr;c:3}/<£12]_ SaLeS'7 [,\}/mo V\?E;ile)\for[sl.dfigi]z ;\t:/g/’

of immense technological importance. are: \5=6.842 N/m, u®=—0.3755 N/m=>K®=12.932 N/m. As
depicted in Fig. 2, surface effects cause the stress concentration to
(a) Size-Dependent Stress Concentration at a Spherical reduce (increasg¢ with decreasing pore size whel®>0 (K®
Void. Consider a spherical void under an applied hydrostati€0). The classical cas@vithout surface effeciscorresponds to
tension. Based upon the preceding expressiostg Eshelby’s K*=0 and is, as expected, independent of pore size. Below a
exterior tensor and equivalent inclusion methdtie stress con- critical void radius the void will sinter. This effect is closely re-
centration can then be derived to be lated to the residual surface tension and is not investigated here.

UrrZZ(MH+)\H)
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Fig. 3 Size-dependent effective hydrostatic modulus with surface effects versus void radius
normalized with the matrix bulk modulus: (a) solution with surface modulus =2K?*, Al [1 0 0];
(b) solution with surface modulus =nominal K* for Al [1 0 0]; (c) classical solution without
surface effects, i.e., K°=0; (d) solution with surface modulus =2K?® Al [1 1 1]; (e) solution with
surface modulus =nominal K*, Al [11 1]

(b) Size-Dependent Overall Properties of Composites 1
One of the applications of this work is that surface effects can (g)= VJ un®ndS. (28)
now be easily included in the determination of effective elastic Sw
properties of a composite. Here, as an example, a nanocompogjége n is the normal vector on the outer surface. The average
of Aluminum populated with a finite volume fraction of sphericaktrain field is obtained as
voids is considered. Let the volume fraction of the inhomogene-
ities be denoted by¢.” To take into account interactions between
various inhomogeneities, we embed the single inhomogeneity
(void) in a concentric spherical volume of matrix material wit
finite radius ‘Ry>R,.” Then, “c” is simply R¥R3,. This is

3KM 1
(£)=3| Q+ 4M—MQ* m)o* (29)

hfrom which the effective hydrostatic modulus is deduced to be

nothing but the classical spherical assemblage sy$@&sh,Using " 1
the interior and exterior Eshelby’s tensor we can compute the K= 3K 7 (30)
displacement fields to be 3|Q+ —wQ— —M)
v 4u
Pr, O<r<R, The overall hydrostatic modulus of the composite is size and
u= T surface-property-dependefvia “ Q" which in turn depends on “
Q+ 2, Re=r=Ru K" weighted by the inhomogeneity curvatrdhe size effect is
illustrated in Fig. 3, where the normalized effective hydrostatic
o (4pM+3KH) modulus is plotted against the void radius for a constant volume

(26) fraction ofc=0.5. The effective hydrostatic modulus with surface
effects, shown in Fig. 3, is normalized by the hydrostatic modulus
3AKR? of the matrix material without voids. As can be observed, at small
AK=KM—KH, T= ——220Q, P=Q+T/R. length scales, the size of inhomogeneiti@$ constant volume
4p+3K © fraction) can cause a change in the macroscopic behavior of a
. . . . composite. Asymptotically, as the inhomogeneitpid) size is
Here we have used the kinematical relations, ou/drieqy | creased, the surfaces effects begin to diminish and the normal-

=g44,=U/r). The overall applied stress is related to the totq'ged modulus approaches the classical solution
average strain via the effective bulk modulus as '

Q= 3R {2,V 1 3K™) — 4c L[ 3AK T 2KIR,]

o =KeM(e). (27) (c) Size-Dependent Strain and Emission Wavelength in
Quantum Dots. Quantum dot(QDs) have recently been the
As is well known,[36], the average strain can be completeljocus of several experimental and theoretical researchers due to
determined through the surface integral of the displacement on the promise of improved and new opto-electronic properfi€s,
boundary of spher&y,, i.e., QDs are typically embedded in another semiconductor material
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with differing elastic constants and lattice parameter. The ensuipgopertie$ is incurred when surface effects are neglected consid-
elastic relaxation within the QD is well known to impact theirering that quantum dots are often “fabricated” in the sub 10-nm

opto-electronic properties. Several works, of varying sophisticeegime. An electronic property of interest in quantum dots is its

tion (both analytical and numerigalhave focused on the calcula-bandgap, which in turn affects its emission wavelength. Using a
tion of the strain state in buried quantum dots and the subsequsimiple effective mass theory, the deformation potential theory,
impact on opto-electronic propertiesee, for example, the follow- [50], and the size effects from the present work, the shift in quan-
ing works appearing in the mechanics literatyg,49). It would tum dot emission wavelength due to surface effects can be written
be of interest to see how much err@n strain and electronic as

cl_ s
o hc(ac+a,)[e®—e%(R,)] _ (31)

E°°+—h2(m‘;m'*h) +(a.+a,)e%(Ry) E°°+—h2(m;mrh) +(a,+a,)e
9" BaREAm ) o T | e o RE ey e

Here,h is Planck’s constant whilen* is the effective mass of the 7 Summary and Conclusions

carriers(* " is electron and ‘1h” is light hole). E, is the bulk 1o summarize, we have modified Eshelby’s classical approach
band gap of the material whila(+a,) represents the dilatational to\wards inclusions and inhomogeneities to incorporate the effect
deformation potentials®' is the classical strain anef(R,) is the of surface energies via the continuum field formulation of surface
size-dependent strain from the present work that includes surfasigsticity. As a consequence, the elastic state of inclusions is ren-
effects. Note that for the purposes of band structure calculatioigred size-dependent making possible the establishment of scaling
the eigenstrain must be subtracted from the compatible strain. Tla@ss that are valid at the nanoscale. Eshelby’s original conjecture
second term on the denominator of E81) is the usual quantum that only inclusions of the ellipsoid family admit uniform elastic
confinement effect[51]. As an example, we have used arstate under uniform eigenstrains must be modified in the context
Ing;GaN quantum dot system embedded in a GaN matrix. Thé coupled surface/interface-bulk elasticity. Only inclusions that
error in wavelength calculation is shown in Fig. 4. Numericadre of a constant curvature admit a uniform elastic state, thus
constants are listed in Appendix C. We have used a simple firsgstricting this remarkable property only to spherical and cylindri-
order approximatiofiEg. (31)) to capture the wavelength shift andcal inclusions. The modified size-dependent Eshelby tensor for the
while a more sophisticated treatment is possilitdlowing, say, spherical and circular cylindrical shape is explicitly calculated in
Ref.[49]) the present expression in E®1) suffices to provide a the present work.
measure of the severity of surface effects on the opto-electronicApart from the formal contribution, by way of illustration, the
properties. size-dependent stress concentration on a spherical void was dem-
As patent from Fig. 4 the error in wavelength calculation bpnstrated. Taking advantage of the fact that the modified Eshelby
neglecting the surface size effect is appreciable in certain sitnsor is uniform for the spherical shape, we are also able to
ranges. For large QD size, as expected, the classical and the @@nive the exact size-dependent hydrostatic modulus of a hetero-
results are indistinguishable. For very small QD sizes, while sugeneous solid. Perhaps the most technologically important appli-
face effects are appreciable so are the quantum confinementagttion of the present work lies in arena of quantum dots and wires.
fects (which scale as ®?) and hence dominate. In the “mid- While physicists routinely take into account the impact of strain
regime” (still at the nanoscale surface effects have the moston band structure and opto-electronic properties, the strain calcu-
impact. To be specific, in this particular material system, a may@tions are typically based upon classical elasticity and are size-
mum wavelength shift of-40 nm (for a diameter of~3 nm) is independent. In the present work, a first-order calculation clearly
observed which is large enough to cause a shift of colors afpows that large errors in both the band structure and the emitted

indeed exceeds the strict optoelectronic design tolerances. Wavleletn%th can be incurred if the surface size effects are
neglected.

There are several limitations of the present work and a few are
worth mentioning. They point naturally to future extensions:

(1) Isotropic behavior was assumed throughout. This is a rather
dubious assumption when one is concerned with surfaces and in-
terfaces. Unfortunately, matters are unlikely to be analytically
tractable once the assumption of isotropy is abandoned. Numeri-
cal formulation of the coupled-surface bulk elasticity may be nec-
essary to remove this restriction.

(2) Analytical formulas were restricted to the spherical and cy-
lindrical shape. This limits our ability to study the effect of shape
on the size-dependent elastic state of nano-inclusions. Derivation
of the modified Eshelby tensor for the general ellipstichich
surely must proceed numericallwould be a useful extension of
the present work.

(3) It would be also of interest to see the behavior of nons-

. mooth inclusion shapes, e.g., parallelepipeds. Polyhedral inclu-

0 M 0 60 % wo  Sions with vertices essentially possess zero curvature everywhere
Diameter of Guantum Dot (nm) except at the corners where singularities exist.
(4) Slip, twist, and wrinkling of surfacesl/interfaces were ig-
Fig. 4 Size-dependent wavelength shift due to surface elastic- nored. One can expect some interesting physics to emerge from
ity effects inclusion of such effects. Slip and twist of elastic interfaces were

> ¥ ¥ 8 8 &8 &

Error in Wawelength (nm)

-
-3
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recently included by Gurtin et a]44] to supplement the original Appendix B
formulation,[45]. These notions are closely linked to the concept , ) o ’ )
of coherency-incoherency and their discussion in relation to Es-Green’s Function for Elasticity and Eshelby’s Classical Ten-

helby’s problems is relegated to a future work. sor. The Green’s function for elasticits(y—x) is the funda-
mental solution to the Kelvin’s solution of a point load in an
infinite solid. It is given by(for isotropic materials

Acknowledgments 1 (Yy=X)®(y—Xx)

g , Gly—x)= (3—ap)o+ Lo IX

The present work greatly benefited from the comments by an 16mu(1—v)|ly—x| ly—x|
anonymous reviewer. In particular, the rigorous treatment of Egs. (34)
(9) and(16) and the note in Appendix A is a direct consequence &upstituting this expression in the first integral of ErR) yields,
reviewer’s suggestion. [2]:
1
gij(X)= m[‘l’kl,knj —20Dyij — 2(1—v) (Pig i

Appendix A

Interfacial Conditions in Equations (9)—(11). The form of T Pici)] (35)
the underlined term in Eq9), i.e., the jump in traction across thewhere ¢ and @ are biharmonic and harmonic potentials of the
inclusion-matrix interface, can be justified by considering thiclusion shap&Q). They are given as
stress balance law in the following form:

‘I’i;(X)=f Ix—ylef; (y)d® (36)
diw=ff(y)5(x—y)ds,=o (32) ¢
S

1
D.(x)= | ——&* 3 7
Equation(32) defines a stress field perturbed by a force spread ij(X) f9|x—y| & (y)dy (37)

over the interface. An arbitrary trial function(x) is introduced. . . - .
Upon multiplication of this trial function with Eq(32), integra- Equation(35) can then be cast into the more familiar expression

tion over the volume and subsequent use of Gauss theorem yidli&d- (12,0
e(X)=8(x):e* xe)

. 38
L{[(r(x)].n}.w(x)dsx— fv{dlv o(X)}.w(x)dS, £(X)=D(x):e" x&Q. (38)
Mura’s book[2] contains detailed listing 0§ and D tensor for
+ f f(y).w(y)dS,=0. (33) Vvarious inclusion shapegspheres, cylinders, ellipsoids, and
S cuboids.
Since,w(x) is completely arbitrary, Eq.33) implies (a) the usual Appendix C

balance law within the bulk of the continuum, di=0 and(b)
the identification of the interface force with the jump in the nor- Numerical Constants for Wavelength Shift Calculation

mal tractions, i.e.f=—[o].n. The numerical values used in the calculation of Fig. 4 are listed in
Table 1.
Table 1 Numerical values used in Fig. 4 References
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My, ’ . Proc. R. Soc. London, Ser. 4252, pp. 561-569.
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Melbourne, FL 32901 Defect Green’s function (GF) of multiple point-like inhomogeneities in a multilayered

e-mail: boyang@fit.edu solid has been derived within the theory of linear anisotropic elasticity. It is related to the
(reference) GF of the multilayered matrix excluding the inhomogeneities through the
continuum Dyson’s equation. While the reference GF is available, the defect GF can be
solved. The expressions are first analytically reduced by realizing the point-likeness of the
inhomogeneities. The subsequent procedure involves the solution of the response of each
individual inhomogeneity to a far-field straining in the multilayered matrix and a matrix
inversion on the order of the number of inhomogeneities. Furthermore, the defect GF is
applied to derive the field induced by inhomogeneous substitutions in a multilayered solid.
Numerical results are reported for arrays of cubic and semispherical Ge inclusions in a
Si/Ge superlattice. The numerical results have demonstrated the validity and efficiency of
the present formulation.DOI: 10.1115/1.1781179

1 Introduction als properties relative to the referepcan be obtained by solving
Multilavered materials have been the focal research areathis equation. The defect GF can then be applied directly to solve
structuralycom osites for decadés]. Recently, such a material the problem of inhomogeneous inclusions, taking into account the
. P A Y, . lastic mismatch as well as the eigenstrain mismatch between the
setting has drawn refreshed attention in the field of semiconduc Utocts and matrix. This defect GE method is ideal for treating
mlc_ro/ na:nodewc?iz]. In both cases, the c_ompqsnes may Co.ma'l?acalized defect spaces. In the present work, we derive the defect
various “defects, SUCh. as cavities e remforcmg 'partlc_le_s n the - for multiple point-like inhomogeneities, and apply it to derive
structural case, and dislocations, vacancies and impurities in & induced field by point-like inhomogéneous inclusions in a
micro/nanoscale case. Some of these defects may be modele ﬁﬁilayered solid
inclusions with eigenstrain, introduced by, for instance, a thermal In Section 2 tﬁe Green's function problem is formulated for
eﬁpalr:jsg)n mlzmlatdch or ﬁ Iattlce-conste_mt|m|_smatch.h?|;)h(_e Otg Bltiple inhomogeneities in a multilayered anisotropic and lin-
should be modeled as inhomogeneous inclusions, exhibiting baflyy e|astic solid subjected to a point force. It is solved by relat-
elastic and eigenstrain mismatches with matri¢8h,Due to the 4 e defect GF to the reference GF in the absence of the inho-
small size anq large quantity of such defe(:ts rea}l cases th.e mogeneities through the continuum Dyson’s equat[d?2]. The
Green's functionGF) method is often the first choice, sometimes,, pressions are analytically reduced to the case of point-like
the only one, to investigate the problems. However, the method;ig,omogeneities before the final numerical solution. In Section 3,
limited to the cases of certain materials property and geometf)e gefect GF is used to derive the induced field by inhomoge-
where the GF is available and can be evaluated efficiently.  ha4us inclusions in a multilayered solid. In Section 4, numerical
In the theory of(three-dimensionallinear elasticity, various ragits are reported for arrays of cubic and semi-spherical GE
GFs ha\_/e been derlvgd for infinite-space, half-space, b'r,“ate”%Ebstitutions(namely, GE quantum dot®D)) in a Si/Ge super-
trimaterials, and multilayer¢3—9]. The GFs have been directly atice. The present solution of cubic QDs is compared with that of
applied to solve the eigenstrain problem of defects in these strygiite-size QDs by a boundary elemefBE) method,[13]. The
tures. The defects are modeled as inclusions, taking into accoggteement has demonstrated the validity of the present formula-
th.elr eigenstrain mismatch, but ignoring their elastic mismatchign. The solution of more than 100 semisherical QDs has also
with these matrice$3,10,11. Recently, Yang and Tewaryl2] gemonstrated the efficiency of the present formulation. In Section
introduced the continuum Dyson’s equation and defect GF iNE conclusions are drawn.
generally heterogeneous anisotropic solid. The Dyson’s equation
links the point-force responses of two systems of identical geom- , ) ] )
etry and(homogeneoysboundary condition but of different me- 2 Defect Green’s Function of Point-Like Inhomogene-
dia. Given the GF of either syste(alled a referengethe GF of ities
the other(called a defect system with “defect” change of materi- Consider a multilayered substrate occupying dominit is
filed with N particles occupying subdomainsD,, (n

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  _ ; ; ; i
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 1’2’.' - N), as schematlcally shown in Flg(ah' A Carte.SIan
CHANICS. Manuscript received by the Applied Mechanics Division, August 28, 200§;00rd|nate framer)(leZvXS) is attached to the system, with the

final revision, April 15, 2004. Associate Editor: Z. Suo. Discussion on the papd-axis being perpendicular to the substrate surface and pointing

should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligdward the substrate. The substrate and particles are modeled as

Mechanics, Department of Mechanical and Environmental Engineering, University: : : ; ; ;

of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep'i%iaISOtrOplc and lmearly elastic .mate”als' The partlcles and the
parts of substrate that are substituted by the particles have gener-

until four months after final publication in the paper itself in the ASMEJBNAL OF : : c |
APPLIED MECHANICS. ally different elastic stiffness. Thus, these particles are termed
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X The abovegdefec) GF, G* can be related to th@eference GF,

X G of the multilayered substrate before filling the partic(&sg.
1(b)) by, [12]
—— ; x3 G;i(x,x):Gpi(X,x)
. Xe—p Jorce [ xe—wforce |
S— —f [Gpj k(XX )ACjksh(X")] hGsi( X", x)dV(X"),
Inhomogeneous Q
@ particles © (6)

Fig. 1 (a) A multilayered solid embedded with multiple inho- whereACiusn(X)=Ciksn(X) = Cjish(X). The GR.G s defined by

mogeneities; (b) a “clean” multilayered solid as reference to [CjikI(X)kal(xxx)] j+5pi5(x—X):o, @)

(a). Both structures are subjected to a unit point force along ' ' . . .

one of the axes at X. A global coordinate system is established under the same homogeneous boundary condition as given in Eg.
with the x;-axis being perpendicular to the top surface and (5) for G*. Equation(6) is called the continuum Dyson’s equa-
pointing inward the substrate. tion, the continuum counterpart of the Dyson’s equation in the

lattice-statics theony,14]. It links the point-force response of the
defect system of multilayered materials filled with inhomoge-
neous particles to that of the reference system of “clean” multi-
inhomogeneities in the substrafg). The interfaces between thelayered matrix under the same interfacial and boundary condi-
substrate and particles and between adjacent layers of the siiihs. Given the reference GE, of which an efficient evaluation
strate are perfectly bonded. A unit point force is applied to thécheme has been developed recef@lly, the defect GRG* can be
body along one of the axes, for example, alongptiedirection, obtained by solving this equation.
at X. In addition, a homogeneous boundary condition is imposed|n the case of embedded particlaC, y, is localized inside the
along the substrate surfag€). The point force and all particles subdomainsD,. Applying the Gauss divergence theorem, the
are remote to each other. Thus, the particles are treated as paiiffove Dyson’s Eq(6) can be reduced to
like (in size. Meanwhile, they may hold arbitrary shape, which

gzlr:jsplay a significant role in determining the induced elastic G*i(X.X)=Gpi(X,X)+E f ;kj(x1X’)
. ~ Jo,
The constitutive law of the multilayered substrétefore filling

particles is given by AC}E;I(X’)Gsi,[(x’,x)dV(x’), (8a)
ai; (%) = Cjji (X) & (X), (1) Taking derivative of Eq(8a) with respect tox yields

where ogy; is the stress component, (=1/2(u; ;+u;;)) is the . N .

infinitesimal strain componenG;, is the elastic stiffness com- pi,l(xrx):Gpi,I(x|X)+2 ok, (X,x")

ponent, and the_ repeated subscrip_ts_ i_mply the_ conve_ntional sum- " JPa

mation over their range. In the definition ef u is the displace- AC}EQ(X’)Gsi,,t(x’,x)dV(x’). (8b)

ment vector, and the comma in the subscript indicates the partial
derivative with respect to the coordinate that follows. The consti- In the above derivation from Eqél) to (8), we have not used
tutive law of the multilayered substrate after filling particles ighe property of point-likeness of the particles. The last &8a,0
given by are applicable to embedded particles of any size, shape, and elas-
. tic property. In the following, we shall analytically reduce the
ij(X) = Cfj (X) & (X), (2) integral by realizing the property of point-likeness of the particles.
with Although in Egs.(8a,b the distance betweeK and anyx’ is
- large, it is generally invalid to tak@j;ij(X,x’) out of the integral
Cijia (%) xeDy by approximating it as constant within each particle. It may vary
, ©) significantly inside a particle—it may be singular if the particle
Cij(x) xeQ— E D, has an asterisk shape, for example. However, one may expect that
n the field at the location of a particle is regular if that particle is
the nth particle. to write the defect GFG;M(X,X) as follows:
The equilibrium of the multilayered substrate filled with par- _
ticles rec(:uires g P G k(XX =G (X, X)sghi(X), 9)
[Cli ()G (X, X)] j+ 8,1 6(x—X) =0, @) whereG}{ M (X,x) is the (les9 defect GF in the presence of all
’ ' but thenth particles, and;g;])jk(x) is a forth-rank tensor that trans-
forms G} {, " (X,x) into G, ;(X,x) upon the inclusion of theth

Cla(x)=

whereGp;(X,x) is theith displacement componentxatiue to the
unit point force applied along theth direction atX, dx—X) is  haicle. It is a function of location, different for particles of
the Dirac delta function, andy; is the Kronecker delta function. giterent shape and material property. Substituting @in Egs.
The homogeneous boundary condition is given by (8a,h yields

Gi(X,x)=0 or X5;(X,x)nj(x)=0, xedQ, (5)

on each component, where X7;(X,X)=Cf(X)Gpy (X,X).
Thus,Gj;(X,x) andX;;(X,x) are, respectively, the Green’s dis-

GE(X,X)=Gpi( X, )+ X, f G (XX )sgili(x")
n Dn

placement and stress that satisfy EG®. and (5). Through the ACIRL(X)Ggir(X", X)dV(X'), (108)
text, indicesp, g, s, andt are used to indicate a component of the

source pointX (i.e., the first variable of the GFsand indicesg, G* (X, X) =G, |(X,X)+ f G*mM(X,x" st (x")

h, i, j, k, andl to indicate a component of the field point i.e., pLt i 2 b, o anik

the second variable of the GFdndicesm and n are used to (M) /o . ,
number the particles. ACjked(X") G (X", x)dV(X"). (100)
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If both X andx are remote to all particles, Eq&.0a,b can be Applying Eqg. (16) of the mth particle in the above equation and

reduced to rearranging yield
G;i(x,x)=epi(x,x)+2 Ghi (XXM T G (XM %), GET™ (X X™M) =Gy (X, x<m>)+n;m Grin"
(11a)
X (XXM ThsGsi (XM ™). (18)
pi (X X)=Gpi (X, XHZ Ghan" (XXM TR Gsiie(x™,x),  Equation(18) offersN equations wittN unknownsG:{," . Thus,

(11b) provided thatG and T are known, the above system of equa-
_ tions can be solved for a}{ "

with In summary, given the reference QF,(and its derivativesof

J, the multilayered matrix in Fig. (b), one may first solve Eq16)

TN —

o M (x)ACM (x)dV(X), (12) for M and consequently (" of each individual particle. Then,

Sghkj jkst

Eq. (18) is solved forG}{ " of all particles. Finally, Eqs(11a,b)
wherex(™ represents the location of thigh particle and may be are taken to comput&g; . between anyx andx remote to all
chosen arbitrarily inside the part|cle with minimal effect on th@articles. Often the derivatives @7; and Gy  with respect to
final solution. Thus, g|ve|G*( M(X,xM) and T(hst for all par- source coordinat¥, i.e.,Gy; , ande kq» are desired. They are
ticles, the defect GFG; (X, X) can be evaluated by using Eqsthe Green's fields due to & force dipole. Their solution procedure
(11a,b. is very similar to the preceding one f@;; and Gy; . For the

In order to findT{})y,, we consider the multilayered matrix with Sake of brevity, it is not repeated here.
only the nth particle. Since the above derivation applies to the

special case, we have
3 Application to Eigenstrain/Eigenstress Problem

Often embedded particlesi.e., defects exhibit thermal-
expansion/lattice-constant mismatch as well as elastic mismatch

G;‘(v'n)(x'x)zepi,l(X,X)JrJ' GhR(X,x")

ClRL(X")Gi (X, )dV(X'), (13) Wwith the matrix. The elastic mismatch has been accounted for
J above by developing the defect GF based on the continuum Dys-
;J(?()(X X)=Gpgn(X, x)sgh]k( ). (14) on’s equation. The thermal-expansion/lattice-constant mismatch

o , may be modeled as eigenstrain within the particles. Such particles
Substituting Eq(14) in Eq. (13) and approximatings,1(X,X")  with both elastic and eigenstrain mismatches are termed inhomo-

as constant fok’ e D, yield geneous inclusiong3]. The constitutive law of the layered solid
embedded with inhomogeneous inclusions is given by
Gpan(XX)Sgii(X) =Gy (X.xX) + Gy (X X(m)f (X" 7ij(X)=Cl (0 (e1(X) — ey (X)), (19)
Ac(kst(x )G (X X)AV(X'). (15) with C,Jk,(x) given by Eq.(3) and eigenstrain field given by
Settingx e D, and eliminatingG ,q n(X,x) result in . el (%) xe Dy
Shi(X) = 8g; S + f SghiX Y ACHL(X) G (X' X)dV(X). T 0 xeo 200 -

n

(16) Within the defect GF formulation, we can derive tfeguilib-
ium) displacement field induced by the inhomogeneous inclu-

The above integral equation can be used to numerically solve bns in the multilayered structure 442],

the s tensor(as a function of locatiom). To do so, the domaib,,
is discretized into a number of elements. The flegﬂf,,(x) is

approximated by interpolating the nodal values of each element. UP(X):En: o, Gy (XX () dV(x), (21)
Substituting the approximated field in Eg.6), and assigning to

be the location of each node, a closed set of algebraic equationa/fsere G, ;(X,x) is the defect GF of the multilayered structure

obtained. It can be solved for the nodal valuessgf, . Finally, including the inhomogeneities as described in the previous sec-
the nodal values of(7); are surrendered in EG12) for approxi- tion, andoj)(=Cfjjep) is the eigenstress. If the eigenstress is
mate evaluation Owgrpst uniform within each particle, E¢21) is reduced to

In order to flndG*( AM(X,x™M), we set onlyX to be remote to o o
all particles anc to be atx(™ location of themth particle in Eq. Up(X)= E Grl i (XXM SR o™ (22)
(10b). It results in

_ with
Grgn™ XX ™) s (X ™) =Gy (X X ™)
- St f sifa00dV(x). (23)
_,,_Z G’,;é,hm(x1X(”))T§;rﬂw)ersi,n J o, ij
n=m

P The S tensor is essentially the Eshelby’s tend@&}. Taking de-
X (M x™) +GA ™ (X x™) rivative of Eq.(22) with respect taX and applying the definition
of strain, the induced strain is obtained as
Xf h]k(x ) B 0
Dm £ pg( X) = E (GELMX XM+ GE V(X XM) S o™ .
JkSt(X )GSI It(x X(m))dV(X ) (17) (24)
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Fig. 2 A Si/Ge superlattice with (a) 3 cubic Ge-QDs and (b)
11X11 semispherical QDs 1

4 Numerical Examples -2
In this section, we apply the previous theory to solve the prok

A\

-

lem of Ge-QDs in a semiconductor superlattice with alternatin
Si/Ge layers on a half-space Si substrate. The problem holi _3 /f/m\\ ////fﬂ\ /@\ /frﬁ\\\\
strong technological interest owing to its potential application tc -3 -2 -1 0 1
novel nanodeviceg?2]. The superlattice consists of five Si layers
and five Ge layers. The layers have the same thickrie®&nth
materials are cubic anisotropic. The elastic constants for Si 1S

e . . .
= — = 1§. 4 Contour plot of the normalized hydrostatic strain €k ON
C1=165.8, C1,=63.9 and Cy=79.6, and for Ge areCy the top surface in the case of 11  X11 array of semispherical QDs

=128.5, C1,=48.3, C44,=66.8 (GPa), in their crystallographic a5 shown in Fig. 2 (b). The magnitude of the contours can be
base axed,15]. The layers are aligned with their crystallographigead from the next Fig. 5.

orientations, respectively, parallel to the global axes,X,,Xs3).

The Ge-QDs hold a hydrostatic eigenstrain of magnitude equal to

0.04, i.e.ep=¢"8,, ande®=0.04, relative to the Si matrix. Two

examples are considered. In the first example, three cubic Ge-QDs3 0 ) o

are buried in the middle plane of the first Si layer, as shown in Figijt/&"V, whereV is the volume of a QD, are plotted in Fig. 3.

2(a). They are aligned in the,;-direction and separated in a dis-It can be seen that the finite-size solution converges toward the

tance of 0.5. In the second example, a square array ok11 present solution of point-like QDs as the size decreases. The con-

semispherical Ge-QDs are embedded at the bottom of the firstvsfgence has demonstrated the validity of the present formulation.

layer—right above the interface, as shown in Fith)2The array ~ In the second exampléFig. 2(b)), the induced field of hydro-

is aligned with the globak,; andx,-axes. The distance betweenStatic straine,(=e1;+ &2+ £39) is evaluated in a square area on

the centers of nearest neighbord.ighe reference GR; of the the top surface. It is normalized by t3/2°V, and plotted in

multilayered substrate is evaluated by using the efficient sche@@ntour in Fig. 4. The variation along the diagonal line from

recently developed by Yang and Pg. (—3,—3) to (3,3 is also plotted in Fig. 5. It can be seen that a

In the first exampldFig. 2(a)), the induced strain is evaluatedminimum hydrostatic strain occurs above each QD. In between

along (x;,0,0) on the top surface. The corresponding solution @fvery four adjacent QDs, a maximum hydrostatic strain occurs.

finite-sized QDs is also obtained for comparison by using the BEhe average magnitude efy increases away from the central QD

method,[13]. The nonzero components of the normalized straifr) this case. The solution of this example ofX111 QDs in a
ten-layer superlattice on a semi-infinite substrate has demon-
strated the efficiency of the present formulation.

x/t

4.5 1 P trreaaseass
31 0.4
a 1.5 ]
T ] 0.3 1
N ] ]
& 0 —-BE: a=0.3t N
] - - BE: a=0.1t 2 ]
3 —— DGF: point-like w 0.2
-1.5 1 q§ ]
- ) 4
33— 0.1 1
-1 -0.5 0 0.5 1 ]
X/t O-.‘.......‘..................
-3 -2 -1 0 1 2 3
Fig. 3 \Variation of (nonzero) normalized strain components /
x /t

along the line, (x4, x,=0, x3=0) on the top surface induced by
the three buried cubic QDs as shown in Fig. 2 (a). The solid

lines indicate the present solution of point-like QDs, and the
dashed lines with symbols indicate the BE solution of finite-
size QDs with the size as indicated.

Journal of Applied Mechanics

Fig. 5 Diagonal variation of the normalized hydrostatic strain
g4 from (—3,—3) to (3,3) in Fig. 4, showing the magnitude and
maximum and minimum locations
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5 Conclusion [3] {\(/Ijﬁra, T., 1987 Micromechanics of Defects in Soliddlartinus Nijhoff, Bos-
We have developed a defect GF for multiple point-like inhomo- [4] Mindiin, R. D., 1936, “Force at a Point in the Interior of a Semi-Infinite

geneities in a multilayered solid within the theory of linear aniso- EO"d’”:’hé’s'aa(’imﬂerd?mﬁ 7, pp. 195—2’\;32-h - ¢ Elasiic

tropic elasticity. The defect GF is related to the reference GF of) Love, A £ [l 1944/ Treatise on the Mathematical Theory of Elasticity

the multilayered matrix through the continuum Dyson’s equation.(g) Ting, T. C. T., 1996 Anisotropic Elasticity Oxford University Press, Oxford,

Since the reference GF is available, the defect GF can be solved. uk.

In the present case of point-like inhomogeneities, the continuuni?] Pan, E., and Yuan, F. G., 2000, “Three-Dimensional Green's Functions in

Dyson’s equation is analytically reduced, and the final numerical é;:mg’p'a"ng'g‘:;e”Ea'Séog‘zt- fﬁgy;ﬁ;@%ﬁa”l”éi?n?s—giﬁgﬁons o Aniso

treatment involves the solution of a fourth-rank tensor of each tmpigc’ Trimaterials.” Int. J. Solids StrUC(39, pp. 2235-2255.

individual particle and a matrix inversion on the order of the nUM- 9] vang, B., and Pan, E., 2002, “Efficient Evaluation of Three-Dimensional

ber of inhomogeneities. The fourth-rank tensor reserves the infor-  Green's Functions in Anisotropic Elastostatic Multilayered Composites,” Eng.

mation of particle shape while the particles are treated as point- Anal. Boundary Elem.26, pp. 355-366. i ,

like in size—the size effect is neglected. Furthermore, the defe 0] Pan, E., and_Yang, B., 2001, FIastostaﬂc Fields in an Anisotropic Substrate

. . . X 7 . . due to a Buried Quantum Dot,” J. Appl. Phy80, pp. 6190-6196.

GF is a_pplleo_l to derive the_ f_leld 'nduced_by mU“lP'e mhomOge'[ll] Yang, B., and Pan, E., 2003, “Elastic Fields of Quantum Dots in Multilayered

neous inclusions that exhibit both elastic and eigenstrain mis-  semiconductors: A Novel Green’s Function Method,” ASME J. Appl. Mech.,

matches with matrix. Numerical results are reported for the arrays 70, pp. 161-168.

of cubic and semispherical Ge-QDs in a Si/Ge superlattice. TH@&2l Yang, B., and Tewary, V. K., 2003, “Continuum Dyson's Equation and Defect

. e . Green’s Function in a Heterogeneous Anisotropic Solid,” Mech. Res. Com-
numerical results have demonstrated the validity and efficiency of " 31 "o5 "405_414.

the present formulation. [13] Yang, B., and Pan, E., 2002, “Elastic Analysis of an Inhomogeneous Quantum
Dot in Multilayered Semiconductors Using a Boundary Element Method,” J.
Appl. Phys.,92, pp. 3084-3088.
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The Maximal Lyapunov Exponent
k.m.Liew ¥ for a Three-Dimensional

Fellow ASME, =
e-mail: mkmliew@ntu.edu.sg Sto c h astl c Svste m
X. B. Liu _ _ _ . - : .
This paper examines the almost-sure asymptotic stability condition of a linear multipli-
Center for Advanced Numerical Engineering cative stochastic system, which is a linear part of a co-dimension two-bifurcation system
Simulations, that is on a three-dimensional central manifold and subjected to parametric excitation by
School of Mechanical and Production an ergodic real noise. The excitation is assumed to be an integrable function of an
Engineering, n-dimensional Ornstein-Uhlenbeck vector process which is the output of a linear filter
Nanyang Technological University, system, while both the detalle_d balance condition and the strong mixing condition are
Nanyang Avenue, removed. Through a perturbation method and the spectrum representations of the Fokker
Singapore 639798 Planck operator and its adjoint operator of the linear filter system, the explicit asymptotic
expressions of the maximal Lyapunov exponent for three case studies, in which different
forms of the coefficient matrix included in the noise excitation term are assumed, are
obtained.[DOI: 10.1115/1.1782648
1 Introduction tic system were also investigated by Namachchivaya and Roessel

The investigation of the maximal Lyapunov exponent for dy[%]et?]r;% Doyle and Namachchivay8] by using the perturbation

”"’?m'ca' systems whlch'are ex_(:lted by stochastic Processes IS thEor a linear multiplicative stochastic system, which was a linear
primary research focus in the fields of random dynamical syste ?rt of a co-dimension two-bifurcation system that was driven by
and stochastic bifurcation. This is mainly attributed to the fact th parametric excitation of a real noise with a small intensity

for a linear stochastic system, the Lyapunov exponent is ana amachchivaya and Talw#®] obtained an analytical expression

gous to the real part of the eigenvalue, and this Lyapunov EXPS maximal Lyapunov exponent for the case where a diagonal

nent characterizes the exponential rate of change of the respofsg.i involved in the real noise excitation term. The co-
of a random system. Therefore, the sample or the almost-s%r )

tability of the stationar lution of a random dvnamical probl ifhension two-bifurcation system considered was on a three-
stability ot the stationary solution of a random dynamical probleftyensional central manifold and possesses one zero eigenvalue
depends on the sign of the maximal Lyapunov exponent.

A neral method for t luation of the maxim nd a pair of pure imaginary eigenvalues, meanwhile the excita-
genera ethod lor exact evaluation o € maximg;,, \yas assumed to be a real noise that satisfied the strong mixing

) S L alo%hndition. The stochastic averaging method was employed to de-
was first presented by Khasminskil]. The main idea for this rive a set of approximated Ito equations for thed,z) process

method is such that by projecting the system in sgitento the e was the first approximation of the original linear multipli-
surface of am-dimensional unit sphere, on which the stochastigative stochastic system.
differential equation for the variablg=log|x|| can be expressed " rq the case that the stochastic excitation was given as the first
explicitly in terms of then—1 independent angle processesy,mnanent of an output of a linear filter system and conformed to
which constitute themselves a<{ 1)-d|men5|qnal diffusion pro- e detailed balance conditiofo], Liu and Liew[11,12] obtained
cess, the maximal Lyapunov exponent for this system can thenBg 4y mptotical expansions of the top Lyapunov exponents. In
obtained. This method was then successfully employed by MitCflgjr \orks, a model of enhanced generality was considered, in
ell and Kozin[2], Nishioka[3], and Ariaratnam and Xig4] and  \hich they removed the strong mixing condition which is the
Xie [5] to a two-dimensional Ito system. Among the Works reprarequisite of the stochastic averaging method. Instead the spec-
portecrzl].to date, limited results pertalnl to the cases of ergodic a{')?gem representation of the Fokker Planck operator of the linear
non\r/]v m:} noise procgsses.l In Arnold et fJ, a Derturbaf'on filter system,[10,13, were employed in the construction of the
method for asymptotic analysis was presented and employed,Q mntotic expansions of the stationary probability density func-
construct the asymptotic expansion of the maximal Lyapunov e)5ns and the top Lyapunov exponents for the relevant systems.
ponent of a two-dimensional system under a real noise excitation-the present study attempts to obtain an asymptotic expansion
To keep the solution tractable, the infinitesimal generator assogi the maximal Lyapunov exponent for the linear multiplicative
ated with the noise process was assumed to be a self-adjoint §lcpastic system, which is a further extension of the work in Liu
liptic diffusion operator with an isolated simple zero eigenvalue, g | jew[11,12. For the excitation, both the detailed balance
Utilizing the method of stochastic averaging, the asymptotiG,gition and the strong mixing condition are removed and the
expansions for the maximal Lyapunov exponents for two coupled citation itself is assumed to be an integrable function of the
oscillators with a real noise were obtained by Ariaratnam and Xi¢ jimensional Ornstein-Uhlenbeck process. It is well known that
[4]. Instead of the stochastic averaging _metho_d, the_ same sys asymptotic expression of the top Lyapunov exponent depends
and subsequently a more general four-dimensional linear stochgg-the form of matrix, which is included in the noise excitation
term. In this paper, a general form of matixis considered and
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MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- furthermore, for the special cases of three different maties

CHANICS. Manuscript received by the ASME Applied Mechanics Division, OctobeMNiCh th_e cqmplexny of th_e SmgUla_r points of a one'd|men5|0nal_

2, 2003; final revision, April 13, 2004. Associate Editor: N. Sri Namachchivaygdhase diffusion process arises, we investigate the phenomena aris-

Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMe'ﬁ»ifg from these singular points and discuss in detail our findings.

gg,"]ournal of Appheg Mechamcs,_Department of Mechanical and Environmental This paper is organized as follows. Section 2 details the formu-
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5070, and will be accepted until four months after final publication of the paper its gtion of the problem. In Section 3, we recall the research results
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[15] concerning the spectrum representation of the Fokker Planck  x, =Rcosfsing, x,=Rcosfcos¢p, Xs=Rsiné
operator and its adjoint of the linear filter system. In Sections 4

and 5, the asymptotical analysis is applied to obtain the expansion p=INR, ¢(1)=owt+e(t)
of the stationary probabilistic density function. The top Lyapunov
exponents for three cases, in which the singularity of the diffusion T
- . : ; i Oe =, ¢, ¢el0,2m]
coefficient arises, are evaluated in Section 6. The conclusions are 2°2
drawn in Section 7. yields a set of equations of the argumentpob, ¢ and the noise
processy, i.e.,

. p=p., 0=0,, ¢=0b, 5

2 Formulation . p=pe $=¢ ®)
Consider a typical deterministic co-dimension two-bifurcatior\?l ere
system which is on a three-dimensional central manifold and pos- p.=e%prt+ef(u)py
sesses one zero-eigenvalue and a pair of pure imaginary eigenval- 5
ues,[16], 0. =e“0r+ef(u)o; (6)
F=pu r +asrz+(ar3+agr?z)+Oo(r,z|* $.=w+ef(u)dy
7= ppZ+ C1r 2= 22+ (Cor2z+¢52%) + O([r,2|%) (1) and
. p2:7510052 07525"120
0=w+0(r,2? . _ _
_ p1=35(f,+f,1)sin20+f ; coS 6+ f,, sin’ @

whereu, and u, are the unfolding parameters, aag, a,, as;,
c1, Cy, C3, andw are real constants. This normalized form arises 0,= %(61— 8,)sin 20
in the classic fluid dynamic stability study of Couette flqdg]. . ) ]
In the vicinity of equilibrium point ¢,z,0)=(0,0wt), via the 01= 3 (fo—fr1)sin 20+ (f,, cos’ 6—f, sir? 6)
transformation ofr =[x2+x3]*2, @ =arctafix,/x;], z=x3, the by=f s +tanof ,, @

model of the linearization of the original systefh), which is
subjected to a stochastic parametric perturbation, is obtained as$,;= [k, +k, cos 2¢+ks sin 2¢], f,,=b35in+by3c0S5¢h

x=Aox— e?Ax+ef(u)Bx (2) f¢1=%[k4+ ks cos 29—k, sin2¢], f,,=bj3c08¢p—Dby3sing
where fa=basing+bgycosg,  f=bss
0 o O 6 0 0 ki=bootbyy, Ko=bgp—byy, Kz=biptby, ky=bip—by.
Ap=| —0 0 0|, A=0 & 0], Since the phase processgand ¢ are independent of the vari-
0 0 0 0 0 o able p, these together with the diffusion process$t), which is
(3) defined in Eqg. (4), form a vector diffusion process
b1y by, biys (6(t),(t),u(t)) on[—m/2,m/2]X[0,2r] X R" of dimension (
L ) !
B=| by by by 2) with the following generator
bs; b bag L¥=Lg+ell+&%3 ®
and the parameters, , have been rescaled such that dJ d d dJ
P W1 M2 Li=Litags, LI=fWag 1w, Li=0y

==, pp=—8°65, d the adici
. . . _ . and the adjoint operator.
f(u) is a scalar stochastic function aft), which is a real noise J P

and defined as L.=Lo+el,+e%L,
0(t) = J J J
HD=AUD I O el Lt a2 b O
whereA=(a;)yxn; @; are real or complex numberg/(t) is an
n-dimensional zero-mean Gaussian white noise WEEW(t L= 9 p
+7)W()) =V (1), V=(Vj)nxn iS @ Symmetric, non-negative de- TG
fined constant matrix, and=(uq,u,, ... ,un)T is an Ornstein-

where LY and L, are, respectively, the differential generator
al%ckward Kolmogorov operatpand the Fokker-Planck operator
for the diffusion processi(t), which are defined in Eq(10),
respectively.

Uhlenbeck vector process, which is in fact a zero-mean station
Gaussian diffusion process. The matAxis assumed to have a
complete set of eigenvalues,, ... ,x, along with the corre-
sponding set of eigenvectoss, ... .,e,, which means thak;
#a;-(i#]). Furthermore, as in Liberzon and Brockgib], the

following two conditions are assumed in the present paper, i..3 The Spectral Analysis for a Linear Filter System
(a) each eigenvalue; is assumed to possess a negative real |y this section, we mainly recall the existing results for the

part, i.e. R(a)<0(i=12,...n). _  spectral analysis of an-dimensional linear filter system.
(b) (A,V) is a controllable pair, i.e., rank(AV, . .. ALY For System(4), the stationary probability density function of
=n, whereV=VVT, u(t) is

In fact the first condition ensures that the _equilibrium solution, p(u)=N ex — %UTKalu], N:(Zw)’”’z[detKu]”z
u=0, for the relevant deterministic system is Lyapunov asymp-

totically stable. whereN is the normalization constant, amd,=(u(t)(u(t))") is
The following spherical polar transformation from,(X,,X3) the covariance matrix, which is the solution of the steady-state
to (p,6,¢) variance equation
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AK K AT+V=0. LEvy (W=N"g5 (), Lah(W=Agp(w.  (11)
U=(e.,&, ...,&) is assumed to be the relevant eigenmatrix of
A, which leads tdd=U"*AU=diad a;,a,, . . . ,a].

In the present formulation, for the-dimensional Ornstein- . .
Uhlenbeck process, the assumption of the detailed balance codbitan be verified that the spectrum of the operatqrandLy are

tion is removed. discrete and they possess the same set of eigenvalues.

For the diffusion process(t), the differential generatqback- For the case of a one-dimensional Ornstein-Uhlenbeck process,
ward Kolmogorov operatgiL} and its adjoint, the Fokker-Planck the results of the spectral representation of the transition probabil-
operator,L , are, respectively, given by ity density function have been presented 14| (p. 333. For the

9 1 72 P 1 72 system considered in that reference, the drift and diffusion param-
Ly :a”uja_ui + Evijm, L,=— a_ui[a‘juj]+ Evijm eters were selected as(x)=—x, o?(x)=1, i.e.,a;;=—1, vyy

=1. The differential generator and the relevant backward Kol-

10 . .
o o _( ) ~ mogonov equation can be written as
where the repeated indices indicate the usual summation. Eigen-
value problems corresponding to the two operators arise in the
form

2
X —t = —
IX 2&)(2

p(y,0x)=8(x—Yy).

d
g 1 - -
5Py, 7X) (12)

}p(y,ﬂx), =0, X,ye(—o,+©)

Solving Eq.(12) by the direct integration, we obtain 1 om
*(U)=G(V)= —1)mex;{—vTCv
eV (X2+y?)e 2 oxye " il (V)= 2 IWGTOWYZ L . gWL "
X)) = expg — ex .
PY= e 1—ev |™ier 1
(13) Xexpg — EVTCV

The associated eigenfunctions for the backward Kolmogonov ogpere
erator satisfy
v=U"1u, C=UTK 'U=K,! w=UK;u.
1de do . . o
E—z—xd—x=—)\¢>(x), Xe (—%,2) It ha_s_ also been_ shown |E13]_that if system(4) satisfies the
dx condition of detailed balance, i.e.,

and 2are subject to the integrability  conditions p(u’,r|u,0)ps(u)=p(eu,|eu’,0)ps(u’), Ps(U)=ps eu)
[7.e X To(x)]?dx<. It is easy for us to check that the solu-

tions to Eq.(12) can be selected as the classical Hermite polynd{heree=diages e, . .. n), &;=1(e;=—1) for an everiodd
mials variableu,, corresponding to the same eigenvalyg, #,(u) is

the eigenfunction ot ,, which can be expressed as

m

J
Yinl(£0) = (W) (1) = (— 1) "
IW .

Ha(0) = (— 1Pe— (e )
" dx" m #o(U)
—i
: : : ' " (15)
with the relevant eigenvalues,= —n, respectively. We can sub- L L L .
sequently obtain the spectral representation for the transition prob#o(u) = ¥o(eu)=Nexd — 3 uTKJ u]=Nexg — 3V'K, V]
ability density function as
=Nexd — 2w'K,w].

p(y’T|X):efy22 e "H,(X)H,(Y) 7y (14) In fact, #,(u) can also be expressed as
n=0
n
Whereﬂ-;lzl\/ﬁznn!J. Based on that presented[ib4] (p. 333, Ym(u)= 1//0(U)H (ui_lu)mi (16)
i1

by virtue of a classical formula for the sum of the series, we find
that Eq.(14) reduces to Eq(13).

For the n-dimensional Ornstein-Uhlenbeck process, accordi
to [13], the solutions to the associated eigenvalue problem of t
backward Kolmogorov operatdr} possess two characteristics
namely

hereui_l is theith row vector ofU™1, which is the inverse of
rﬁe matrixU.

In this work, the condition of detailed balance is removed and
'Eq. (15) and Eq.(16) are thus not tenable. Therefore additional
results for the solutions to the second equation in @8 are
(i) Each of the eigenvalues can be expressed gsmia; required here.

+:-+mya,, where m=(mg;,m,,...m,); m=mg+m, From [15], we know that under the conditions ¢ and (b)

+...+m,, m(i=1,2,...n) are non-negative integers. defined earlier, corresponding to each eigenvalye the associ-
(i) The corresponding eigenfunction is found to be an elemeated eigenfunction/,(u) of the Fokker Planck operatadr,, can

of the set of multivariate Hermite polynomials, i.e., be expressed as
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Ym(U) = ‘”0(”)1]1 (ufwy™

WhereuiT is theith row vector ofU”, which is the transpose of the

matrix U. With this result, it can easily be checked that if the
system matrixA is a real and symmetrical, then without the con-

dition of detailed balance, E@16) is also tenable. ~
As in Caughe){17], we introduce a new operattr,

Lythn(W) = [ hro(W) ]~ Lo () Ph ()
(W) =[ho(U)] H(U)

which is the adjoint operator df} with respect to the following
inner product

(rm(u), Gin(u)e= fRnwo<u)~wm<u>¢:1(u>du=E(%(u)%(u))
the expeclation ofrpm(u)wﬁ,(u), from which, one can easily
check thaty,(u) and 7,(u) are bi-orthogonal normal, i.e.,

1,
0, ml#+m2.

ml=m2

<T/Jm1( ), ina(U))e= Smimo= :

Then the transition probability density of the procesgt) can be
written as

©

>

m;=0,-",

7=0.

a7

P(U, 7]u’) = go(u) eXH N\ 7] (W) (1),

My

Via Eq. (17), we obtain the covariance matrix,(7)

Ru(7)=f duf du’[u"u’p(u,r{u")ps(u”)]
R" R"

2 (Ul (U g (W) Xt A7)

m;=0,--,m,

%

sf(w)=2f0 R(7)cog wr)dr=— :OZ :O(f(u),Tpm(u»E
* Am
x(f(u),z,bm(u»E)\zm 7 (18)
‘I)f(w)=zf0 Ri(7)sin(wr)dr=— 02 o <f(U),~1//m(U)>E
=0 =
X {f * i
()W

4 Asymptotic Analysis

Corresponding to the Fokker Planck operatqr, defined in
Eq. (9), the invariant probability density functiop, (6, ¢,u) sat-
isfies the following FPK equation:

Lspez(LO+8Ll+82|—2)ps(01¢1u):0' (19)
In the present papen(t) is assumed to be an ergodic Markov

process orR", and according to the multiplicative ergodic theo-
rem of Oseledec, the top Lyapunov exponent for systgnis

2m /2
T o T I Ry

(20)

For the present work, the assumptier€1 holds and we do not
need the exact solutiop,( 6, ¢,u) of the FPK equation. A formal
expansion of

ps(9!¢lu):p0(01¢1u)+8p1(0!¢!u)+'”+8NpN(0v¢!u)+'”

(21)
can be constructed such that
Lopo=0 (22)
Lop1=—L1Po (23)
Lop2=—Lip1—L2po, (24)

from which we obtain the spectral density function matrices, i.eand hence the top Lyapunov exponent for sys{jymay possess

©

Su(w)ZZJ Ry(7)cod wT)dr

0

%

D (W)l vhw)e

my=0,--.m,

2\m
A2+ w?
m

D (w) :ijRu(T)Sir(wT)dT
0

%

>

my=0,-,m,

_ : . 2w
[T b W

n

For a scalar stochastic functidiu), which is integrable function
of u in the sense thafga[ f(u)]?#o(u)du< + and

E[f(u)]:JRnf(u)zpo(u)du:o

the covariance and the spectral density functionffar) are ob-
tained as

Rf(T)=LndULHdU'[f(U)f(U’)p(U.T|U’)|Os(u')]

 (HO, (W) F (W), Y (W) e XN

m;=0,-,m,
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an asymptotic expansion as follows:
(Pe P)=(po,Po) +&[(p1,Po) *+{p0,P1) ]+ & (p2.Po)

+{p1,P1)+{pPo,P2) ]+

of which the proof of the validity is required.
To show that Eq(25) is correct, as in6], we construct an
adjoint expansion

L¥F,=p,— (fotefi+-+eNfy)+eN " HLIFy+LIFy-1)

(26)

(25)

+eN*T2(LEFY)
with
F.(0,¢,u)=Fq(0,d,u)+eF,(60,p,u)+---+"Fy(6,d,u)

wherefgy, fqi, ... ,fy are functions which do not depend on the
variablesé and ¢, but only onu(t) e R", which are chosen such
that the sequence of the following problems obtained from Eq.
(26)

LSFO:Po_fof I-6":1:131_ fl_LI Fo
LS Fo=po—f,— L; FO_LI Fi
LSF:;: _f3_L§F1_LI F2

LgFNTLIFN 1 FL3Fy_o=—1y

is solvable.
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For a fixed N, we introduce p{N)=py+ep;+&2p,+ .
+¢&Npy, as the truncated density function pf, andf(N)—(f (9.0%)= d¢ d0 du[q q]

+efi+ ... +&Nfy). Ase—0, it is easy to verify that the differ-
ence betweerps and pSN) is of the order ofeN*"1, and is ex-
pressed asN*1(5p).

With the foregoing preparation, one can arrive at the following
equation: (31)

:f d¢ def du[pLig*]1=0, Vg*eKer(Ly).
0 — 72

(Pe Pe) = (Pe PeIn=— N U(LEFy+ L3 Fyoq,p.) — (LEFy To examine in detail eactf* e Ker(L§), we expand it as a series
N in terms of the eigenfunctiong’(u) of L} , i.e.,
+L3Fy_ 1, PMY) +(F,  Lipnt Lopn-1)

0

—(fY, 8= (p1.Pn) = (p2.Pn-1)} oW X ar0.8) (W), (32)
my=0,--,m,=
— &N H(L3Fy,p.) +(F, ,Lopy)
(L2Fn P+ 2N From Eq.(31), we know that each coefficient satisfies the follow-
—(L3Fn,pMY) = (o2, P} (27)  ing equation:
where 9
@ ==+ N |dn(0, ) =
(e sPIN=(P0,P0) + &[(p1,P0) + (po.P1) 1+ (p2,Po) % ;
+(p1,P)+{po,P2) 1+ -+ eN[(ps,Pn_2) The conditionw>0 along with the assumption that the real part of
each eigenvalué.,, except forhg=0, to which the associated
+(p1,Pn-1) T (Po.Pn)]- eigenfunctiony§ (U)=1, is less than zero leads to the fact that in
To furnish expressiof27), the following relationship is employed Eqg. (32) there exists only one non-zero periodic coefficient, i.e.,
L.pV=eN*Lopy_1+Lipy]+eN"2Lopy. %6, )= [ g5 (6), m=0
m\ % -
In addition, in the present worl,=0. According to Theorem 3.1 0 m#0.
in Section 3 off6], supposeN=0 is fixed, Py, P1, P2, ---Pn_ From the above, we can conclude that each element in the space

andF4, F,, ... Fy are such that the inner products on the righ

Ker(L2 t t le function of th
side of Eq.(27) are well defined, and er(L3) is an arbitrary integrable function of the variabte

Hence for the present problem, the solvability condit{@6) re-

SULYFy+LEFy_1|<Ci<o, sugLiFy|<C,<w. duces to
¢é,u é,u
Then the asymptotic expansi@B5) for the top Lyapunov expo- fo d‘ﬁfRnduq(er‘ﬁ'”):O- (33)

nent of systen(5) is tenable.
In Eq. (22), all the functionsp,(6,®,u), po(6,4,u), ... are

required to be 2-periodic in variableg, i.e., 5 Expansion of Stationary Probability Density
Function
P.(0,4,U)=p.(0,4+2m,u) To obtain the perturbation solutig21) to the FPK Eq(19), a
Po(6,,u)=po(0,¢+2,u) (28) study on the recurrence Eq®2)—(24) will be conducted in the
e ' ' subsequent context.
P(0,4,U)=pa(6,¢+2mu),- - 5.1 FPK Equation of Order £°. Since the set of the eigen-
The normalization condition of the probabilistic density functiodunctionsy,(u) of L, forms a complete set, then for EQ2), the
p.(0,¢,u) then yields solutionpy( 8, ¢,u) is sought in the form
27 w2 *
f @) f AULPo( 0,4 )] =1 Polb.pu)= > PO (39
0 —ml2 R (29) m;=0,--,m,=
Z“d ml2 o | dulps(6, 6] which leads to the fact that each of the coefficign3( 6, ¢) is,
0 ¢ 2 RN P.(0., respectively, the solution to
27 /2 9 0
:f dde dHJ du[p,(6,¢,u)]1=0, ... . w@ﬂ P (6, ¢) = (35)
0 —7l2 R"

In general, each equation with the fotrgp= g must satisfy the By solving Eq.(35), we know that there exists only one nonzero

following solvability condition, i.e., periodic solution,p{’(9,¢)=p{”(6), which corresponding to
the eigenvalueny=0. Furthermore, via the normalization condi-
(q,9*)=0, Vqg*eKer(L})={g*|Ligq*=0} (30) tion (29), we finally obtain

where(-,-) refers to the general scalar product, which is defined in 1
Eq. (20), andL} is the adjoint operator df,, i.e., Po(0,¢,u)=5—F(6)¢o() (36)
L* wiJr L. whereF(6) is a function ofé yet to be determined by the solv-
"% 9¢ ability condition of Eq.(24).
Then via the definition of the scalar produet-), the solvability 5.2 FPK Equation of Order e. Now we consider Eq(23).
condition can be expressed as Substitution of Eq(36) into the right side 0f23) yields
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f(u)go(u)
L0p1(01¢!u): ( 21/;(_)(

IF(0) [a6, a¢
g {a—;*a—ﬂﬁﬁ)} fWiw= > (FW)GEW)edm(W) (39)

m;=0my,=0,... mp=0

f(u u
= %[M(ﬁ- MSY cos 20+ M2 sin 2¢ Similarly for p;(6, ¢,u)
+M{Y cosp+M P sing] (37) . W
P1(6,0,u) = > P (0,6)dm(u).  (39)
where m;=0m,=0,... m,=0
d . - .
Mo=2(2bas— ki) Ag Ao=d—[F(5’)S|n 20] Substitution of Eqs(3§) .and ((%9) into .Eq. (37 Ief.ads to the fact
0 that each of the coefficients;,’( 6, ¢) is, respectively, governed
(1) (2) 1 by
M7 =—koAp, M37=—ksAy, A;=F(0)+ 3/,
*
M{Y=—basA 1t bgoh sy,  MP'=—bysA o+ bgAy —w % A PD(6, ) = W{M o+ MY cos 25
d d .
1\11:@[':(9)0052 01, A= g [F( 6)sin’ 6]+ F(6)tané. +MP sin 2¢+ MY cosg
In order for the problem to be tractable, the functigmi) (), +M? sin ¢}
which arises in Eq(37), is expressed as a series expansion along
the eigenfunctiong/,(u), i.e., to which the solution is

1
(1) =
27.‘_ pO (0)1 m o

PR (0.4)=1 (40)
S (P ()l Ao+ T A+ TR YA+ TP A, m#0
[
where 27
—f d¢J dufL;p;1+L2po]=0. (42)
0) 11 0 R"
I, T 7 (2bas—ky)
H(n)_{[b32)‘m+ b31w]cosd+[ b\ —bgw]sin ¢} Substitution of Eqs(36) and (41) into Eq. (42) yields
m 2 2
o+ ap
H(lz)_ _ {[b23)\m+b13w]COS¢+[b13)\m—b23w]3in¢} 2w *
mo w’+a?, _f duf Lipidep= E MM =141,
R" 0 my,my, ..., m,=0
@ {[ koAt 2k3w]c0S 2+ [ kah y— 2k, w]sin 26} %
= - 2 2 : + ] (m)y (m)
Ao+ ap, 3 Ia
my,my, ..., my,=0
Finally, by synthesizing the foregoing results, we find that m=0
p1(6,¢,u) takes on the following expression:
1 * where
PO W= 5P (Do + Pl
™ m;=0m,=0, ... m,=0
m#1
X(0,¢)Pm(u) (41) |1=f du[f(u)zpo(u)]=J du[ f(u)ps(u)]=0
R" R"

where p{P(6) is a function to be determined by the solvability
condition of the recurrence equation of ordsr which satisfies
the normalization condition, i.ef;2"p{"(#)d9=0. Therefore by -
evaluating the asymptotic expansion for the maximal Lyapunov |(3m)=f dul f(u) (W) ]1=(f(U), (W),
exponent, we find thalgl)(e) has no contribution to the maximal R
Lyapunov exponent. In addition, eaplﬁﬁ)(a,qﬁ)(mqﬁ 0) contains
the functionF (6), which are to be determined by the solvability

" 2
condition of Eq.(24). |£1m):% J ﬁlpﬁi)d(b}-
5.3 Solvability Condition and FPK Equation. To deter- 0
mine F(6) in Egs.(36) and(41), the solvability condition of Eq.
(24) will be investigated. Since the solvability condition of Eq.
(29) is Then via computation, we know
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other singular points withifi—#/2,7/2] should be investigated a

2m behaviors of such a process at the boundarieg-of- #/2 and
- J dqbf L,p,du
0 R priori.

The details of the definition and classification of singular points

2
=— 331 d_[sinZ(zg)F(e)]_ i[sin(40)F(9)] for one-dimensional diffusion processes can be found in Lin and
877 d¢? do Cai[18], from which we know that the first kind of singular points
q @ is the one at whiclr?(6) vanishes, and the second kind is that at
1 . 1 . which w(6) goes to infinity. With these definitions, we can con-
~ 1657 ga[SIM20F(0) ]+ Zﬁ[s'nz(zg)':(a)] clude that on the intervdl—m/2,m/2], ==+m/2 are the singular
points of the second kind.
1 d 3 d For the singular boundary, (x; and x, represent the left and
- Z%[sir‘me)F(ﬂ)] - §KO@[Sin(2(9)F(0)] right boundaries, respectivelpf the second kind, the diffusion
exponentag, the drift exponeniBs and the character numbeg
1 & are introduced
7E@[(KlC0§(20)72K2Coi20)+K3)F(0)] O.Z(X):O(|X_XS|*015)' aSZOI X—Xg
d /L(X):O(|X7Xs|7ﬁs): Bs=0, X—Xs (47)
— — —[(k1SIN(40) =2k, SiN(26)+4kstan 0))F(6)] - -
16 d¢ o i 2ROODEX AT 2p0 D X
| — - 5 - .
i (43) . o2(X) ' o a2(X)
where
) On [—#/2,7/2], we consider only the situation @f==/2, for the
8,-5,0)|b 1 K } case of¢=—m/2, the result is similar, while foé— 7/2, we obtain
1= ¢ 337 5 K1
2 sing sing 1

oC

tang=
B2=Si(2w)[K3+K3]

cosd - | T
SIV’{E— 0} [E_ 9}
Ko=[ = D133+ b,3gb3, | Pi(w)

Equation(47) then leads to
k1= [(B1g+ b2+ (b by 2]Sy() quation(4?)

«,=0, B,=1, c,=1 (48)
o =[ (b5~ b3 + (b5~ b3 1Si(w) . ! L
which are, respectively, the diffusion, drift exponents, and charac-
r3=[(b13=b3)?+ (baz—b3)*1SH(w) ter value atd=m/2. After comparing these results with the terms

_ in Table 4.53 i 18] (p. 135, which gives a detailed classification
K4 =[(D13+D3y) (2013~ bgy) + (Dot D32) (2b25~ D7) JSi(w) of the singular boundaries of the second !(ind, we know tatis
=Tb2.+ b2 . an entrance 0[—71/2,77/_2] and the result is the same as that for
[bist bze]Si(w) 6=—l2, i.e.,6=—7/2 is another entrance.
Evaluation of the second term of the left side of E88) leads For the diffusion proces$, its scale and speed densities are
to defined, respectively, d§14] (pp. 191-20%

2n 2 ) [ 0,F(6)
—J d¢f du[szo]?f d¢J du —(ﬁ;(: AP (O)] W
0 R" 0 R"

60
61— 0, d[F(0)sin 26]
- (44) E(e)=f[2u<e>a*2<e>]de

Finally, by synthesizing the results of Eqd3) and(44), we find  and in addition, the relevant scale and speed measures are
that the solvability conditior(38) is equivalent to the following

s(0)=exd —E(6)], m(e)Im

A 0 0
standard FPK equation: 3(0)=J (X)X, M(0)=f m(x)d. (49)
220F0 d AF(#)]=0, 6 Tz For Eq.(45), i luti b d
z@[o( VF( )]—E[,u( YF(0)]=0, =37 or Eq.(45), its solution can be represented as
(45) F()=m(6)[C,S(0)+C], 6 (50)
= ‘ el-= =
in which the relevant diffusion coefficient and drift coefficient are, ! 2°2
respectively, whereC, andC are constants, which will be determined by the
1 normality and boundary conditions &t * /2.
a?(0)=|4B,+ 5 B2 Sir? 20+ 2k, oS 20— 4k, COS 20+ 2k 4 For Eq.(45), since the two boundarie$==x/2 are both en-

(46) trances, it is well known tha;=0 ([14] (p. 24D).
Via direct integration
— Ky

M(0)=H2,81+j-—1[32 Sin40+{8(51752)+2K4*ﬁ2

E(6)=—log cosf+ 2logF,(6)+ 3¢, arctanfiF,(6)]
—6ko}sin 20— 4k tané. where

It should be noted that in Eq46), the parameteks is positive. _ 29—
In view of the FPK Eq(45), the process ob(t) can be treated Fi(0)= (k1= B)cos K3

as a diffusion process on intervt7/2,71/2] with the relevant VB2 B(Kk1— K3)—4K2

drift parameteru(6) and the diffusion parameter?(9), respec-

tively. In order to determine the solution to Eg5), the diffusion Fo(60)=(x1— B)COS 20— 2k, COS 20+ B+ k3
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78A+(ﬁ+ﬁ2)+(6K07K1+K374K5) Where
Cl:

VB2 = Bky—13) —4ic§ Bi+B, 8A+B-p; ;1
- ) 1
AV1l- 2BV1-
B=2B1+ i B2, Ke=[D1hs—bohz]Si(w), A=8—3,. = Wi-7 BN1-m
Then the solution to Eq45) is B1+B, _ 8A+'3_'32, mn>1
C [1-Fy(0)]¥ Apm—1  28n—-1
F(6)= [F2(0)1™ (1)  andc can be determined by th lizati diti
2cos6) | 1+F,(6) andC can be determined by the normalization condition.
whereC is a constant which can be determined by the normaliza-5.4 Three Special Cases.From Egs.(51) and (56), we
tion condition ofF(6), i.e., [ ™2,F(6)do=1. know that it is impossible to obtain analytical results for the maxi-

Next, a rather simple casbg,= b3, bys=bas,, which leads to mal Lyapunov exponent. Furthermore, the expressions of maximal
' ' ' Lyapunov exponents depend on the forms of the ma&riXhere-

Ko=Ky=k3=0 fore in this work, three special cases for the coefficient marix

(52) in Eq. (3) are considered, i.e.,
K1=4Ks, K4=2Ksg .
is considered. Then Eg46) is reduced to Case I. Bg=by=0, which leads to
o2(0)=A, SiI? 20+ A, coZ 26 53 by b 0O
=|b b 0 = K= K= = K= Ka= —
1(6)=B, sin 46+ B, sin 26+ B; tan @ B=| P21 D2 ¢ Ko=Ks=Ke=0, k1= K= Ke= Ky,
b3l b32 b33
where (57)
A1=2B, A;=8ks Case Il. hy=by3, byz=hs, and in addition,A;=A,=A,

B,=fB—4xs, B,=8A+4xs— By, Bs=—4xs. which imply that

Since the two boundarie= =2 are both singular points, via 4Si(@)[biz+ba]=2S/(0)[ 2ba—by1—by,]"+ Sy(2w)[ (b2,

the same evaluation as in E¢8), we obtain, for the two bound- _ 2, 4 2
aries,as=2, Bs=1, cs= 1, from which we learn thafi=+/2 are P1)"+ (B1ot b2y)7]- (58)
both entrances. For the case of white noise excitation, wity;=bs=bq4,

To obtain the solution to Ed45), the two cases oA;>A, and b, =b,,, the condition expressiori58) is equivalent tob?,
A1<A,, with the exception thah; = A, which will be studied in  _ 4rp2 +b23]
the following section, should be investigated, respectively. For the = 3 23"

fIrSt CaS&Al>A2, we knOW that Case Il b31: b13, b23: b32, b21: - blz, b33: b22: bll'
1)1 2@ 1 =3) from which we deduce that
E(9)=EY+EY+E
b b b

EW=1log[1—(1— ,)cog 26] o Tz s
B=| —biz b1 baz|, B;=pB,=0. (59)

E@=— 5 arctanfiy1— 7, cos 29 (54) biz bz by

B Al 1— T1 n S ]

In the subsequent procedure, for each case, we will investigate
the stationary solution to the FPK E@5).

(3)— _1 —(1—
E log cos6— log[ 1~ (1~ 71)cos’ 2] For the first case, the associated diffusion and drift coefficients

— 11— rarctanfiy1— 7, cos 2] are, respectively,
A 2 a?(6)=8(B sir? 6+ k, coZ §)cos (60)
_f2_TKs
Osm=g =75 % w(0)= (B~ Kk1)sin 40+ [8A — 2k, — B,]sin 26.

For the other case oA, <A, (7,>1), the corresponding resultsIn order to obtain the solution to E¢45) on the intervall — =/
are 2,m7/2], the diffusion behaviors of the diffusion procegsat the
boundaries and the singular points within the interval should be
investigated a priori. O —/2,7/2], since até==mu/2 o(6)
=u(6)=0, it is easy for us to ascertain that there are no other

E®M=3log[1+ (7,—1)cos 2]

B, . . : .
E@=_ "2 arctafi\/71— 1 cos 26 55) singular points except these two boundaries, which are both the
A Jr—1 e ] (53) singular points of the first kind.
For the singular boundaryg of the first kind, the diffusion
E®=log cosfg— %log[1+ (r;—1)cos 26] exponentas, the drift exponeni3, and the character numbeg

are defined as
+ % Jr,—1 arctafi\/7;— 1 cos ).
Synthesizing Eq(54) and Eq.(55) leads to

UZ(X):O(|X_XS|QS)! as=0, X—Xs

w(X)=0(|x—x4%s), Bs=0, x—Xx (61)
1 9[1—\/1—71 cos 2923 . s s s
—cos , " s o
N 1129, +3/4 2u(X)[Xx=x ]~ 2 (X)X, — X%~ Br
F(8)=C 2B [1+1— 7 cos 20]Hom™ ¢= lim %, ¢, = — lim m(x)[ 2r ] .
exf — n, arctafi /7, — 1 cos 2]] - Xt o(X) X%y o?(X)
—cos -
2B [1+(7,—1)cos 26]% 1 Then at the left boundarg=—m/2, the evaluation in Eq(61)

(56) leadsto
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Reflecting 0= Y
Bound:
(0] oy 6 =0 Entrance
Entran 6=0
nirance - 0 Reflecting
=3 Boundary
(2) (b

Fig. 1 Boundary diffusion behaviors of the intervals

B 4

a|=2, ,8|:1, E_EA

C|:1+

and atfd=m/2, the result is the same.

[—7/2,0] and [0,7/2]

s(#)=sechexd —asirt 0], 6fe ( og}

on (0,7/2] and in the neighborhood a&f=0, for the two cases of

According to[18] (p. 132, we know that a stationary solution o>0 anda<0, respectively,
to a FPK equation does not exist, if each of the two boundaries is

either an exit, or attractively natural bounddANB), or strictly e “secH<s(f)<secH, a>0
natural boundarySNB). From this, we observe that under the Y
condition ofce<B.=1 (s=I or r), the two boundaries are both e “seco=s(¢)=sect, a=<0.

SNBs or ANBs, and therefore the invariant measure does not
ist. In this work, the solution to Eq45) will be investigated only
under the condition ofs>B.=1, i.e., §;— 5,<B,/8, in which

%hen for the scale measu$0,d], the following two inequalities
are tenable:

case the two boundaries are both repulsively natural boundaries 0 0
(RNB9) and the nontrivial stationary solution to E(5) does —°°<j {[e*“]secx}dsz(O,e]sj secxdx<+o, a>0
exist. Since the two boundaries are both RNBs, an additional 0 0 (64)

boundary condition is required to determine the solution. For the

0 0
problem to be tractable, we assume that at the two boundaries, the,,c<J' secxdxs S(O,a]sf {[e”*]secx}dx<+», a<0.
probability current vanishe§18] (pp. 169-179), i.e., 0 0

Gly=— n12=Glp=n2=0
190
296
Then via direct integration, the solution to Ed5) is

For the speed measuk&(0,6], via the definition expressio@9),

we obtain

G=pn(0)F(0)— [a?(0)F(0)]. siné | 1

M(O,a]:f K{exr{axz]}dx: A Erfilsin6],  a>0
0

(65)

C o sin 1
F(6)= g [cosg]VA(26783 IR p— g cos M(O,Q]zf 1 (exax?ljdx= L Erfsing], a=<0
0

+ Ky COF ]UA(~ 288+ Bo)If) (62)

whereC can be determined by the normalization condition.
For the second case, which is under the condition &f4®)
=A, B;=0, and B;=—A, we can obtain

where Erfi and Erf are the error functions.

Equations(64) and (65) tell us that the two measures are both
finite. Thus according to the definition of a reflecting boundary
([14] (pp. 226—-24D), we know thatd=0 is a reflecting boundary
for the two intervals, which is shown in Fig. 1. With this result,

E(0)= 2B, i 04| T T we can conclude that the diffusion process evolveg-em/2,0]
(0)= ——sim g+logcost, fe|— 7,5 and (0,7/2] separately, and the solution to E@5) will be ana-
_ lyzed on the two intervals, respectively.
s(6)=sect exf — a sir? 6] 63) For Eq.(45) which is restricted or{0,7/2], the solution is
1
m(6) =+ cost ex a Sire ] 2\a cosdexdasi? 6], a>0,
" VrEri[a]
2B 2A F(o)= —
a:Tzzl_sz+K_' 2—ﬂJtcosﬂexr[asin2 6], a<0
508 JaEf[V=a] ’ '
For the problem to be tractable, we divide the intefvair/2,7/2]
into two subsets ds-/2,0] and(0,7#/2]. Since the solution prob- T
lem on[—7/2,0] is the same as that of®,7/2], we will only 0e| 0| (66)

investigate the solution problem ¢@,7/2]. On both[ —#/2,0] and
(0,m/2], =0 is not a singular point. To investigate the diffusionWe can then easily verify that dn-=/2,0], the stationary prob-
behavior atd=0, we employ the concepts of the scale and speebility density is of the same expression.

densities. As For the third case, assumptig¢b9) leads to
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Entrance

Entrance

®

Entrance

(@ (©)

[—m/2,—n/4] for the cases of

Fig. 2 Boundary diffusion behavior of interval
(@) 6:>6,, (b) 6,<8,, (¢c) 6,=6,

0%(0)=8kscog 20 1-0

n(0)=—4ks5sin40+{8A+4ks}sin 26— 4k tand.

w
0+

(67) >

lim

0——m"2

c,=—

{—ZM(ﬁ) [02(9)]1}=—% (68)

Since atd=+/4, 0%(6) =0, thusf=*m/4 are singular points of

the first kind, and at point§==*a/2, u(6)=—x, so f==*=/2 are

singular points of the second kind. Due to the different diffusiopy required. By contrasting Eq68) with the relevant terms in
behaviors of the singular points, the interyalm/2,m/2] should be ;)10 5 5 of[18], we find that—=/4 is an ANB. These results
divided into three subintervals, i.¢5 7/2,— w/4], (— w/4,7/4] and are shown in Fig. 2

(m/4,m/2], of which the solutions to Eq45) should be investi- ) . .
gated, respectively. First we investigate the diffusion behaviors at-€t US Now consider the intervat-m/4,mr/4]. Itis easy for us to

the singular points.

verify the following facts:

On[—m/2,—wl4], according to the definition expressed in Eq. If 6,>8,, —m/4 is an exit andm/4 is an entrance; i6,<;,

(47), we know that at the left boundarg=—=/2, the diffusion

and the drift exponents, and the character value are

=0, B=1, c=1

instead,— /4 is an entrance and/4 is an exit. For the case of
81=0,, —7l4 andn/4 are both ANBs. The results are depicted in
Fig. 3.

On (w/4,7/2], via the same procedure, we knows> 5, , wl4

which, in view of Table 4.5.3 ii18], leads to the deduction thatis an entrance, i6,< 8,, @/4 is an exit and if6,=&,, /4 is an

0=—m/2 is an entrance for intervél- m/2,— m/4].
Since at—/4,

ANB. The other boundaryr/2 is always an entrance on such an
interval. The various situations are summarized in Fig. 4.

—8(8,—68,)<0, 6,>6, As was stated in18] (p. 132, a stationary solution to a FPK
2 o _—{ —8(8,-8,)>0, &,<s, ©duationdoes notexist, if each of the two boundaries is either an
T Oo=-ms=0. ()4~ ria (61722) 1772 exit, attractively natural, or strictly natural, from which we find
0, 61=%2  that under the conditions of,> 6, and §;=6,, the invariant
0, 86,#6, measures do not exist ofi-w/4,7/4] and [—#/2,7/2], respec-
a,=2, B;= 1 si=s tively. Thus in this study, the stationary solution to E45) will
’ 1— 92

be able to be investigated only under the conditior5pf &, .

the diffusion behaviors at such a boundary should be discussed foNext, upon each sub-interval, we determine the solution to Eq.
three cases. According to Table 4.5.248] (p. 134, which pro-  (45). First we consider the intervéi-m/2,— m/4]. Since = — /2
vides the classifications of singular boundaries of the first kingh o entrance whilé=— /4 is an exit, we know that ofr— /2,

we know that if 5,>8,, —/4 is an entrance, and #1<5,, _ _m the solution to Eq(45) is a Dirac Delta function of the
—al4 is an exit instead. To determine the boundary type for tf}STr ]' soiul a(4s) is ! unct

S - llowing form:
case ofs;= &,, the character value, which is defined as owing o
oz 9== p==
=7 T3 4
4 ’

’ ’

s
’ o
Ve 7 ¢
p Entrance 4 Exit - ANB
. / 4
’ Vi ~
’ , .
4 4 ’,
’ e ’
.
. s 7
4 i .
, , ,
. /
o— 0% 2N
~ N, ~
~ \
“ ~ N
N . N
N \ N
N AN N
\\ N ~
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~ \\ .
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Fig. 3 Boundary diffusion behavior of interval (—ml4,74] for the cases of (a) 6,>46,, (b) 6,<6,, (¢) 6,=46,
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exponent on the domaifD,27 ] X[ — w/2,7/2] X R", for the sto-
chastic bifurcation systertb) is therefore given as

2w /2
hs=<pg.ps>=fo d¢f_ ,Zd"Lnd“["spe] (73)

Fig. 4 Boundary diffusion behavior of interval (ml4,72] forthe  wherep,(6,¢,u) is the stationary probability density which ad-

cases of () 6:>6,, (b) 61<6;, (¢) 6,=9; mits the asymptotic expansiai21), and p, has been defined in
Eq. (6). According to the discussion in Section 3, it can be easily
shown that the asymptotic expansion of the top Lyapunov expo-
nent

4

F(6)=C5(0+z), fe 5,%} (69)

(pePoy=e(f(U)p1,Poy+&°[{p2,Po) +{p1,P1)]+""*

whereC is an integral constant which can be determined by the
normalization condition of(¢) on the whole interval —m/2,m/ s reasonable. In addition, the assumption on the stochastic func-

2. _ o _ tion f(u) leads to
Similarly on interval(#/4,7/2], the invariant measure is also a

Dirac Delta function, i.e.,

o T

1
T <f(U)P1(9,¢),po):2—J’ f(u) gho(u)du
F(0)=(:5(0_Z), 06(2,5 T JRN

. (70)

2w 2
xf d¢f p1(6,)F(0)do=0.
0 -2

On interval (—#/4,7/4], since the two boundaries are both en-
trances, the invariant measure is

As a result, the asymptotic expansion of the relevant maximal
Lyapunov exponent for syste(®) becomes

c 3/2 A
F(o)=Cm(6)= S—KS[sec 2]%?cosf ex K—Ssec20

ee( o (71)

R

Ne=e%[(p2,P0) +(f(U)p1,P1)]+0(e?). (74)

By synthesizing the results in Eq€9)—(71), we obtain the solu-

tion to Eq.(45) upon the whole intervel—/2,7/2], i.e., In calculating the asymptotic expansion of the top Lyapunov ex-

ponent, the computations of the solution functi@ﬁQ(ﬁ,d;) are

F(6) required.
r T T ow 6.1 Case |. For the first case, conditiofb7) leads to
Co| 0+ —|, fe|—=,——
4 2 4
C A T
= 8—[sec29]3’20056ex —sec®|, fe|-4.7 d
K5 K5 Mo= % (2ba— ki) Ay, Ao=g5[F(0)sin 26]
col -2 be| =, 2
L 4) “\a2)
(72)

M =—koAp, MP=—ksA,, A,=F(0)+ A,

6 Asymptotic Expansion for Maximal Lyapunov Ex-

ponent d
(1) — (2) = =—
Under the assumption that the Fokker Planck operatode- MI"=baAs, Mi7=bguly, Ay dg[F(O)cosz ]
fined by Eq.(9) is an ergodic operator, the maximal Lyapunov (75)

1
D m=0
27Tp0 (0)1

PP (6,4)=
1 (0) (2) (11
2W<f(u),¢:§q(u)>E{Hm Ao+ T A +TT 7 A gy, m#0.
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Substitution of Eq(75) into Eq. (74) yields
(f(Wp1,p1)

—iﬁ—§ B B1
1672 82+y; ya(2+yy)
1 vy, [33 1 5 1
+ 7 Ks 726+—y1|: §,§+ZY1,§+ZY1,1—72
1 v1va—4y,+6 |3 3 N 1 5
16PN 6121y |22 472
1 (y172+2)
+Z’Y1vl_’)/2 +3ﬁ1\/—2(6+71)(2+'}’1)
53,1 5 1 o pen
X E,E‘FZ}&,E"‘ZVL —v2|, 0<B<2k;
(76)
_ 2\yA 31 1 3 1 "
<P2|p0>_ 1 (2+71) 2 2 471 2 4’)/1 Y21,
O<B<2Kl
where
_ —8A+B; —8(61- )+ B _B
Y1 B B ’ Y2 Kl.

The convergence condition for this serieg/z$<1. Thus for the
confluent hypergeometric functions in EI6), the convergence
condition is 0< B<2k;.

With these results, the asymptotic expansion of the maximal
Lyapunov exponent can be expressed as

3 B B1
M= [ ot 16P2" g2 2
+y1 o v2(2+ 1)
1 yy [33 1 5 1
- 3/2 _ 4 o 1
+4K5[72 6+, [2.2*‘47’1,2"‘47’1,1 72}
Y1Ye—4y,+6 |33 1 5 .
TP T e e [za*z%z*z%l
(y17212) 53 1 5
~72 +3,31\/Zm > tanis
P 2\, 31,1 3.1
P A F e M PP R R REY
~72 ]+0(82)- (77)
6.2 Casell. Forthe second case, based on the results of Eq.

(66), we obtain

o] ; ; d
F[a,b;c;z] is the confluent hypergeometric functii9] (p. 41) _1 _- ;
which is defined as Mo=3(2bss—ki) Ao, Ao=g5[F(0)sin 26]
Fla,b;c;z] 1
” M= —koAp, MP'=—ksA,, A,=F(0)+ 7 Ao
5 (@0
a=o N (C)y M(ll):bzs[/\n_/\lﬂ:bzaf\ly M(lz):blsf\l
_i [a(a+1)---(a+n—1)][b(b+1)---(b+n-1)] _ d
|
1
67(0), m=0
27
(1)(6 ¢)_
E(f(u),wfn(u)>E{H§,?)AO+H£§)A2+Hﬁnll)Al}, m#0
[
where Bo J, Ba
<f(U)p1,p1> 2(K5+ ) 2J _Z)
Ag=cosf[ —1+3 cos B+ «a sin 20]exqd a(sin 6)?] 3 3
2 2
<P21p0>:_51+J_A:_51+J_(51_52) (80)
0 0

=2[c0s6]*[3+ a— a cos 20]exq a(sin §)?] (79)

A,=2 sinf[cos#]’[ — 3+ a cos 20]exd a(sin)?].

Substitution of Eqs(78) and(79) into Eq. (74) yields
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1 1
J0=f [exp(ax?)]dx, J2=f [x? explax?)]dx.
0 0

The asymptotic expansion of the top Lyapunov exponent is then
given as
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i ex
—o+ ot @ ks iexalia +o(s?), a>0
4( CEffi[Va]
A= (81)
Bo x5 exgaly—a|
51+—+— +o(e?), a<0.
47 EfV—a]
From Eq.(63), we find that conditior=0 implies Ks
)\8—82[ -8+ Z+>\<21>+>\<22> +0(e?)
01=8,+[5 $1(2)[K5+ K51~ 2 Sy(w)[biz+ b]] N .
Ny = H(éz 81) = 5 Ks|Ry+ Kstl (83)
from which the inequalities in Eq81) can be easily obtained.

6.3 Case lll. For the third case, since

Mo=MP=MP =0

MP=byA;, MP=byA;
1
Ep&“(a), m=0
P’ (6,) =
m+0

S (FW) yn(W)ell VA,

the terms in expressiofr4) can be evaluated as

1
(p2,Po)="— 5(51"‘ 6p)— CER

1 1
_75(51+52)+E(52*§1)|— (5, 5l)|
° ° (82
- L I, 1y
< (U)P11p1>— K5+2K5C+ ZE_E

L 1] 1
Iy 1o 2

lo lo

where

kx?]dx=

+o \/;

|0:f exp[— _ﬁ

+o 1
|1:f_ac1+x2

+ol 1 2

2= o | 1+X2

exy — kx2]dx= me*(1—erf(\k))

1
exfd — kx%]dx= K+ > me(1-2k)(1

—erf(\x))
cl= lo
8\/_K5e
A 5,-6
K=——= 2 1>O.
Ks Ks

1
x&2>=C[<52—51><R1—1>2K5+ §K5<R1—2R2)}

where

= m/ke[1—erf(\i)]

RZZ_O_K__\/—\/—e"[l 2k][1—erf(Jx)].

7 Conclusions

In this paper, the explicit asymptotic expansions for the maxi-

mal Lyapunov exponent of a co-dimension two-bifurcation system
driven by a small-intensity real noise process have been con-
structed. To account for a sufficiently general model, the real
noise was assumed to be an integrable function of the output of a
linear filter system, viz., a zero-mean stationary Gaussian diffu-
sion process. The strong mixed condition and the detailed balance
condition were removed in the present theoretical formulation.
The method used in the present study involved the use of a per-
turbation method and the spectrum representations of the Fokker
Planck operator and its adjoint operator of the linear filter system.
Three special cases, one of which the singularity of the diffusion
coefficient arose, were considered. The associated maximal
Lyapunov exponents were evaluated accordingly.
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A General Solution for
Two-Dimensional Stress
r. krishnamurthy' § Distributions in Thin Films

D. J. Srolovitz

We present closed-form solutions for stresses in a thin film resulting from a purely dila-

Princeton Institute for the Science and tational stress-free strain that can vary arbitrarily within the film. The solutions are
Technology of Materials, and Department of specific to a two-dimensional thin film on a thick substrate geometry and are presented for
Mechanical and Aerospace Engineering, both a welded and a perfectly slipping film/substrate interface. Variation of the stress-free
Princeton University, strain through the thickness of the film is considered to be either arbitrary or represented
Princeton, NJ 08540 by a Fourier integral, and solutions are presented in the form of a Fourier series in the

lateral dimension x. The Fourier coefficients can be calculated rapidly using Fast Fourier
Transforms. The method is applied to determine the stresses in the film and substrate for
three cases: (a) where the stress-free strain is a sinusoidal modulation in x, (b) where the
stress-free strain varies only through the thickness, and (c) where a rectangular inclusion
is embedded within the film, and the calculated stresses match accurately with the exact
solutions for these casefDOI: 10.1115/1.1782649

1 Introduction volve the variation of composition or growth strains through the
A variety of processes occurring in thin films generate intrinsifilm thickness. This leads to the variation of stress in the
yorp 9 9 Elfiirection. For example, a linear variation of stress along the

owth direction was observeg@ising Raman spectroscopin

strains. These include, for example, strains associated with L\g
eroepitaxy, thermal expansion mismatch, defect incorporati amond films grown on metal substrates by chemical vapor depo-
5, [9]. The observation that oxide films tend to curl on sepa-

and compositional gradients. The residual stresses that develo%i
on from the metal substrate upon which they were grown sug-

a result of the presence of these intrinsic strains can be obtalq
by solving a suitably formulated thermoelastic problem. Indee@est the presence of such through thickness variations in growth
Pé\ins,[lo]. The presence of strain gradients within such films

thermal and compositional stresses have been analyzed in
way, [1,2]. A general approach to solving the thermoelastic Proiere confirmed by direct measuremenis)). In the current work,
we present the solution for stresses, resulting from a general in-

lem involves the use of the Goodier thermoelastic potertidl,
Yinsic strain that varies both laterally and through the thickness of

? . L : the film. We follow the Eshelby procedure for obtaining residual
much thicker substrate is very common in thin film microelectrons

. h I i | bulk | d %bresses to formulate the relaxation proble?]. Following
ics, thermally grown oxide scales on bulk metals, and sputtergd, g annroach, we represent the stress-free strain as a Fourier
coatings. Typically, the film thicknesses are much smaller th

Rries inx, and solve for the Fourier coefficients that satisfy the
any other dimension in the problefhe., much thinner than the ty

i A . =~ equilibrium equations and boundary conditions. While the inter-
substrate or the lateral extent of the filnif the intrinsic strain is  ¢506 remains weldedi.e., continuity of tractions and displace-
independent of one of the lateral dimensignsand there are no ments for epitaxial deposition and growth, there are some in-

externally imposed strains, plane-strain conditions apply. Sugfhnces such as oxide growth at elevated temperatures, where the
plane strain problems can be addressed using Airy stress fupgarfacial diffusivity is high, and accordingly, the interface be-
tions, [1]. An extremely rapid method of solving for mechanicahayes Jike a liquid and cannot support shear. This interface may be

equilibrium for simple geometries of this type involves the use Qetter described as slippingontinuity of normal tractions and
the Fourier series. Indeed, two-dimensional and three-dimensiog@p|acements, zero shear tractipfk3].

stress distributions have been calculated using this approach,
[1,3-6. .

Glas considered a general modulation in the lattice paramefer Problem Formulation
parallel to the substrate—film interfadiee., intrinsic strains are a  We consider a planar thin film of thicknes$$ resting on a
function of the lateral dimensiow only), and analytically de- substrate that is semi-infinite and has the same elastic moBulus
scribed the resultant stresses in the form of a Fourier serigs inand poisson’s ratio, as the film(see Fig. L The film and the
[7]. He also applied this approach to determine the stresses igubstrate are infinite in the lateral directionsandy, and the
capped film, in a film with steps at the film-substrate interface artfisplacement in thg-direction is identically zero. We further as-
in a film with embedded inclusions that are of the same thicknesgme that the stress-free strain in the fifl, is purely dilata-
as the film,[8]. In all of these cases, the intrinsic strain does nafonal and is only a function of andz, i.e.,
vary through the thickness of the film. This limitation is unduly

.. . . . . . . . m__.m
restrictive since many thin film growth situations necessarily in- e"=e"(x,2). 1)
The stress-free strain could have different physical origins, such
“To whom correspondence should be addressed. as strains induced due to thermal mismatch, composition strains,

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ¢ ¢ :
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- growth strains, etc., depending on the actual problem of interest.

CHANICS. Manuscript received by the Applied Mechanics Division, August 26, 200.3“,/\/e also assume that _ther? are no stress-free strains in_ the S!Jb'
final revision, April 22, 2004. Associate Editor: K. Ravi-Chandar. Discussion on thgtrate. These assumptions imply that a state of plane strain applies
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalfgfy this system.

Applied Mechanics, Department of Mechanical and Environmental Engineering, ) i :
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be We follow Eshelby's procedure for obtaining residual stresses

accepted until four months after final publication in the paper itself in the ASMEO develop the equilibri.um equations_ and boundary Condi.tions for
JOURNAL OF APPLIED MECHANICS. a general thermoelastic problem with a stress-free strain of the
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zt :y tt=— 5 e™(x,z=H). (5)
0 At the interface between the substrate and the fiw @), we
have body forcest’!, given by

fll= eM(x,2=0)8(2). (6)

1-2v

Now, we remove the surface tractions and body forces that were
externally imposed and let the system relax. This is achieved by
imposing equal but opposite tractions and body for@enoted
with superscripts R to those in Eq(2)—Eq. (6).

Fig. 1 A schematic illustration of a thin film on a thick rigid

substrate. The coordinate axes in film thickness H are labeled. f2=_ E m @)
: 1-2v "
o . . =15, em(x.2=H), ®)
form given in Eq.(1), [12]. A schematic description of Eshelby’s 1-2v
procedure is shown in Fig. 2. The film is divided into infinitesimal
cubes that are each removed from the film and allowed to freely fl2=— e™(x,2=0)8(2). (9)
transform(i.e., undergo the stress-free straiff). Now, we im- 1-2v

pose external tractions on each of these infinitesimal elementspechanical equilibrium requires that
counteract the stress-free strain in order to deform them back to

2__
their original shape and size. These tractiddsare given by dojj j+f7=0, 0<z<H, (10)
1 E 50'”1]':0, z<0,
[ — | | 2
= 1-2,° Mo 2) where Einstein convention for repeated indices is adopted and

daj; are the stresses induced by the relaxation and are related to
tife total stresses in the system); , by

£ ij= 80y + o7 (1)

<Ti1j == Esmaij ) (3) Tractions will vanish at the free surface of the fits=H, and
therefore,
where §;; is the Kronecker delta function. These elements are
reassembled to form the original solid. This creates no additional
stresses because the tractions on the cube surfaces are still present.
More formally, however, it is appropriate to replace these tractions
on the “surfaces” of the cubes that are now inside the homogg&ontinuity of tractions across the interfaze 0 can be written as

where n; is the surface normal. The stresses corresponding
these tractions are

a,,=0 or, equivalently, o,,=t?, 12)

Oy;= 00y,=0.

gfeous solid with equivalent body forces. These body fortks, 5a_§léb_ 50'zz:fi221 13
£ 80— 50,,=0,
fi= 15,51 =%z, (4)  where the superscript sub is used to denote fields in the substrate.

Deep into the substrate= —, displacement gradients, ; and
whereeT represents the derivative of the stress-free strain with ;, are expected to vanish, and accordingly
respect to the position coordinaieAt the film free surfacez

=H, the surface tractiortjl, is given by

Uy (Z=—®)=U,;(z=—%)=0, =X,z (14)
Boundary conditions can be easily formulated for two special
types of film-substrate interfaces, namely, when the interface is
welded, and, when the interface is perfectly slipping. When the
interface between the substrate and the film is welded, displace-

ment fields are continuous across the interface, and hence

U§Ub:uxv

(15)

ustb=y, .
These are supplemented by the traction boundary conditions pre-
sented in Eq(13). When the interface between the substrate and
the film is perfectly slipping, normal tractions are continuous
across the interface while shear tractions at the interface are iden-
tically zero, and accordingly, we have

sub _fi2
6o, — 60,,=1/,

(16)

805%= 50,,=0.

We also require that normal displacements be continuous across
the interface(as in Eq. 180)).

Fig. 2 A schematic illustration of the steps involved in the Equations(10), (12), (13), (14), (15), (16) along with the ap-
Eshelby procedure propriate compatibility condition for displacements must be
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solved to determine the relaxation displacement and stress fieldberel,(«,z) is defined by the equations
For the two-dimensional plane-strain problem considered here, the

compatibility conditions can be combined with the mechanical _ p—
equilibrium equations given in Eq10) to obtain the following li(e,2)= | e*%e"(a,2)dz,
relation for the stressdd4]: (27)
1 — —2az
50'}/%6“14‘ Efiazo’ 'y,a=)(lz_ (17) |2(C¥,Z)_J e Il(O[,Z)dZ.

Equation(17) also makes use of the stress-strain constitutive r&he integralsl,; and |, can be easily evaluated if we know the
lations valid for plane-strain elasticity: functional form ofe™. For example, ifs™, is given by a general
polynomial of degreéN with coefficientsa,,,

1+v
eaﬂz? (UI] - V(T'yy5aﬁ) a:B: Y=X,Z, (18) N
am_ n
wheree,, s is the strain in the system. The stresses can be related 240 anZs (28)
to the Airy stress functiong, by
PR — the integrald ; andl, are given by
N n .
80,,= -Q, 19 a,z" ~Chj!
7z d’,xx ( ) |1: n eazz (_11 ]J
50_xz:7¢,x21 n=0 & j=0 (az) (29)
where N n n=j ~n-j
az" . Cy k!
E =2 e, (~1)itie Yy, ——
Q=——g" (20) =0 «a =0 k=0 (az)!”
1-2v
Accordingly, we can rewrite Eq17) as whereC]n represents the number of ways in whjabbjects can be
E distributed among locations. When the functional form ef" is
_ not known, we can replace the integralsand|,, by definite
B raarrt T80, =0. (1) p gralsandl,, by

integrals without any loss in generality and evaluate them numeri-
8ally. We adopt two approaches, namely, writisl§ as a Fourier

Equation(21) can be solved without the boundary conditions t L d using Chebvsh | ials t ¢ th
obtain a particular solution. This solution can then be superpoé@&egra Inz and using Lhebyshev polynomials to periorm the

with the general solution of the homogeneous equation, numerical integration. In the first approach, we write

b aayy=0. (22) (a,2)= f €A% B, (30)
In the substrate, the stress-free strain is identically zero and the

stress function satisfies the homogeneous equation. Equagpn B

is solved for both the film and the substrate with the boundaryheree™ is the Fourier transforniin z) of e™ and =2m/H.

—©

conditions presented in Eg€l2), (13), (14), (15), and(16). Particular solutions for stresses and strains can be obtained by
combining Eq.(26) and Eq.(19). These are superposed with the
3 Solution Method general solution of the homogeneous equation, i.e.,(E2), to

obtain the complete solutions for the relaxation stresses and dis-
placements. We seek solutions of Eg2) that are of the form
prescribed in Eq(24). They must satisfy the relation

We represent the stress-free stralfiin the form of a Fourier
series inx, as

Sm(X,Z):E e eM(a,2), (23) ¥ '=2a?y"+a*y=0. (31)

wheree™ are the Fourier coefficients, and=2/L. Equation The general solution to Eq31) is

(23) represents a stress-free strain that is periodicwith period .

L. While the summation in Eq23) can be written as a Fourier ~ ¥(@,2)=Pi(a)coshaz+P;(a)sinhaz+ P3(«)z coshaz
integral to represent any general functionxinFourier integrals +p zsinhaz 30
can be computed analytically for only a limited set of functions. a(@) as (32)

Numerical computation of the Fourier integral uses the discref the substrate, the general solution is of a similar form:
Fourier transform which approximates the Fourier integral by a

Fourier series. In accordance with Eg3), we look for solutions y(@,2)=Q;(a)coshaz+ Q,(a)sinhaz+ Qs(a)z coshaz
for the stress functio that have the form
+Qu(a@)zsinhaz. (33)
— I aX
¢= ; e y(a2), (24) The coefficientd?; — P, andQ;— Q, are obtained by substituting
. . o Egs. (32 and (33) in Egs. (12), (13), (14), and (15 when the
wherey repre_sent the Four!er coefﬂmen_ts_qbf Substltutl_ng, Eds. fiim—substrate interface is welded and into Ed<), (14), (150),
(23) and (24) into (21), we find thaty satisfies the relation and (16) when the film—substrate interface is perfectly slipping
and solving the ensuing sets of linear equations. For imposing
(e™—a%e™=0, (25) displacement continuity across the welded interfid (15)), we
follow the approach adopted by GIR&|. Accordingly, continuity
where the superscriptdenotes differentiation with respectzoA  of u, across the interface=0 is ensured if the strair,, is
particular solution of Eq(25) is given by continuous across the interface, and continuityupfacross the
interface is ensured ilu,/dx is continuous across the interface.
The resulting solutions for the coefficients for the welded film—
substrate interface ane>0 are

v =2a%y"+ oty +

E
= Ee‘“l 2(0(,2), (26)
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G, D .
- _ —2aH 4 _HpeH| . T i
P, HPs;+e (DZa Gie ) ZaG ,

P,=Pyt 26!
2— M1 o 20

Py=—De 2*M(G,—Ge™),

P,=Q3=Q4=P3, Q;=Q,=P,+Gy, (34)
and fora<0 are
P,=(e?""G| - Glle®")(1-2aH)+DH(e?*"G, - GHe ")
) D .
—Gy+ 5-Gy(1-e*™),
_ E i ol
Po=—Py+| —G,—2G) |,
(35)

Py=—e™(D(e™G,—~GY) —2a(e™G} ~GY)),

P4=-Q3=Q4=—P3, Q=—Q,=P;+Gi.
In Egs.(34) and(35), D=E/(1— v) and the paramete@} , G},

Ps,

G!' andG}Y are functions ofx and are related to the values of the

integralsl, andl, atz=0 andz=H by

Gi=-Dly(a,z=0), Gh=l,(a,z=0),

(36)

Gl'=-DeM(a,z=H), GY=e Ml (a,z=H).

P,=(e*"—e™)(G}'+DHG}) +

D .,
ZG'Z—G'l)(eZQH(ZaH

_ D
—1)+etaH +aH(ZGTe“H+DHe2“HG'2)/Nm+;G'z

—G!
P3=—a(P,+G})+DG),

P4:

a(e®H—e™) (G +DHGY —e"G}) + 2e™(1+ aH)

X (D(GY —e™MG}) — a(GY —e*MG)))

D
+EG'2(e4“H—1))/Nm,

Qi=-Q=P;+G}, Qs=—Qu=aQy,
N,,=e?>M(1+2aH+2a’H?)—1. (38)
When we use Fourier integrals iz to represent the

z-dependence of™, the coefficients depend on only two param-
etersW,; andW,, defined by

Wl(a)=f L

_ma2+528mdﬁl

(39)

Wy(a)= f_ ast,Bzd'B'

When the film—substrate interface is welded, the coefficiénts

For a perfectly, slipping interface between the substrate and thed Q; for a>0 are

film, the coefficients fora>0 are
3aH H H H H~H D i
Pi=|(e’*"—e*")(G]+DHG;)+2aHe” G1+5G2(1
+e4aH_2e2¢1H)_2a2H2e2aHGil)/Np,
D .
P2=P1—;G'z(e4“H—ezaH+2aHe2“H(1—aH))/Np,
P3=—a(P,+G})+DG), 37)

P,=| a(e™+e*") (G +DHGY) +2a?H(e**"G} —e™"GY)

—2De3HGh + et +(2D(1—aH)G,

D . i
EGz_aGl

. D |
aG'l)ezaHEG'z)/Np,

Q1=Q,=P1+G}, Q3=Q,=—aQy,

Np=e?"(1-e?*"—2aH +2a°H?),

and fora<0 are

Gi—RGi)
1 2

Plz((eaH—e3aH)(GT+DHG§)+(e4aH+ 1) 5o

+ eZaH

D . _ .
—G},— 26} | ~2aHe™M(G]

+e“HaHGil))/ N,
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De72aH
2a

+iW (1—e?M+2aH(1—aH)),

Pi=- (Woa(—1—2aH+2eH(1+ aH)+e?eH)

b .Dw,
2=Qq—i v

Q1=Q,=P;+DW,,
(40)
P;=—De 2" (1— aH)(W,a—iW,),

Q3=Q4=P4=P3,

and fora<0 are

D
P,=—DW,— E(e"Hfl)(Wz(lfe“HJrZaHe“"')
W
+i71(2aHeﬂH—1—e“H)),

D
Qu=P1+DW;,  Py==Q =1 —Wi,

(41)
P;=De (e —1)(aW,+iW,),

Q2=—Q1, P4=Q4=—-Q3=—Ps.
When the film—substrate interface is perfectly slipping, the co-
efficients fora>0 are

PlzR(Wz(—e4“H—293“H(1+aH)+2e2“H(1+2a2H2)
H Wi an 3aH 2aH
+2e“(1—aH)—1)+i 7(9 N+ 2aHe " —2e”

—2aHeM+1)
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PZ:R( W,(e*H—2e3*H(1+ aH)+4aHe?*"+2e*H(1- aH)
w
—1)+i 71(—e4“H+2aHe3“H—4aHeZ“H(1—aH)

72aHe“H+1)>,

Py=—aP,—iDW,, 42)
P,=R(aW,(e?*"—1)(e?*"—1+2(1—aH)eH) +iw, (e
—2e%H(2—aH)+4(1- aH)e?M+2aHe*" - 1)),
Q2=Q1=P;+DW,, Q3=Q4=—aQq,
D
" 2e29M (M 202H2 4 2aH 1)
and for, a<<0 are

P Ps i Pw
Y Ia N

P1=Q;—DW,,

P3;=R;(aW,(—e**"+2e3 (14 oH)— 4aHe?*" + 2e*" (aH
—1)+1)+iWy(—e**"-2aHe®M+ 2e?*H 1+ 2aHe™!
—-1),

P,=Ry(aW,(e*™—2e%"(1+ aH)—2e*"+2e*(1+ aH)

+1)+iW,(e** "+ 2aHe3*H — 42" (14 aH) + 2e*M(aH

+2)-1)), (43)
Q Q
lef:_;":p& Q2=—0Q4,
D

Ry=-— :
Y 2e2M(2aH +1+2a?H2— e 20H)
The Fourier coefficientsy(a,z), of the stress functiorh can
be obtained by substituting the coefficients given in E§4)—
(41) into Egs.(33) and(32), respectively. Equation®4) and(19)

10 calculated

exact

0 =
i Q.
-5
10
T T B
0.2 0.4

Fig. 3 Exact and calculated results for a stress-free strain that
is sinusoidally modulated in  x are shown at z=0.005

We finally apply the method to a case where the stress-free
straine™ varies with bothx andz We consider a periodic array of
rectangular inclusions, that are infinite in extent in yhdirection,
embedded in an otherwise homogeneous film. Exact solutions for
this problem can be assembled using superposition from the solu-
tion given by Hu for a single inclusion embedded in a half-space,
[15]. As an illustration of the results, contours of constant,
within the film are shown in Fig. &) for a mismatch of 0.0018
and an elastic modulus of 150 GPa. The filnHis- 0.1 thick, the
period in thex-direction isL=1 and an inclusion of siz€1/8)
X(1/80) is embedded in the center of the film. The values for the
mismatch and the elastic modulus are from Hu'’s calculations for
stresses in SiQtrenches in Si structurefl6]. Our solutions for
the stresses match well with Hu's if we superpose the fields from
several single inclusiong&he calculations presented here are for
an infinite periodic array of inclusiohsas can be seen from Fig.
5(b).

5 Discussion and Conclusion
In summary, we have assumed a general form for the stress-free

can then be employed to determine the relaxation stresses degglainsm(xyz) as represented by E6R3), and obtained solutions
Oped in the substrate and the film. The total stresses in the Sysa@mthe stress functiord) that Satisfy mechanical equi"brium and
can be obtained by adding the externally imposed stresses givegdmpatibility. Two different traction transfer modes, namely, per-
Eq. (3) to the relaxation stressed]. fectly slipping and welded, are assumed for the film—substrate

interface. Solutions for the stress function are provided in terms of
4 Results

Stresses resulting from a general two-dimensional dilatational
stress-free strain in a thin film have been described by closed-fol  so
expressions. These are in the form of a Fourier series where
the coefficients can be rapidly evaluated using fast fourier tran
forms (FFT). We now provide some simple examples to test th 40
efficacy of our approach. Two extreme cases that lend themseh
to easy comparison are the cases where the stress-free strai
only a function of one variable, i.e., film—substrat®=&™(x) % 8
ands™=¢"(z). The first case has been considered by Glas for®
welded film—substrate interface and, not surprisingly, the soli  ,q
tions obtained using our approach fef'= e, cos 2mx and ™
= €p Sin 2mx match exactly with his result$7]. Figure 3 shows
both Glas's and our results for the stresseszfe0.005 ands™ 10
=0.1cos zix. In the second case, an exact solution for this ge
ometry isoy,=oy,=—E&e™/1— v, with the other stresses identi-
cally equal to zero. We have applied our procedure for the spec
case ofe™=(z/H)%—2z/H. Our results again show an excellent
match with this exact solution, as seen in Fig. 4. In Figs. 4 andRyy. 4 Exact and calculated results for the in-plane stress for a
the repeat distance aloxgs L =1, the film isH=0.01 thick, and stress-free strain that is a function of ~ z alone, i.e., ¢™=(z/H)®
E=100. —z/IH

calculated

LA LA ML |

— — — — exact

UL L I

L [ L
0.0075

L ] L L
0.00285 0.01

[o]

L 1 L
0.005
z
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Fig. 5 Stresses due to a thermally mismatched inclusion; (a) shows contours of constant &, in the film
for a rectangular inclusion embedded in the center of the film and (b) is a comparison of the stresses
obtained using Hu’s formulas and those obtained from our calculations for z=0.025

Fourier coefficients, for the cases where the functional depenLZ] Larche, F., and Cahn, J. W.,, 1985, “The Interactions of Composition and
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Mechanical Response of a
Metallic Aortic Stent—Part I:
Pressure-Diameter Relationship

The mechanical response of a metallic stent is considered in this series of two papers. In

R. Wang Part I, the development of a test method for the characterization of the mechanical

. 1 response of a metallic aortic stent subjected to internal or external pressure, and a model
K. Ravi-Chandar that captures the relationship between the pressure and diameter of the stent based on

~ FellowASME slender rod theory are described. The axial and radial deformation of a bare-metal stent
¢-mail: kravi@mail.utexas.edu were measured as the stent was subjected to loading ranging from an external pressure of

‘ . about 80 mm of Hg to an internal pressure of about 160 mm of Hg. The pressure was

Genter for Mechanics of Solids, applied using a polyethylene bag; the method of applying the pressure and measuring the

Structures and Materials, strains was found to provide an accurate determination of the mechanical behavior of the

The University of Texas at Austin, stent. The stent was shown to exhibit two stiff limiting states corresponding to the fully
Austin, TX 78712-1085 collapsed and fully expanded diameters and an intermediate range between the two where

the stiffness was an order of magnitude smaller than the typical stiffness of an aorta. A
complete mathematical characterization of the pressure-diameter response of the wire
stent was also developed; this model is a straightforward application of the theory of
slender rods to the problem of the stent. Excellent agreement with the experimental mea-
surements is indicated, opening the possibility for modeling of the coupled response of the
stent and the vessel into which it is inserted. In Part |, we consider the effect of variations
of pressure over the length of the stent that introduce changes in the diameter along the
length of the stent which leads naturally to the formulation of the coupled problem of the
stent within the blood vessdIDOI: 10.1115/1.1782650

1 Introduction in the literature before, some based on approximate mddets
59[ instance, Ref[6]) and others based on empirical correlation

diovascular diseases such as occlusions and aneurysms. THULRExperiments|7]. Rogers et al[8] and Dumoulin and Coch-
stents are delivered to the desired location with the aid of catflin [9] have recently analyzed the plastic deformation response of
eters, and therefore collapsibility prior to deployment is an impok® Stiff stents by finite element analysis. Here we show that a
tant factor in the design of the stent. On the other hand, the redigiorous analysis of the self-expansion of the elastic stent is pos-
tance to collapse under external forces must be high in servigile; the analysis is rigorous in the sense of the theory of me-
especially in regions of hard occlusions in order for the stent to l§8anics of slender rods. A number of experimental studies of the
effective. These considerations make the design of stents quitechanical response of stents can also be found in the literature,
complicated, but also quite challenging. Two kinds of stents hay#0—14. However, in most of these studies, the loads on the stents
been used in clinical practice: a stiff stent expanded into positievere not applied in a manner consistent with the pressure experi-
using a balloon or through shape memory properties of the matced in vivo. For example, Lossef et [dl1] applied a point load

rial, and a more compliant self-expanding stent made of braided the stent and measured the resulting change in the stent diam-
wire. The focus in our work is on the self-expanding braidedter to obtain a force vs diameter relationship. Flueckiger et al.
Wallstent®. Such bare metal stents have been inserted into an¢wo] applied point loads and circular loads similar to that used by
ismal vessels|1-3]; after deployment, a thin tissue layer develfajlone et al[7]. While such measurements might be quite suit-
ops that prevents the blood flow across the wire mesh and ther%m(e in ranking different stentsee, for example, Dyet et &lL.4]),
starves the aneurysm of blood supply. The stent then experienggsy do not provide the appropriate pressure-diameter relationship
the full internal pressure of the blood and hence must pPossggg; is needed in analysis of the coupled problem of stent-artery
appropriate stiffness in order to contain the blood pressure. In this¢ormation for determination of arterial wall stresses, or in the
case, the stiffness of the stent in relation to th.e vessel into whi Halysis of the fluid flow through the stented artefiys,16.

it is to be embedded also plays a key role in the stresses t brader and Beye13] developed an interesting apparatus in

develop in the vessel wall, stresses that can lead to the devel\%{?ﬁch the stent was inserted into a rubber tube and then subjected
ment of endoleaks or other long term problems with the treatme? \ . .
0’ external pressure. The diameter was measured using an ultra-

(4.5 i h Reiu et 4l17] h I d imil it
Engineering analysis of the design of stents has been discus?gﬂ'c scheme. Relu e dll7] have also used a similar apparatus
or applying external pressure on coronary stents. While both
o whom correspondence should be addressed. groups of investigators !mplemented' the apparatus only for exter-
Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF  Nal pressure, it is possible to redesign the apparatus for internal
MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- ressure. However, a maJor drawback of the scheme for internal
CHANICS. Manuscript received by the Applied Mechanics Division, September lé) . .
2003; final revision, March 24, 2004. Associate Editor: R. M. McMeeking. DiscudleSsure is that the stiffness of the rubber tube must t?e measur_Ed
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeeki@)d subtracted from each measurement of the stent. Since the wire
Journal of Applied Mechanics, Department of Mechanical and Environmental Engitents exhibit a Changing stiffness with expansion this method
neering, University of California—Santa Barbara, Santa Barbara, CA 93106-5070, . - - -
and will be accepted until four months after final publication in the paper itself in HEquires: a rather complicated nonlinear inverse problem to be
ASME JOURNAL OF APPLIED MECHANICS. solved in order to determine the stiffness of the stent. The present

Metallic stents and stent grafts are commonly used to treat ¢
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work is aimed at providing an accurate measurement of the

Table 1 Parameters of the Wallstent

pressure vs diameter relationship for stents without sueh
n

ot Number of wires 36

complications. . E Modulus of elasticity 200 GPa
We report on the development of an experimental scheme that (assumen

can provide an accurate measurement of the mechanical behavioG Shear modulugassumey 77 GPa
of the stent in a mechanical environment close to that seen ind ?lametefgf the stent wire 170 um
vivo. Although the results presented here are for one type of self- measure: . .
expanding stent, the method is quite general and applicable to all “° Eétfohgggfu?é;r;ishﬁé; at 34
types of stents. We then interpret these measurements in terms of | Radius of the stent at zero 0.01m
the mechanical response of the stent through a complete model of pressurgmeasure
the behavior of the helical spring. This model is, of course, limited L Length of the stent 0.08 m

to the particular type of self-expanding helical stent. This model (measurep
facilitates the formulation and solution of the problem of non=
uniform pressure loading along the stent that is caused by the
insertion of the stent into the blood vessel; these aspects as well as
the inverse design problem—of determining the optimal stent ge-
ometry for patient specific data—are described in PafiNtang
and Ravi-Chanddrl8]). helices. The nominal diameter of the stent in the zero-pressure
The paper is organized as follows: in Section 2, we present teate was 20 mm and the length of the cylindrical portion was 80
experimental method developed to apply internal and extermam. The exact composition of the material is not known, but for
pressure on the stent; issues related to the application of pressthe, purpose of the mechanics analysis it was sufficient to know
as well as the measurement of the response are discussed. Athlgt it was a stainless steel with a modulus of elastidty
scription of the experimental measurements follows in Section 3.200 GPa. The defining parameters of the stent are listed in
Comparison of the stiffness of the stent to the stiffness of arterigable 1. Near the ends of the stent, the interweaving pattern be-
is also presented. Recognizing that the deformation of the stentigme loose with handling and the diameter of the stent expanded
governed by the theory of slender rods, we develop a mathemalightly. In vascular applications, this enlarged segment gets em-
cally rigorous model that describes the response of the Wallstgidded into the vessel wall and is considered to anchor the stent in
in Section 4. Excellent comparison of the results of the modgie proper location. In our experiments, this segment of the stent
with the experimental measurements is demonstrated. Finally, Ws outside the tested region; external pressure was applied only
close with a discussion of how the experimental method arfler approximately 70 mm of the length of the stent and the
mathematical model could be used in addressing the problem|@hgth changes were measured only over the central region of 40
design of stents. mm.
The range of internal and external pressures considered in the
. experiments was determined by the fact that the stent has two
2 Experimental Methods limiting states: a fully collapsed state and a fully expanded state.
A bare metal Wallstent shown in Fig. 1 was used as a te¥feasurements were made over this entire range; the pressure ex-
sample in order to develop the apparatus for evaluating tﬁ@l’ienCEd by the stent in vivo is contained within the range cov-
pressure-diameter relationship under both internal and exterg&gd in these experiments. For the application of internal pressure
pressure. It was made of a wire wrapped into a helix and interw@n the stent, a polyethylene bag was squeezed inside the stent as
ven into a simple-weave pattern; the wire-wire crossings are rigftown in Fig. 2. In order to eliminate the resistance to inflation
bonded in any manner but held only by friction. This constructiofiom the polyethylene film, many wrinkles were introduced into
allows for easy analysis of the stent as discussed in Section 4. the film; upon inflation with internal pressure, the bag simply
stent consists of 36 wires each of diameter L0, woven into a expanded by eliminating the wrinkles without stretching the film.
simple helical pattern with 18 right-handed and 18 left-handdd order to prevent friction between the polyethylene film and the
stent as the stent expanded radially and contracted longitudinally,
long, thin strips of an acetate sheet were lubricated with grease
e 3 - and inserted longitudinally between the stent and the polyethylene
XSGR N S X 2 's's;"g:’;zzi‘l bag. Compressed air was introduced inside the bag through a tube
9 9.9.9 attached with a control valve and a pressure gage. A laboratory
/)'{‘3@2@%2@20202@2@2@%?@%§, _2}}'g%%@;’;‘;’:%’;’:‘:‘:’: compressed air supply line was used as the pressure source; the
R KAIIAIEEILKLERE00K0

4
Q %%‘%‘99’9“009 %08 pressure gage had a sensitivity 0.5 mm of Hg.
/‘032:2:202:2:!:202020202ggg‘:‘:t:‘:‘f%“fé‘x&‘:‘:‘f“ The end conditions must be controlled carefully on order to
O aian ot 0 28088 X X X 6%%““""‘""‘3“3“:“?‘“‘& mimic the conditions in vivo. In the scheme shown in Fitp)2he

stent is free to expand/contract radially and to contract/expand
axially. A variant of this end condition was also used: strings were
attached to the wire braid at the two ends of the stent and these
strings were collected together and fixed to a rigid post on one end
and were taken over a pulley and attached to a weight on the other
end. This end condition enabled the stent to expand freely in the
radial direction, but its axial shortening was restrained by the
weight; this arrangement is shown in Figb® In practice, the
radial expansion and axial shortening of the stent are constrained
by the arterial wall. Our experiments provide an upper bound on
the axial force and radial displacements that will be generated in
the stent.

The apparatus for application of external pressure consists of a
stiff cardboard tube inside which the stent is inserted, with the
intervening gap filled by the polyethylene bésge Fig. 3. Infla-
tion of the bag results in the application of a uniform external

D;

AALAQAALAQAA

-

Fig. 1 A photograph and schematic diagram of the bare-metal
Wallstent indicating the positions at which the diameter and the

length of the stent was measured during the experiments under
internal pressure. The stent is shown in the unloaded condition

(zero pressure ).
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Fig. 2 (a) Schematic representation of a stent under internal pressure produced by a com-

pressed air-filled polyethylene bag.
ment but not radial movement.

(b) Same as (a), with the ends restrained from axial move-

pressure over the middle segment of the stent. Once again, the balg order to determine the pressure-diameter relationship, it is
was wrinkled in order to eliminate its stiffness and the lubricatedecessary in these experiments to measure the diameter at differ-
acetate sheets were placed between the polyethylene bag ancetiigoressure levels. This was accomplished in two different ways
stent to minimize friction as in the case of the internal pressu&pendmg on whether the stent was under internal or external

experiment.
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Fig. 3 Schematic representation of a stent under external
pressure produced by a compressed air-filled polyethylene bag

Journal of Applied Mechanics

pressure. For the case of internal pressure, the procedure was quite
straightforward: the values of the pressure were read from the
pressure meter. After the pressure stabilized at each given value
for about 3—5 minutes, a picture of the deformed stent was taken
using a Nikon CoolPix 950 digital camera with a 1600
X 1200 pixel resolution. From measurements of the diameter at
three points as indicated in Fig. 1, the average diameter at this
pressure level was determined. For the wire stent, the axial con-
traction corresponding to the radial expansion can be significant.
So, the length change was measured between 13 nodes in the
middle of the stent, about 42 mm apart initially. Correlating the
length and diameter changes with the applied pressure, the me-
chanical response was obtained. In contrast, under external pres-
sure, the wire mesh grid points were not available for observation;
therefore, the diameter changes were determined viewing axially
and measuring the visible opening. Length changes could not be
monitored, but due to the coupling between the radial and axial
deformation as discussed below, the measurements of the radial
deformation was used to calculate the axial deformation. The ac-
tual dimensional measurements were made in Adobe Photoshop,
with the distance between two points obtained from the difference
of their coordinates shown by the cursor. With the help of high
magnification images, a spatial accuracy of2% was obtained,;
the accuracy was determined by photographing a standard ruler in
the apparatus and measuring the distance between two gage
marks.

Coupling between the radial and axial deformatidrhe cou-
pling between the radial and axial deformation can be determined
by assuming that under the small loads imposed on the stent, the

SEPTEMBER 2004, Vol. 71 / 699



stretching of the wire is negligible. Suppose that the radius of til® Experimental Results
stent isr and the axial lengtfipitch of the heliy is \. Then the

total length of the wird over a single pitch of the helix is First, we show that the method works well in evaluating the

pressure-diameter relationship in stents. In Fig. 4, the measured
> variation of the true radial strain with the pressure from five re-
|=VA“+4mr @ peated trials is shown. A trendline is shown to act merely as a
. . . uide for the nonlinear response of the stent; the actual form of
Dur_lng deformation of the stent, the total_length Of. the wire r he relationship will be derived later. The scatter in the data be-
mains unchanged and therefore changes in the radius of the Stfevr\}eFen the repeated trials is indicative of the errors in the experi-
r, must be accommodated by changes in the picccording to ental measFL)Jrement The scatter arises primarily from the copntrol
Eq. (1). Instead of using and\, one can also use radial and axiaf™ ' P Y

strain measures; for the large deformations encountered in @g}g|?§§?%regsgé (;T %ﬁizlrj#? Itnhrt(r)]ﬁ ?,theenﬁlseengftgﬁ gﬁiirﬂ;?elgy
experiments, the true radial straéip, and the true axial strain P 9 y g

e, defined below were used as the appropriate measures pressure regulator and monitor. Measurements were also taken
during the decrease of the pressure from the maximum; the un-

" N loading behavior is also shown in Fig. 4 for one of the trials. A
er=In—, e,=In—. (2) significant hysteresis was encountered with the diameter remain-

o Ao ing almost constant until the pressure dropped to a very small
value and then recovering its original dimensions with a very
small change in pressure. We believe that this behavior is due to
friction in the system; we have has been able to develop an ana-
lytical model of the stent and the loading system and to isolate the
source of the friction conclusively to the loading system. There-
fore, in the present paper we refrain from discussing the results of
unloading, noting that this issue may be quite different in the
Therefore, from a measurement of the current radiudoth the coupled response of the stent and blood vessel.
radial strain and axial strain can be calculated from EZsand In these trials with internal pressure, the axial deformation was
(3). In the results described below, we demonstrate that this prdso obtained from the photographs. From measurements of the
cedure works well when compared with actual experiments undength \, the true axial strain was calculated as indicated in Eq.
internal pressure and then use it to calculate the axial deformati@). In Fig. 5, we show the measured values of the axial strain as

Since the length and radius are related as indicated iflEgthe
axial strain can be written as

71| 12— 47?2 2
=3P g )

under external pressure. a function of the measured values of the radial strain. The axial

180

+ Tral1
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«  Trial4
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Pressure - mm of Hg
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009

True Radial Strain, e g

Fig. 4 Variation of the true radial strain, e with internal pressure, p. A polynomial curve fit to the experimental data
is also shown simply to indicate the data trend. Data scatter is indicative of the errors encountered and is primarily
due to the measurement and control of the pressure.
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Fig. 5 Variation of the true axial strain with the true radial strain. The data points represent direct measurements of
both the diameter and length. The line corresponds to a model of the axial strain from Eq. (4) with measured values
of the diameter.

strain calculated from Eq23) is also plotted in this figuréiden- the maximum possible diameter. At both these limiting states, the
tified as “Model”). The agreement between the two is quite goostiffness of the stent is quite high, implying that a large change in
and we conclude that the coupling between the radial and ax@kssure is required to cause a small to moderate change in the
deformation can be calculated using the assumption of inextendiameter. Connecting these two limiting states is an intermediate
bility of the wire under the loads imposed in these experimentange where the siffness is quite small; here a very small change
The main purpose of this demonstration is that in the experimenitsthe pressure could result in a significant change in the diameter.
under external pressure, we can determine the axial deformatlbis instructive to compare the response of the stent to the native
from Eq. (3) once the diameter has been measured. The nonliproperties of the vessel into which the stents are to be inserted.
earity of the relationship between the axial and radial strains al$be stiffness of the vessel wall and the stent can be quantified by
indicates that the small deformation approximation is not apprihe “pressure-strain modulusg,, defined as Peterson et El9]
priate for characterizing the behavior of the stent.

The variation of the diametdd with the pressure over the E = M Ap 4)
complete range of pressures used in our experiments—internal as Pry—ry
well as external—is shown in Fig. 6. The variation of the length \ o e A b is the change in pressure causing radius to change from
with pressurep is shown in Fig. 7. In both of these figures, thfrﬁ;to r,. The smallest stiffness exhibited by the stent is about

(3

results of analytical models are also presented; we will discu de/mgl In comparison, the stiffness for a normal aorta lies in

these in the next section. From the experimental results prese
here, it is clear that the loading scheme and the measurem range of 40 to 140 kN/frand may be as large as 300 kN/m

scheme described here are capable of evaluating the mecharl .@Qe"gtg‘f?ﬁgcsetgﬂ?lrilﬁtagfirysﬁ?noyréiﬁggﬁ?;a;\z/ﬂy ?kr:aagtent
response of stents. While our demonstration was with a sejf- P y 9

” . . : . r each insertion. In order to quantify this appropriately, it would
expanding Wallstent, this method will work with other designs beneficial to have an analytical model of the stent. Therefore,

n lon he inflation pr r re not much larger than™; . -
fﬁg rtznzsé Ssgdar?etree Inflation pressures are not much large tWe discuss below an analytical model of the stent covering the

The response of the Wallstent shown in Figs. 6 and 7 suggea%‘“re range of its response based on an analysis of the stent as a

that there are three regimes in the response of the stent—t ical spring.
limiting states and an intermediate state connecting the limitin .
states. The first limiting state corresponds to a fully collapsezg Analysis of the Response of the Stent

condition, similar to what exists when the stent is inserted into the The Wallstent is a set of interwoven helical springs; the analysis
catheter; here the diameter is nearly zero and the length is neafythe mechanical response of a spring based on Kirchhoff’s
double the unstressed length. The other limiting state correspotisory of slender rods is well establish¢dl], and thus can be

to the fully expanded condition when the length is a minimum, alrawn upon for this particular application. However, there are a
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Mt
/)\ Ma action of the axial force and the pressprethe helix changes to a
Pa P. new radius,r, and pitch,\. The corresponding curvature and

. ) o twist, denoted by and 7, are given by
Fig. 8 Free-body diagram on one-half turn of one wire in the

stent. Components of forces and moments in the direction of cog a sina cosa

the tangent to the curve and normal to it are shown in the fig- k=s—— 7% T (6)
ure. g is the load per unit length along the wire that results

fro_m the pressure p in the stent. r is the radius of the helix, and where a=arctan§/27r) is the current angle of the helix. Con-
a s the pitch angle. sider the equilibrium of a one-half turn section of one wire in the

stent as shown in Fig. 8. L&?,, P Mg, and M, be the axial
force, shear force, bending moment, and twisting moment, respec-
tively. We note that these are components resolved in the direc-
tions of the tangent and normal to the helix. The presgufim-
few significant departures that need attention. First, the loading ternal or externalin the stent is assigned to this segment of the
the stent is not along the axis as in a spring but on the lateral sideise as an equivalent load distributed per unit length and denoted
where it contacts the tissue or the polyethylene bag in the téstq. It is calculated as follows: the pressure acts on an effective
setup. This difference is easily taken into account by considerisgea 2rr \; this force, 27r\p, is carried in then wires that make
the equilibrium of a spring under pressure on the lateral sideg the stent, each of length Therefore, the force per unit length
Second, since there are many springs coiled together, therehsat each wire experiences is then
likely to be frictional resistance—of as yet undetermined
magnitude—to the sliding of the wires past each other. In fact, this
frictional contact dictates that the length of the coil over each
pitch must remain constant as the pitch and the pitch angle char;}‘(ﬂ%__,‘re sina=/I
due to deformation of the stent. Enforcing this condition results '
a geometric constraint/cosa=rq/cosay. Lastly, coiled springs
are usually plastically deformed into the helical shape; the Wal 5
stent is simply woven from straight filaments and the wires are n%)t(

27\ 2@r sina

—p=———p @)

q:

In addition, letF, denote the external force
'a“ong the axis of the helix that is supplied by the end constraints;
e note that this is zero if the stent is free to expand/contract
ially. Introducing a nonzer&, will allow us to calculate the
ial force necessary if the stent is to be maintained at some final

plasthally deformed_—upon remoyal of a.fl!ament from the stery ngth due to end constraints. Equilibrium of forces and moments
it straightens out by itself due to its elasticity, except at the bra| sult in the following equations

crossover points. This has no impact on the deformation itself, but

will affect stability of the deformation. In this section, we will first ) qr
summarize the spring analysis, then show how this analysis can be Pacosa—Pssina— —— =0 (8)
adapted to the stent, and finally compare the predictions of the
model to the measurements. P,sina+Pgcosa=F, 9)
Let us denote the initial radius of the helix by and the initial 2 in
p|tc_h No- Th(_e initial principal curvature and the initial twist of the r(P, sina+ P, cosa)+ Mg sina—M, cosa— a @ _ 0.
spring are given by cog a
. (10)
cog aq sinag cosay
Ko=— DTt (5) The wires are considered to be slender and therefore their re-
0 0 sponse to the bending and twisting moments are given by the

where ay=arctanf/27r,) is the angle of the helix. Under the Bernoulli-Euler beam theory and Coulomb torsion theory:
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Fig. 10 Comparison of the calculated and measured axial force F, as a function of the internal pressure,  p, when
the stent is free to expand radially, but is constrained to maintain its axial length
cofa cof ag The changes in the diameter as a function of pressure can be
Mg=EIl(x—xo)=El T, (11)  determined from Eq(14); then the changes in the length of the

stent(pitch) can be calculated using the assumption of inextensi-
bility of the wire as in Eq.(1). Note that there is an explicit
) (12) dependence on the radius in this equation as well as an implicit
dependence through the dependence ohe«. The predictions of
whereE is the modulus of elasticityG is the shear modulus,is the model are shown in Figs. 6 and 7 by the dotted lines, identified
the second moment of the cross-sectional ared giwthe second With the label *no friction.” In keeping with the experimental
polar moment of the cross sectional area. Here, we consider wikgindary conditionF, was set equal to zero. Clearly, the spring
of circular cross section and hendg= 2l = wd%/32 whered is model captures the essence of the behavior observed in the experi-
the diameter of the wire. Eliminating,, P, Mg, andM, be- ments. It must be borne in mind that there asadjustable pa-
tween Eqgs(8)—(12) results in an expression for the axial fofeg rameters or empirical constanthat have been imposed on the
model; the model is an exact implementation of spring theory.
. 271 sint « Elsina(cosa cos ao) Deviations between the predictions and the experimental measure-
Z ncoga P r ro o ments are observed only under conditions of high internal pres-
sure and can be attributed to friction effects that were neglected in
(13) this simple analysis. It is possible to obtain a very simple estimate
of the effect of friction on the experimental measurements as de-
. ) . , scribed in the next paragraph.
If the applied axial forcé=,=0, then the relationship between the Along the cylindrical surface, the wires of the stent are in con-

pressure and radius of the stent can be written as tact with the polyethylene bag or the lubricated acetate sheet and

Ccosa Sina  COSag SN«
r ro

M=Glp(7— TO)=G|p(

Gl,cosa [cosasina  cosagSinag
r r o ’

ncofa [Elsina/cofa cofaq mus@ move in order to shorten or elongat_e as required by the

P=5—2gm - applied pressure. If we assume that the frictional effects reduce
mresimal T r To the effective axial force that the stent experiences, we can modify
Gl, cosa Eq. (14) appropriately. Assume that the frictional forde;, op-

cosasina  COSag Sinag
r o ’

(14)  posing the axial elongation or contraction of the stent is propor-
tional to the normal force; theR{=uAp, where u is the (un-

As discussed above, we assume that the pitch and diamdf@pwn friction coefficient, A=2zr\ is the nominal area of
change in such as way as to constrain the coil from unwindif@ntact, and is the applied pressure. Decreasing the axial force
upon deformation; this condition is expressed agcosa by this amount results in the following relationship between the
=ry/cosay. applied pressure and the radius of the stent

r
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3 n cos ag
= 271 o(r3 sir a— unhr cos ag)

sina
El ; (cosa—cosayg)

cosa | )
—GIpT(sma—smao)

Note that whenu=0, this equation reduces to E{.4). The pre-
diction of the pressure-diameter relationship from Bdp) is also
shown in Figs. 6 and 7 and identified by the label “with friction.
A very small friction coefficient ¢ =0.000001) was sufficient to
make the model predictions agree with the experimental measure-
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Mechanical Response of a
Metallic Aortic Stent—Part II: A
Beam-on-Elastic Foundation

R. Wang
K. Ravi-Chandar MOdeI
Fellow ASME
e-mail: kravi@mail.utexas.edu The main objective of the paper is to develop the mathematical analysis of the response of
a metallic stent subject to axisymmetric loads over its length and to different boundary
Center for Mechanics of Solids, Structures and conditions. These situations introduce bending stresses in the stent and cannot be cap-
Materials, tured by a model of the stent that can be used to characterize the pressure-diameter
The University of Texas at Austin, relationship under axially uniform loading. The analysis presented here is based on an
Austin, TX 78712-1085 analogy between a thin-walled pressure vessel and a beam on elastic foundation; in the
present application, we derive an equivalent beam model for the bending response of a
stent. Using this model, we evaluate the shape of the stent exiting the catheter as well as
the variation of the diameter along the length of the stent constrained by stiff end sup-
ports. This approach can be used to evaluate the coupled response of the stent and the
blood vessel, if the mechanical properties of the blood vessel are known. The coupled
problem and its implications in the design of stents are discussed.
[DOI: 10.1115/1.178291)2
1 Introduction the stents as a result of deployment or flexirg4]. In this paper,

.our goal is to consider the influence of variations in the loads

sté?\tFzgr'tnlté[rlr\]élvéig);artrgpne; trlgsrsesrzor,&s?ngihaer\qugt\"s; mggﬂ'gl ng the length of the stent on the deformation of the stent; this
: X p ure. : il enable determination of the shape of the stent as it exits the

the pressure-diameter relationship was obtained based on eter, as well as allow the formulation of the problem of
theory of slender rods and demonstrated to predict the reSpOEB%Ipled,reSponse of the stent and the artery.

accurately. An experimental method was also developed for deter—p,q paper is organized as follows: in Section 2 we describe the
mining the pressure diameter relationship through approprigigschanical basis of the analogy between the stent deformation
tests. In the model as well as in the experiment, pressure Wasy a heam-on elastic foundation; then we formulate the equation
applied uniformly over the length of the stent. However, in vivogoyerning the deflection of the stent. The numerical solution pro-
the stent experiences an axially varying pressure due to intergggdure adopted to solve the differential equation is described in
tions with the vessel wall and hard occlusions or aneurysms. FQ&ction 3. Then, in Section 4, we describe how the model can be
example, as shown schematically in Fig. 1, a stent inserted intqiged to determine the shape of the stéas it is pressurized with
vessel with an aneurysm will experience external pressure in tgff end constraints andi) as it exits the catheter; in both cases
intact regions of the vessel wall towards the ends of the aneurysgaod comparison to experiments are demonstrated. The purpose
but experience internal pressure in the aneuryafter a sealing of these demonstrations is to really show that the model captures
layer has formed While the response determined from uniformthe mechanics of the stent response. In Section 5, the problem of
pressure along the axis of the stent is essential in characterizengluation of the coupled response of the stent and the artery is
the stent, further analysis is required to determine the responsd@mulated and the design issues that arise are discussed.

the stent under the axially varying pressures described above. In

terms of the mechanics of the problem, uniform pressure along the Analysis of the Response of the Stent—Beam-on
axis corresponds to a “membrane theory” of deformation whilg|astic Eoundation Model

the spatially varying pressure corresponds to a “bending theory” o . o .

of deformation. While there are a large number of evaluations of 1€ basic idea behind the analysis is the following: the stent
the pressure-diameter relationship of stése Part | for a review Can be considered to be a thin-walled pressure vessel, albeit with
of this work), to our knowledge the problem of bending due tcf ”.OF‘"“eaf pressyre-dlameter relatlonsplp,f(r.) that is charac-
axial variations in the loading has not been modeled or expe gristic of the particular stent under consideration. The response of

mentally measured by any of the investigators. Ormiston d@4l. a thln-\/\_/alled pressure vessel to axisymmetric loading _that results
used the three-point bend test to determine the overall Iongitudir'1n lbendlng stresses may be determined by_ analogy of its response
18'that of an equivalent beam on an elastic foundatjéh, This

flexibility of different stents; the objective was simply to proV'deequivalence is demonstrated schematically in the meridional sec-

a quaqti_tative comparison .Of the flexib_ility of stents. Others ha\{ n in Fig. 2a). Consider an axisymmetric loading on the stent at
used finite element analysis to determine the stresses generat

e point as indicated by the arrows in the figure; this loading
[ ) o changes the radius of the stent as a function of position along the
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- axis, denoted by(x). Equivalently, this can be represented by the

CHANICS. Manuscript received by the Applied Mechanics Division, September lﬁj,!Splacemem’(X) = r(x)—ro, wherery is the yniforn_] ini_tial ra-
2003; final revision, March 24, 2004. Associate Editor: R. M. McMeeking. Discusdius of the stent without any load. Clearly, this loading introduces
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekir@g,bending component to the problem. A free-body diagram of a
Journal of Applied Mechanics, Department of Mechanical and Environmental Engi-, ; ; ; ;

neering, University of California—Santa Barbara, Santa Barbara, CA 93106-50 ,gment of th.e stent is S_hOWI’l In l_:IQb)Z At any pointx along
and will be accepted until four months after final publication in the paper itself in tHd1€ stent, a circumferential forde. is generated because of the

ASME JOURNAL OF APPLIED MECHANICS. variation in the radius. These forces balance out in the circumfer-
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The stent geometry of the woven metallic stent is shown in Fig.
1, inserted schematically into a blood vessel with an aneurysm.
The stent consists of 36 wires each of diameter i) woven
into a simple helical pattern with 18 right-handed and 18 left-
handed helices; the geometric and material parameters of the stent
are given in Table 1 of Part I. The length of the stent is about 80
mm and its diameter is 21 mm. The exact material composition is
unknown, but it was sufficient to know that it was a stainless steel
with a modulus of elasticitfe =200 GPa. As can be seen from
Fig. 1, the stent will experience support conditions and pressure
Fig. 1 Schematic diagram of a stent inside a blood vessel with differential that vary along its length, resulting in a bending of the
an aneurysm stent.

The pressure-diameter relationship for the woven metallic Wall-
stent was derived in Part(éee Eq(14)) and is reproduced below

. . . . . . .. for convenience.
ential direction, but provide a component in the radial dlrectlor? convenience

that opposes the radial displacement. This is how the stent is able nco a
to maintain its radius variation along the length. This force can be p= >
considered to be equivalent to the reaction from an elastic foun- 2mr*si’ a
dation. Since the relationship between the pressure and radius is in Gl,cosa [cosasina  cosagsSinag
general nonlineatsee Part | for a particular modelwe have a —-—F ( — )
nonlinear elastic foundation. Therefore the differential equation

for the bending of the equivalent beam on elastic foundation P&herer, and, are the initial radius and pitch of the helixand
unit width can be written as \ are the radius and pitch at a pressprea,= arctanfy/2r )
d4r anda = arctan{/27r) are the initial and current pitch angle of the
Eleﬁwﬂ‘(r): Pa (1) helix, n is the number of coils in the ster is the modulus of
elasticity, G is the shear modulus, aridis the second moment,
wherep, is the applied pressure in the stent difd) is the resis- andl, is the second polar moment of the cross-sectional area of
tance of the equivalent elastic foundation. We note that for a tyghe wire. Here, we consider wires of circular cross section and
cal thin walled pressure vessél,is usually replaced by its plane hence|| p=2I= ma*/2 wherea is the radius of the wire.
strain equivalent due to the restraint provided against anticlasticin Fig. 3(a), the wire mesh of the stent is shown with the ends
curvature; however, in our implementation, since the wires at# the wires exaggerated by the dots; if we view the thin strip in
allowed to act independently, we should not use the plane str#iy. 2(b) as a beam, per unit length there a/@mr wires. Each
equivalent. o is the effective bending rigidity of the stent and iswire presents an elliptical cross section with semi-major and semi-
calculated easily. The equation for the calculation of the axisyrmminor axes ofa/sina and a, respectively, dictated by the pitch
metric deformation is applicable for any stent design as as longasgle of the helix. The second moment of the beam per unit width
lef @andf(r) can be calculated or measured. We demonstrate thésthen
for one particular stent, the elastic, self-expanding Wallstent®.
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S v Substituting forl . from Eq. (3) and f(r) from Eq. (2) into Eq.

Y r (1), the governing differential equation for the radius of the stent

) | e under applied pressuie, and any other axisymmetric loading is

x \ obtained.
2r, \\ \
7N \\ ‘} . na* d% ncofda [Elsina/cofa cof ag
| R B - \_/ 8rsina dx |« 2mlsifal r r 1,
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- r r - o =Pa (4)

Fig. 2 Stent as an equivalent thin-walled pressure vessel and
a beam on elastic foundation

(a) ®

Fig. 3 Effective cross section of the stent that determines the bending rigidity
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This equation must be supplemented by appropriate boundainjs braided wire stent. We illustrate the procedure through two
conditions indicating how the stent is supported at the ends. Taeamples in the Section 4; in the first example, the shape of a stent
governing differential equation can be written succinctly by colexiting a catheter, and hence under nonuniform external pressure,

lecting terms is determined. The second example illustrates the application of
" internal pressure on a stent fixed rigidly at both ends. It is impor-
ar =F[(r(x),p(x))] (5) tant to observe that under external pressure there is no buckling as
d*x ' there would be in a thin-walled pipe. This is because the external

ressure is translated into a compressive foreg i6 Fig. 8 of

where we have allowed for possible spatial variations of the a . : .
art ) of small magnitude along the axis of the wires. There are

plied pressure as well. In general, boundary conditions are sp . . f
fied at the support points of the stent. A number of possibilitie@Obal bending and buckling modes for the entire stent, but these
ate beyond the scope of the present work.

exist, depending on the problem of interest. We will consider thr
possible boundary conditions—fixed, free, and compliant.
Case (i) At afixedpoint on the beam, the appropriate bound-

ary conditions are 3 Numerical Solution of the Differential Equation
d The differential equation governing the bending of the stent
r . . . . ,
r=R, —=0 (6) under axisymmetric loadingEq. (5)) is nonlinear and can only be
dx solved numerically. We begin with the explicit Adams-Bashforth

whereR is a prescribed value of the radius. Note that a fixed poift€thod,[6], to obtain the solution. The procedure is described
need not be at an end of the beam, but can be anywhere along ifg& Priefly since the boundary conditions have to be handled
long as external constraints are applied to maintain the conditi§aréfully- The whole length of the stent is partitioned iht@qual
required by Eq(6). segments of lengthh, with the N+1 nodes _Iabeled by
Case (i) At a free endpoint on the beam, the appropriate:1,2 - - k=1, k, k+1...N. Thus the nodal positions ane
boundary conditions are that the forces and moments are zerdkh: nodal values of any quantity at théh node is denoted with

therefore, a subscript—for exampleF,=F[r(xy),p(Xs)]. Applying the
two-step explicit Adams-Bashforth method successively, we ob-
dsl’ dzr tain
53=0, ——=0. (7)
dx dx Foh k=1

Case (iii) A stent supported by a blood vessel will experience g, ,, . k—1
compliant boundary condition where the deflection and slope bf = "o +Cy with Cy= hE F+ E(F —Fgh k=2N
the stent should match those of the blood vessel. The boundary = ' 2 k=1 T o

conditions must be posed as a matching condition. The appropri- (9a)

ate conditions are .
re=ro+khrg+Dy, with

dr dr ®) -
lstent™ Mvesseb o =3 . 0
dx stent X vessel 2 k=1
Note that the deflection and slope at this point are not prescribed, D={ k-1 (9b)

but obtained as part of a coupled solution of the deformation of
the stent and the vessel. Furthermore, the response of the blood

1
j=1
vessel must be modeled though an equation equivalent tMEq. :

but with modifications to take into account the appropriate prop- ri=ro+khrj+Geryh?+H,, with
erties of the blood vessel. p
In any application, appropriate boundary conditions are selected 3 k=1
from these choices. For example, as a completely collapsed stent 2
is pushed out of the catheter, the boundary condition at one end is Gy= K2—1 and
free and at the other end is fixéithe radius is fixed at the value of k=2---N
the inside radius of the catheter and the slope is set to zero assum- \
ing that the stiffness of the catheter is much larger than that of the (E-h3
steny. If the stent is supported between two rigid cylindrical 0 k=1
blocks, as in the laboratory experiment described below, both ends 6
of the stent experience fixed boundary conditions. Hi={ k-1 (%)
It should be noted that the above procedure for determination of hE di+ =D, ;h k=2---N
the response under internal and external pressure is identical for =2
|
1 1 1
rot+hro+ §h2r6+ 6h3r6’+ ZlFOhA k=1
re= 2 k—1 k—1 (9d)
_ 1 1
o+ khrg+ — hzrg+(21 Hj+ 5 Hic h'°'rg’+(21 G+ EG"l) h k=2---N.
i= i=

Equation (9d) is an explicit representation for the radiug in  tion 2, boundary conditions—eitherandr’ or r” andr”—are
termsr,_, for all k from 1 toN. Note that it involves and the prescribed at each end. Suppose both ends of the stent are fixed in
first three derivatives of atk=0. However, as discussed in Secthe radial direction. Then
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Plastic Block
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Fig. 4 Experimental scheme for the measurement of the bending of the stent under a
fixed-fixed end condition

ro=R, ry=0 ry=R r{=0 (10) sion of the stent at the two ends. In each of the blocks, a hole with
given radius ofR, slightly smaller than the free radius of the
tent, was drilled. One block was held fixed with a clamp and the
other was hung on a string so as to be at the same level; the string
also allowed the block to move freely in the axial direction. The

whereR is a prescribed radius. Since two of the boundary con
tions are given ak=N, these two equations can be used(&c)
and (9d)) to eliminate two of the unknowns &t=0. This, how-

g:anng)t march fronk=0 to k:.N.’.bUt must be performed in an the holes with their external surface touching the stent, strictly
|terat|v_e manner. Assumg the initial Badlus everywhere of the Steéﬁforcing the fixed end support condition. Finally, a polyethylene
under internal pressug, is R; thus,r, =R where the subscrift. aq \as inserted into the stent, which when pumped with air
indicates the node number, and the superscript indicates the itgjgsyided internal pressure to the stent. A picture was taken when
tion number. AllF, are then calculated according to K@), fol- e pressure reached 153 mm of Hg to evaluate the deformed
lowed by an estimation o€y, Dy, Gy, andH, in Egs.(9). From  ghane- 5 Nikon CoolPix 950 digital camera at a resolution of

the boundary conditions in E§10), we have 1600x 1200 pixels was used.
2_q N-1 1 The image of the stent was imported into Adobe Photoshop
rn=ro+Nhri+ h2r” + E H.+=Hn_. |h3" software for quantitative measurements. On the lateral surface of
2 0 < j 2 N—-1 0 . .
j=1 the stent, the radius was measured at 23 selected points both be-

fore and after the pressure was applied. The measured final radius
normalized by the initial radiusr(r,) is plotted as a function of
the position normalized by the length of the stem{L() in Fig. 5.
(11)  The numerical solution of Eq(5) for this stent is also shown in
ru=ro+Nhrj+Guh?ry +Hy. the figure; the end conditions in E(f) were used at both ends of
the stent. The parameters for the stent are as followys:
These are two linear equations for estimatifjgand ry'; after =10.6 mm,R=9.9 mm, ay,=34°, a=85 um, E=200 GPa,G
determining these and introducing in E@d) the updater& is =77 GPa, anch=36. From the comparison shown in Fig. 5, we
obtained. This process is repeated upiil —rM~!|<e for every S€e that the beam-on-elastic foundation model has captured the

nodek from 0 toN. Thenr!¥ are taken as the final solution of thecOMPlete response of the stent quite well. The measured maxi-
problem; £~10"5 was used in our simulations. In all the ex.mum radius and the calculated maximum radius differ by about

0 e o i
amples described in Section 4, the numerical procedure conver % gé’yjhr'ﬁgéz?gf?ﬁéaﬂigi?,nsé?i?fﬂggstrﬁtﬂﬁ eva?gfngzidv?/#grﬂﬁg
within a few seconds on a Pentium Il class computer. This | 9 '

perhaps not the most elegant solution procedure, but is adequ Sgte Itsh;?tnhsér?qlgii(:nitrr:hei;;r?ssic:rr]oiw tﬁ)éprir&%g%ri?"?::g’ g;’ge?%}
A shooting method can also be used to solve this problem; Pr

. %; in contrast, for the free stent, from Hd) we found that at
et al.[7] suggest that for two-point boundary value problems ! .
the type described here, the shooting method is preferable. Alt € same pressurd53 mm of Hg, the maximum expansion of

natively, a MATLAB script can also be generated to accompli e r?dués_ IS alf:)o# t Zz%veAnote tha:]thls depen'ds c_r'mcally on th?
the solution. initial radius of the stent A somewhat counterintuitive aspect o

the deformation of the stent under this condition might be the

4 E . | fi . appearance of maximum radial expansion away from the midpoint
xperimental Confirmation if intuition is developed based on membrane deformation. The

In order to verify the beam-on-elastic foundation model of thRundamental difference in the nature of the deflection is due to the
stent as well as the numerical evaluation, an experiment was pi@corporation of bending in the current model. This feature of the
formed with a woven metallic stent shown in Fig. 1. The expersolution is rather well known for cylindrical pressure vessels with
mental arrangement is shown in Fig. 4. In this experiment, twsiiff end caps[8]. We note that even if the length of the stent is
rigid cylindrical blocks were used to constrain the radial expameng in comparison to the radius, the middle region will experi-

N-1

1
+| D, G+ Gy 1]h
=1 2
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Fig. 5 Variation of the radius of the stent with position along the stent. The experimental
measurements were obtained at a pressure of 153 mm of Hg; comparison to beam on elastic
foundation model is also shown as “numerical solution.”

ence a uniform expansion, but the maximum deflection will stithat we have not introduced any axial deformation into the beam
occur close to the fixed supports. Another important point to noteodel, but the stent experiences an unrestrained axial contraction
is that such variations in the stent diameter will influence thas it comes out of the catheter. The axial contraction is incorpo-
blood flow, and in particular the wall shear stress distribution; thisted in the model by simply mapping the nodal poixtso the
is considered to play a key role in the biochemical responsedeformed positionX, given by the current radius,, and the
formation of an endothelial layer, thrombus, etc.—and hence theextensibility condition of the stent wirgeq. (1) of Part ). Thus,
coupled solid-fluid interaction problem should be of significant
interest.

As a second example, consider the release of a stent from a
catheter. A photograph of a stent partially pushed out from the 21 (r—ry-1)
catheter is shown in Fig. 6. The end of the stent outside the cath- K= X1~ \/(r/cos—z—z

. L. . . . 0 (10) I’k

eter experiences a free boundary condition while the end inside
the catheter experiences a fixed boundary condition, with the ra-
dius equal to the internal radius of the catheter. In performing a
numerical simulation with these boundary conditions, we begamd X,=X,. A comparison of the shape of the stent exiting the
with an initial guess for the shape that varied parabolically fromatheter as predicted by the model with the shape measured from
the radius of the catheter to the free radius of the stent; the itefdg. 6 is shown in Fig. 7. Clearly, the beam-on-elastic foundation
tive procedure is then turned on and a converged shape of thedel provides a good representation of the deformability of the
stent as it emerges from the catheter is predicted. It must be nogtent.

k=1...N (12

Fig. 6 Photograph showing the variation of the radius of the stent as it exits the catheter
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1 with an appropriate pressure-diameter relationship can provide a
quick estimate of the magnitude of the stresses in the artery as
well as the deformation of the stent itself.

Regardless of how the artery is modeled, interface conditions
must be enforced at contact between the stent and the artery. Since
the fully expanded stent is always larger in diameter than the
artery, the net effect of the stent on the artery will always be an
internal pressure; thus, the radius and slope of the stent must
match that of the artery at every region of contact between the
stent and the artery

dr
Istenf™ Mvesseh o
dx

_dr

(14)

X
stent vessel

Equation(13) must be solved simultaneously with the equation
for the stent Eq(5) and with interface conditions in E¢14) in
° 10 2 » “ 5 ) 70 w order to determine the radius as a function of axial position. While
X this is a formal statement of the coupled problem, estimates of the
arterial properties and simultaneous imposition of matching con-
ditions over the overlapping regions still remain to be elucidated.
Clearly a number of parameters are open for selection: the free
diameter of the stent, the stiffness of the stéhe general con-
struction of the stentthe lengths of the overlap between the stent
and the artery in an aneurysm, etc; all of these parameters influ-
. ence the radial force generated on the artery, the arterial opening
5 The Design Problem presented by the stent, the wall stresses on the artery, etc. The
The two examples shown in Section 4 have demonstratedupled problem posed here can then be used to optimize the
clearly that the mechanical response of the stent has been captutesign of the stent to achieve particular objectives. The solution of
by our two mathematical models—the first model based on tliee coupled problem of the stent and artery will be addressed in a
deformation of a slender rod provides the pressure-diameter refature contribution.
tionship of the stent and the second model based on the beam on
elastic foundation analysis models the bending of the stent undier Conclusion

axially varying, but axisymmetric loading. With these two models, | Part | of this series, we developed an equivalent pressure-

we believe that we can now look into the coupled response of tjg, 1 ater relationship for a helically wound wire metallic stent. In
stent and the artery in most applications of these metallic sterss paper, Part I, we took advantage of an analogy between a
and evaluate design issues. Of course, before proceeding, anain, on elastic foundation and a thin-walled tube under pressure

propriate model describing the behavior of the artery into whicly yetermine the shape of the stent under spatially non-uniform
the stent is to be inserted must be obtained. Several avenuesagé

Fig. 7 Comparison of the measured variation of the radius of
the stent with position along the stent as it exits the catheter
with the predictions of the beam on elastic foundation model

lish this: h in the ohvsiol | %ing. While the analogy has traditionally been used only for
open to accomplish this; a common approach in the physiologicgy 5| geflections, within the linear range of material behavior,
literature is based on characterizing the pressure-diameter r

. . . oo Bfe we have extended it to account for large deformations and
tionship through direct measuremen(t,10]. This is commonly 9

mations have also been presented in the literafir&,14); the
strain energy density function is characterized in terms of t
principal stretches, with model calibration provided from uniaxial

experimental measurements. We believe that these two models are
w well suited for evaluating the coupled response of the stent
nd the aorta; a formal statement of the coupled problem has been

biaxial anq .tube-inflatio.n experiments. While the framewor osed, pointing the need for the generation of an appropriate
based on finite deformation theory appears to be complete, def Nassure-diameter relationship for the artery.

tive experimental characterization of arterial properties is not yet
completely satisfactorysee Ref.[14] for a recent discussion

Nevertheless, from this analysis, one can obtain the nonlinddfferences
pressure-diameter relationsHigee Eq(7.50 in [14]): [1] Wang, R., and Ravi-Chandar, K., 2004, “Mechanical Response of a Metallic
Aortic Stent: |I. Pressure-Diameter Relationship,” ASME J. Appl. Me@l,,
Pa= fA(ri ,rA) (13) pp. 697-705.

[2] Ormiston, J. A., Dixon, S. R., Webster, M. W. I., Ruygrok, P. N., Stewart, J. T.,
Whereri and I, are the inner and outer radii of the artery_ Note Min_chington, l., and We_st, T., 2000, “Stent Longitudinal F|eXit_)i|it){'2 A Com-
that this assumes axially homogeneous deformations. While gen- gfg\'z’s” ﬁ]ftézsr:fggﬁf;'glnz% ?i-‘ge and After Balloon Expansion,” Cath. Car-
eral formulation of the axisymmetric prOblem IS easny ertt.en [3] Dumoulin, C., and Cochelin, B., 2000, “Mechanical Behavior Modeling of
down, there are very few attempts at solving these equations, Balloon-Expandable Stents,” J. BiomecB3, pp. 1461—1470.
since much of the focus has been on membrane problems. Finité Etave, F., Inet, G., Boivin, M., Boyer, J. C., Rioufol, G., and Thollet, G., 2001,
element formulations of the problem are increasingly more acces- nﬁ’;ctr}fr?;f;slls Eoneétif;:éh%(l{ogs “g(fggﬂtfo'??erm'"e” by Using Finite Ele-
sible and may have to be relied upon for this problem. For eX-(5] Timoshenko, S. P., 195Gtrength of MaterialsPart I, 3rd Ed., D. Van Nos-
ample, Raghavan and Voffi5] have recently evaluated the wall trand Company, Princeton, NJ, pp. 124-128.
stresses in an abdominal aortic aneurysm with a finite deformatiofé] ékah TNJ., %(993/*9!32";19; Numerical Methods for Enginegdohn Wiley and

; ; _ R ons, New York, p. .

formulation and a generalized neo-Hookean constitutive modeI(V] Press, W. H., Teukolsky, S. A., Vetterling, W, T., and Flannery, B. P., 2002,
To our knowledge, however, the CO_UpIed problem of a stent and ~ nymerical Recipes in € -+, Cambridge University Press, New York, p. 753.
an artery has not been fully examined. Rogers ef#] have [8] Timoshenko, S. P., and Woinowsky-Krieger, S., 19%5Bgory of Plates and
performed finite element analysis to evaluate the development of = Shells McGraw-Hill, New York, pp. 475-478. ) _ _
stresses in the artery during placement of a balloon-expandabl€’ ietterson.' "\',H",,Jgnse’,‘q‘ R. g" an%gza"(‘gél’ 1960, "Mechanical Properties of
i h th d a linearly elastic model for the arter Lones N oy TG eSS P, Bee b i
stent; however, they use y Y. o] Lanne, T., Stale, H., Bengtsson, H., Gustafsson, D., Berquist, D., Sonesson, B.,

would appear that treating the artery as a nonlinear membrane Lecerof, H., and Dahl, P., 1992, “Noninvasive Measurement of Diameter
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Changes in the Distal Abdominal Aorta in Man,” Ultrasound Med. Bi&B, [14] Humphrey, J. D., 2002Cardiovascular Solid Mechanics, Cells, Tissues and
pp. 451-457. Organs Springer-Verlag, New York.
[11] Dutta, A., Wang, D. M., and Tarbell, J. M., 1992, “Numerical Analysis of Flow [15] Raghavan, M. L., and Vorp, D. A., 2000, “Toward a Biomechanical Tool to
in an Elastic Artery Model,” ASME J. Biomech. Engl14, pp. 26—33. Evaluate Rupture Potential of Abdominal Aortic Aneurysm: _Iden_t_lflc?tlon ofa
[12] Quarteroni, A., Tuveri, M., and Veneziani, A., 2000, “Computational Vascular Finite Strain Constitutive Model and Evaluation of Its Applicability,” J. Bio-

) ) N ) . mech.,33, pp. 475-482.
Fluid Dynamics: Problems, Models and Methods,” Comput. Visual. Scpp. [16] Rogers, C., Tseng, D. Y., Squire, J. C., Edelman, E. R., 1999, “Balloon-Artery
163-197. ) _ ) ) N ) Interactions During Stent Placement: A Finite Element Analysis Approach to
[13] Fung, Y. C., 1993Biomechanics: Mechanical Properties of Living Tissues Pressure, Compliance, and Stent Design as Contributors to Vascular Injury,”
Springer-Verlag, New York. Circ. Res. 84, pp. 378-383.
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Characterization of Plastic
Deformation Induced by
Hongaiang Chen § [Vljcroscale Laser Shock Peening

Jeffrey W. Kysar

Electron backscatter diffraction (EBSD) is used to investigate crystal lattice rotation

Y. Lawrence Yao caused by plastic deformation during high-strain rate laser shock peening in single crys-
, o tal aluminum and copper sample @t10) and (001) surfaces. New experimental meth-
Department of Mechanical Engineering, odologies are employed which enable measurement of the in-plane lattice rotation under
Columbia University, approximate plane-strain conditions. Crystal lattice rotation on and below the microscale
New York, NY 10027 laser shock peened sample surface was measured and compared with the simulation result

obtained from FEM analysis, which account for single crystal plasticity. The lattice rota-
tion measurements directly complement measurements of residual strain/stress with X-ray
micro-diffraction using synchrotron light source and it also gives an indication of the
extent of the plastic deformation induced by the microscale laser shock peening.

[DOI: 10.1115/1.1782914

1 Introduction cessful in describing shock-compression process for conventional

Shot peening is a process involving multiple and repeathQOt peening. However, for microscale laser shock peening, high

impacts by bombarding a surface with relatively hard particl gser power intensity (4 GW/cth and short shock peening times
with sufficient velocities to indent the surfadd]. Shot peening %aser pulse duration50 ns) introduce high strain rate plastic de-

S ; . . . _formation confined to the micron length scale. Micromechanical
is widely used to improve the fatigue behavior of mechanic %nsiderations of strain gradient plasticity, rate-dependent plastic-

gagm;coenents by introducing compressive stress on the peeri]t?/dand its relationship to crystal structure, crystal lattice orienta-

. . . tion, dislocation and cell structure formation under shock wave
Laser shock peening-SP) has been studied since 1960s. A?o ding at the micron length scale require careful study. In addi-

shown in Fig- 1 itis a surfa_ce treatment wherein, Iase_r-lnduccﬁ n, there is a solid-fluid interaction, because the specimen is
shocks introduce compressive residual stresses relatively d%ﬁgmerged in water during the LSP process

within the material resulting in an increased resistance of theIn this paper, electron backscatterdiffracti((ﬁfBSD) is used to
material to various forms of failurd2]. In particular, LSP can , egtigate crystal lattice rotation caused by high-strain rate mi-

induce compressive residual stresses in the target surface 8L cale laser shock peening in single crystal aluminum and cop-

improve its fatigue life, which is important in applications such a oy N
turbine blades of aircraft engine. The potential benefits of Ias%er sample on (10) and(001) surfaces. For the first time, crystal

. e . lttice rotation on and below the microscale laser shock peened
peening over shot peening include a greater residual compres }Sﬁwple surface was measured; these are compared with FEM
stress depth and little change to elthersurface f'.n'Sh or shape. Mulations based on single crystal plasticity. The experimental
Ejheapt).goncesz ﬁflrg;}nztaerse Sl:()Chcoari (I)al\st?]r r']mehn;'tyezrllq lasls.rngl lts provide useful insight into the high-strain rate shock peen-

uration are mu ster d an s peening. ™ Xg process at the microscale. Also the experiments provide new

it is possible to apply LSP to only selected regions of a compQ- . . ; .
nent, because of the ability to precisely dictate the position of tIﬁe)]n‘?ethodologles for characterizing the microstructure formation and

stribution of plastic deformation for microscale laser shock
laser. eening
Recently, laser shock processing of polycrystalline aluminu% '
and copper using a micron length scale laser beam has been stud-
ied, [3-5]. It has been shown that microscale laser shock peening
(uLSP) can efficiently induce favorable residual stress distribu-

tions in bulk metal targets as measured by X-ray diffraction with Cemfiring Laser )
micron-level spatial resolutiorif], and calculated through finite medivm Cortainer
element analysi$FEM) simulations,[7]. Thus, microscale laser \
shock peeningulLSP) is a technique that can be used to manipu- \

late the residual stress distributions in metal structures over re- Plasma amd

gions as small as a few microns and thus improve the reliability of
microdevices.

The mechanics of laser shock peening presents many exciting
challenges, because it is a hybrid process involving many disci-
plines. Classical solid continuum mechanics has been very suc-

'/shckwaw Y

5 anple
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ASME JOURNAL OF APPLIED MECHANICS. Fig. 1 Laser shock peening setup
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Laser beam (beam diameter=12um, to achieve a symmetric deformation field, the shock peens were
laser intensity I=4GW/cm®, . f [
Pulse duration=50ns, rate=1KHz) ;E)zllled to either the (10) surfaces of Al and Cu d001) surface
Pressure load (Gaussian distribution) The samples, shown in Fig. 2, have the dimensions of 15 mm
| X 10 mmXx5 mm. The coordinate systems used throughout this
| Shocked points, spacing=25um paper are indicated in Fig. 2 and defined as follo&saxis is
; f\// N o parallel to the shock line which has direction[dfl0], X-axis is
S \ Confining medium(distiled water) - parallel to[001] direction andY-axis is parallel td 110] normal
'\ p el Coating layer(16um Al to the shocked AI(_lQ) and Cu(1D) surfacgs. For the AI001)
sample, theX-axis is parallel td 110] andY is parallel to[001]
/Targe‘ normal of the shocked surface, with tEeaxis again parallel to
7 the shocked line in direction ¢f10].
. 15mm . In the laser shock peening, a frequency tripled Q-switched
= [170] 1=[001] neodymium: yttrium-aluminum-garnetNd:YAG) laser (wave-

length 355 nmin transverse electromagnetic modes 00 (M
(a) veloo1] ) — mode was used. The pulse duration was 50 ns, spacing between

consecutive pulses along a shock line wag®%, and pulse num-
bers were three on each shocked location at 1 KHz pulse repeti-
tion rate. Laser beam diameter was A and laser intensity was

Fig. 2 Sample geometry and laser shock peening condition; approximately 4 GW/C,'%' A thin layer of high vacuum grease

(a) AI(110) sample and Cu (110) sample, (b) Al (001) sample (about 10 microns thickwas spread evenly on the polished
sample surface, and a %6n thick polycrystalline aluminum foil,
chosen for its relatively low threshold of vaporization, was tightly
pressed onto the grease. The sample was placed in a shallow con-
. . . tainer filled with distilled water around 5 mm above the sample’s

2 Mf’:\_terlal Preparation and Laser Shock Peening top surface. After shock processing, the coating layer and the
Conditions vacuum grease were manually removed. The induced deformation

Face_centered_cubid:cc) metals such as copper and a|umijs due tO-ShOICk pl’eSS_ure and not due to thermal effects Sinc.e Only
num are routinely used in microdevices due to their good m#e coating is vaporized by the laser shock. Further details of
chanical and electrical properties. Fully annealed single crystalstfcroscale LSP setup are given|[i8-5].
pure aluminum and coppégrown by the seeded Bridgman tech-
nique were used for microscale laser shock peening herein. Laue
X-ray diffraction was used to determine the crystal orientatio o .
Withi)r/1 +1° and the sample was cut to shape usi>r/19 a wire electﬁ- Characterization of Laser Shock Peening
cal discharge machin@&DM). Regular mechanical polishing with ~ Several different experimental methods were employed to char-
diamond grit sizes 6 andudn was used to remove the heat afacterize the laser shock peening regions. Atomic force microscopy
fected zone of the cutting surface and electrochemical polishiG§FM) was used to measure the deformation geometry on the
was applied for all samples to eliminate any remaining deformethocked surfaces. Crystal lattice rotation was characterized by
material prior to shock peening. electron backscatter diffractiofEBSD) to measure crystallo-

It is known that a line loading parallel to(@10 direction in an graphic orientation as a function of position. Moreover, X-ray
FCC crystal induces a state of plane deformat{@&j, Thus suc- microdiffraction[6] was applied to measure crystal lattice rotation
cessive shock peens were applied to the material along a lioe the shocked surface, as well as to measure shock-induced re-
parallel to[110] direction in an attempt to achieve a final deforsidual stress. The result from each of these methods are discussed
mation state that approximates a plane deformation state. In ordedetail in this section.

Z=[110] z=[110]
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Fig. 3 Measurement of shocked line geometry using AFM for Al (11_0) sample (scan area =100X100 um); (a) three-dimensional
geometry, (b) cross section geometry at different positions (line spacing =20 um)
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Fig. 4 EBSD automatic indexing map on top surface and on newly exposed cross section

3.1 Sample Deformation Measured by AFM. A typical The newly exposed center surface was polished again after which
three-dimensional geometry of the shocked region of(@01) the crystal orientation of the sectioned surface was mapped using
sample measured using AFNDigital Instruments Nanoscope EBSD, as indicated schematically in Fig. 4.

Inc.) is seen in Fig. @); the scan area is 160100um and 512 EBSD data was collected using a system supplied by HKL
measurements were made along each direction. The scan directigghnology, 11], and attached to a JEOL JSM 5600LV scanning
is set to parallel t&Z-direction(i.e., along the shock directiono  ajectron microscope. All data were acquired in the automatic

decreasg the unpertainty of measurement. In order to chec_k Gde. using external beam scanning and employinguanistep
gefo_rmatlon proﬂles_, at dlffe_rent location a_long the sh_o_cked I|r_1 ize. A typical scan area is 100mx 150, zm on the shocked

etailed cross-section profiles at four different positions wit ) A
spacing=20 um (red lines 1—4 in Fig. @) are shown in Fig. surface and 20@mx 100 um on t_ht_a cross section as in Fig. 4.
3(b). As is evident, the depth of the shock line is around Ar The_ EBSD reSI_JI_ts from gach individual scan comprise data con-
with width of 90 um. It is clear that the shocked line is surpris{@ining the positioncoordinates and the three Euler angles which
ingly uniform deformed along110] direction in spite of the fact describe the orientation of the particular interaction volume of the
that the laser shocks were created sequentially. The lateral extefystal relative to the orientation of the specimen in the SEM. This
of the AFM measurements was not sufficient to show pileup onformation allows the in-plane and the out-of-plane lattice rota-
the edges of the shock line. However, additional measurementtitins to be calculated relative to the known undeformed crystallo-
be discussed in Section 4.3, shows evidence of pileup. graphic orientation, which serves as the reference state.

3.2 Lattice Orientation Measurement With EBSD (Elec- 3.2.1 Image Pole Figure From Sample Top SurfacBole
tron Backscatter Diffraction). From the work of Kysar and figures or inverse pole figures are commonly used to analyze tex-
Briant[9], it is possible to measure the extent as well as characteres based on information of lattice orientation obtained from
of the lattice rotation below the shocked surface by using electr@BSD. The orientation of the crystal at each measurement posi-
baCkscatter dlf‘fraCtIOI(lEBSD) to measure Cl’ystallogl’aphic Orien'tion is represented by a point on the Stereographic po|a|[]:]ﬂ[7

tation as a function of position. EBSD is a diffraction techniquqzigure 5 shows the inverse pole figure from the shocked surface

for obtaining crystallographic orientation W@th submic_ron spatia}[)r specimen A(001) in whichZ ([110]) is aligned with the shock
resolution from bulk samples or thin layers in a scanning electr%e direction. The scan area covers a regidrb0um in

microscope(SEM), [10]. L .

The chstaIIographic orientation of the shock peened top s _-d_|rect_|on across _the shocl_<ed line anql 1on along_the
face was collected using EBSD, which provided informatio -direction with spatial resolution o.f Am. Itis clea.\r from F‘Ig. 5
about the lattice rotation on the shocked surface. After that, {pat the[110] of the crystal remains closely aligned with the
order to obtain the depth distribution and magnitude of latticé-axis after deformation. On the other hand, the inverse pole fig-
rotation below the shocked surface, the specimen was sectiong@s indicate a larger distribution of rotation [df10] and[001]
via wire EDM to expose @110 plane in a region which experi- relative to theX and Y-axes, respectively. Thus, both the AFM
enced an approximate plane-strain deformation state due$®. and the EBSD results indicate that an approximate two-

X Y Inverse Pole Figures
[Folded)

[0218-ine2-1.cpr]
Alurninium [m3m]
Complete data set
4324 data pointz
Equal Area projection
Upper hemispheres

i

Fig. 5 Inverse pole figure of sample surface under shock peening (Z-direction is shock direction, Y-direction is the sample
surface normal )
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Fig. 7 Lattice rotation contour at the cross section (a) AI(ll_O) sample; (b) Cu(ll_O) sample

dimensional deformation state exists. We will appeal to this aphocked line, the lattice rotation is nearly zégoeen and rotation
parent two-dimensional deformation state when interpreting tldérection reversed across the shocked line, which is consistent
other experimental data presented herein. with the result from sample surface. The maximum lattice rotation
occurs near the sample surface and the value decays as depth
Yfcreases. Figure() shows the lattice rotation of on the cross
section for the Cu(1@) sample. The rotation distribution is simi-
A . ; 2 2 lar in character to the Al sample, but the affected region in the
shown in Fig. 6a). Figure &b) shows the spatial distribution of epth direction is around 15rjm below the sample gsurface,

lattice rotation along four lines across the shocked line Wity er than that of Al sample. Also the total rotation angle varies
spacing=20 um. The red region corresponds to counterclockWisgareen+1.5° rather than- 3°

rotation about theZ-axis which is positive and the blue region

corresponds to clockwise rotation which is negative. Itis clear to 3.3 | attice Rotation Measured by X-Ray Microdiffraction

see that the lattice rotation is zefgreen regionfar away from gpatially resolved residual stress/strain can be measured on the
the shocked line which corresponds to the shock-free regiqgser shock peened surface using X-ray microdiffraction from syn-
Again, the lattice rotation distribution along the shocked line ighrotron radiation source$g]. It is also possible to determine

quite uniform which further suggests the approximate tWQatice orientation on the shocked surface as a byproduct of the
dimensional deformation state mentioned before. The lattice rota:ay strain/stress measurement.

tion value is+3° between*35um from the center of shocked ag discussed if6] and illustrated in Fig. 8, two rotations),
line and the rotation direction is anti-symmetric on both side Qfzg andy scan were applied in the experiment by rotating the
shocked line. ) ) ) specimen until the maximum intensity is located in the detector in
Figure Gc-d) shows the lattice orientation change on thgyder to properly align the specimen in the X-ray apparatus.fThe
shocked Cu(1Q) sample surface. It is clear that both aluminungcan ensures that the mean beam vector of incident X-ray, and not
and copper shows the similar lattice rotation pattern. However, thly other, is at the proper angle with respect to the surface and
region for lattice rotation in the copper sample is aroun20 um  consequently, the proper diffraction angle is recorded by the de-
from the center of shocked line and the maximum value is aboglctor arm. They scan ensures that the normal vector of the dif-
1.5°, both of which are smaller than that of Al(@)Lsample. fracting plane is contained in the same geometrical plane as the
In order to investigate the effect of crystal orientation on latticeicoming and diffracted X-ray beams. These two scans applied
rotation, an aluminum sample shocked on tB81) surface was
also studied. Figure(6—f) shows the lattice rotation contour on
the shocked surface. Compared with result of ARl 1the gen- v
eral trend of lattice rotation such as the rotation direction ar Diffracted X-ra
magnitude is the same, but the shocked region is somewl o
narrower.
Lattice rotation measured from cross section perpendicular 1 P z
shocked line From the measurement mentioned above, we o
tained the lattice rotation result on the laser shock peened surfe
In order to measure the lattice rotation below the sample surfa
and study the spatial distribution in the depth direction, the samy  Incident X-ray
was sectioned via wire EDM and the crystallographic orientatic— eeexe-ou-——__1t_L »¢ || |™ _ _ __  _
of the newly exposed surface was mapped using EBSD. Then-
in-plane lattice rotations beneath the laser shocked surface w ] X-Y-Z stage
measured via EBSD. Here we use the term “in-plane” because t ,/
experimental results indicate an approximate two-dimensional ¢ e
formation state. /
Figure 7a) shows the lattice rotation in the cross section of th I £ scan
Al(110) sample. The lattice rotation varies betweeB° in the
region up to 40um below the sample surface. In the center of Fig. 8 Scan scheme of X-ray microdiffraction

3.2.2 Lattice Rotation Measurement Results. Lattice rotati
measured from top surface across the shocked liféhe lattice
rotation contour map on the shocked Al@)1sample’s surface is

Sample
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rotation on shock peened surface of Cu (11_0) sample.

iteratively optimize the integrated intensity of the relevant refle@nd lattice rotation under laser shock peening indicate that an
tion during alignment. In essence, the sample is rotated aboutaigproximate two-dimensional deformation state exists, we will
Z-axis to perform thed scan, and about it&-axis to perform the assume that the induced deformation state is strictly two-
x scan. Therefore, the in-plane and out-plane lattice rotation cdimensional, which may be greatly oversimplified. However, it
turns out that such an approach can shed significant insight into
Results of these measurements in Fi¢a)9ndicate that the the mechanics of deformation which will be useful when the full
spatial distribution of in-plane lattice rotation for the Al@1L three dimensional problem is addressed in future studies. Simula-
sample is very similar to the EBSD results in Figagand Gb). tions of LSP pose many challenges because of the high transient
The maximum rotation angle is arounti3° at position nearly pressures, fluid-solid interaction and high strain rates in a single
+30 um away from the center of shock line. While the variatiorgrystal at the micrometer length scale which raises the possibility
of out-of-plane lattice rotation in Fig.(B) is only +0.1° which is of the necessity to account for strain gradient effects. Given the

be obtained from th® and y scans as shown in Fig. 8.

quite small relative to in-plane lattice rotation. So this measured
lattice rotation under shock peening is consistent with the uniform
AFM profile along shock direction and two-dimensional in-plane
lattice rotation assumption. Figuregc® and (d) shows similar
results for Cu(1@) sample. Thus, the lattice rotation measure
ments directly complement the material residual strain/stress m
surements. Moreover, it also gives an indication of the extent
the plastic deformation induced by the microscale laser sho
peening. Lattice rotation measured by X-ray microdiffraction i
apparently more uniform than that from EBSD measuremer
probably because X-rays penetrate de€@er~30um), [13], than

the electron beam used in EBS®few micron and thus average

the orientation over a large volume of material. The residual str

measurements that resulted from these experiments are discu

in detail in[6].

4 Theoretical Explanation and Simulations

In this section, we present results of elementary simulations of

I.‘J"

il
Ml
1

100

microscale laser-shock peening. Since the surface deformation Fig. 10 Plastic deformation in single crystal plasticity
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absence of constitutive data in this regime, it is impossible tbhe additional effects modify the baseline solution. Thus, this
incorporate realistically these effects into the model. Hence, wosersimplified approach can shed insight into the mechanics of
will make a grossly simplified assumption of ideal plastic behawdeformation and lay the ground work for more realistic simula-

ior under quasi-static plane-strain conditions while implementirtipns in future studies which will include three-dimensional, dy-

single crystal plasticity. Rate effects, hardening, strain gradiemiamic, and strain-rate effects.

and three-dimensional effects are neglected.

The goal of the simulation is then to attempt to understand the ) ) ) )
overall character of the deformation and lattice rotation fields and4.1 Kinematical Theory of Single Crystal Mechanics
see how much can be predicted by such a simple simulation. ffom single crystal plasticity theory,14-16, there are two
doing so, we can ascertain which of the dominate features of tABysically distinct mechanisms for deforming and reorienting
fields are attributable to the anisotropic plastic behavior of tHgaterials—plastic slip and elastic lattice deformation. In general,
single crystal. Subsequent simulations, which account for moiige deformation gradient of a single crystal that undergoes plastic
realistic material constitutive behavior, can then concentrate hélgformation can be written with reference to Fig. 10 as

X —a— AI{1-10)
] - a- = AI(DO1)
3+ & Cul1-10}
o
[T}
o
[:2]
[
b=
=]
3
e
8
Q) R, R FOYDe TR [N R PR A | T T .. F._l
100 -0 -6l -40 -0 1] 20 44 EQ BO 1040

Distance from the shock line center{um)

Fig. 12 Spatially distribution of latticed rotation on sample

surface from simulation

Journal of Applied Mechanics

F=F*.FP [€))

whereFP corresponds to the deformation caused by plastic shear-
ing on crystallographic slip systems aRd is caused by elastic
stretching and rotation of the crystal lattice. The velocity gradient
of material is given by a standard formula:

L=vV=F-F 1=D+Q. )

TheD and() terms are the symmetric rate of stretching tensor and
the antisymmetric rate of spin tensor, respectively. They are then
decomposed into parts due to plastic slip(QP") and lattice
deformation D*,Q*) as follows:

D=D*+DP, Q=0*+QPF. 3)
The lattice rotation measured in the experiment is e term
integrated throughout the deformation history. The reader inter-
ested in the distinction betwedd* and("-may refer to pg. 107
of Asaro’s review papef,16], for a full discussion of which rota-
tion components leads to the measured lattice rotation field.
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—e—Ali1-10), FEM

- —a- - Al{001), FEM A — Al 1-10}, AFM
Cui1-10), FEM E 291
E -
= T £ oo
s 8
£ £ {
9 s 854
g <
& g
: s "
= &
= =
B g 1.6
B (=]
B aad— . : . ' . . & a0d— ; . ; . ; ;
150 100 5O o &0 100 150 -150 -100 Sl [ =T 105 150
(&) Distance from the shocked line centerium) {b) Distance from the center of shocked line{um)
Fig. 13 Deformation profile in depth direction from simulation and AFM,; (a) FEM result, (b) AFM result

4.2 FEM Analysis of Shock Peening With UMAT Incorpo- x2
rating Single Crystal Plasticity. A user-material subroutine P(x)=Py eXD(—W) (4)
(UMAT) for single crystal plasticity based on theory[it6] and
written by Huand 17] and modified by Kysal18] is incorporated
into the finite element analysis using the general purpose finite
element program ABAQUS/Standarffl9]. In the UMAT, the on the shocked surfacB, is the peak value of shock pressure and
{111(110 slip systems in FCC metal are used for both singlthe plasma radiuR=10 wm here. In order to make a dimension-
crystal Al and Cu. A critical shear strengthrss=1 MPa on each less analysis, all simulation results are normalized as the function
of the slip systems is assumed. The simulation is a two-step quasfitwo dimensionless parameteB/ 7crss, X/R). The boundary
static loading and unloading process corresponding to the shagnditions of the plane strain model are as follows. At the top
peening and relaxation processes. Following the work of Zhaggrface, surface traction equals the applied shock pressure, at the
and Yao[7], shock pressure obeys Gaussian spatial distributiopottom surface, the vertical displacement is specified to be zero
with its 1/? radius equals to/2R, whereR is the radius of and the outer edges are traction-free. In the simulation, elastic-
plasma. Lettingx be the radial distance from the center of thédeally plastic behavior is assumed so that hardening is neglected.
laser beam, the spatially nonuniform shock pres®(pe) is then In order to eliminate “volume-locking” which occurs in plastic

given as deformation simulation, four-node linear elements with reduced
T[HO] T[oo1]
|
Il 5470 I I
110 54.7° -
(110) .oy | MO | . [T10]
i
(a) (b)
T
24
m/ T\
(on—on)i2
5V /A
i\ 1+ n
2+1

(0)

Fig. 14 Three plane-strain slip systems and yield surface in (110) plane; (a) Al(110) and Cu(110) sample, (b) Al (001) sample, (c)
yield surface in  (110) plane
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Fig. 15 Shear strain on active slips under laser shock peening from simulation; (a) shear strain of active slip systems for Al (110)
sample, (b) shear strain of active slip systems for Cu  (110) sample, (c) shear strain of active slip systems for Al (001) sample

integration and hourglass stiffness control are used. Two orientgsds below the laser shocked surface of the A_Q)Jsample are
tions_and two materials are simulated, Al@1 Al (001, and shown. The shock pressure loading has been removed in the sec-
Cu(110). ond step of simulation and the peak value of shock pressure is
B ] ) ) ) Po/7crss= 7. The experimental results with the same material and
4.3 Finite Element Simulation Results. Lattice rotation sgme orientation is shown in Fig(aj. It can be seen that the
field for Al and Cu In Fig. 11(a), the calculated lattice rotation antisymmetric pattern of lattice rotation field and the sign of ro-
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tation (+, counterclockwise—, clockwise is consistent with the systems for all three samples. It can be seen that the shear strain is
experiment result from EBSIFig. 7(a)). The magnitude of rota- close to zero on the top surface for slip system lai.(Since on
tion is around=4° in simulation which is close to th& 3° from  sample free surfacer;,=0, the stress state must lie on the ab-
experiment result. The lattice rotation field in the simulation eXcissa of the yield surface in Fig. (b4 Therefore, plastic defor-
tends over a region across the shock line center with width gfation near the surface is caused by slip systems Il and 11l so that
i4(.)'“m (0 corresponds to cenfeand depth of 35‘“7" ) the shear strain for slip system | is zero near the free surface and
Figure 11b) shows the analogous lattice rotation fields foppy || and 1l slip systems are active. For the region around 20
Cu(110) sample under laser shock peening and the peak value,gf below the surface, all three slip systems are active. Shear
shock pressure iBo/7crss=7 which is the same as that for Al. strain simulation on each slip system is shown in Figlb15or
For Cu(1D) sample, the lattice rotation field is similar with thaiCcy(110) sample also and the result is quite similar with that of
of Al except the magnitude of rotation is only 2.7°, less than thaf|110), except the magnitude of shear strain is 35% less than
of Al (4°). This is consistent with the experimental results frong,5¢ of Al Figure 15¢) shows the same simulation for ADO1)
Fig. 7(b) and it is mainly due to the larger elastic modulus of Clsample; it can be seen that the magnitude of shear strain is almost
Flgure 119) shows the lattice rotation field of AD.OD sample wo times larger than that for Al(10) and the spatial distribution
from simulation. On the shocked surface, the lattice rotation dis gifferent in that the affected region is two times deeper than

rection and magnitude is almost the same with that of AL1 Aj(110). The shear strain in slip system | is also much smaller
sample and consistent with the experiment result in Fg=0. an other two slip systems.

However, the predicted lattice rotation field in the depth direction
is significantly different than that of Al(1Q) in that the affected :
region in depth direction is about two times deeper than that gf anclusmns ) ) )

Al(110) and the magnitude of rotation #s3°, less than the: 4° In this study, new experimental methodologies using EBSD and

of AI(110). The change in sign of lattice rotation which occurgT@ microdiffraction are employed which enable measurement

around 25um below the surface does not correspond to the tra Ithe in-plane lattice rotation component of the deformation gra-

sition from a compressive residual stress state to a tensile resic@ignt under plane-strain conditions. The lattice rotation field under
state, which occurs at approximately gén below the surface. aser shock peening is found to be antisymmetric on and below
Figure 12 shows the predicted spatial distribution of lattice rghe shock peened single crystal Al and _Cuo surface. For the
tation on the sample surface for AI(@), Cu(1D), and A(0oy Al(110) sample, the magnitude of rotation4s3° and covers a
which can be compared with the experiment result from Fitg),6 region around=35um across the shock line center on peened
(d), and(f). The lattice rotation distribution is quite similar to theSurface and reaches 40m below the gurface. For Cu(0})
experimental results. When the position changes from left SgMPI€, the magnitude of rotation is1.5° and the affected re-
shock line to the right, the lattice rotation starts from zero degre8!on is =20 um on surface and 1am below the sample surface.
(beyond +40um) to maximum negative value (4° at ingle crystal plasticity FEM an_aIyS|s shows an interesting corre-
—15um) and after that, the magnitude of lattice rotation deSPondence between the experimental results and theoretical pre-
creases to zero again close to the shocked line center. For the rfgjfions. Lattice rotation fields are quite similar for Al and Cu
side of shock line center, the distribution is antisymmetric with th&ith the same (1) orientation and different for Al with001)
left side. orientation. FEM simulation shows only certain slip systems are
According to the comparison above, it can be seen that tAgtive on shock peened surface with more active below the sur-
lattice rotation fields under shock peening depend mainly upéce. Lattice rotation measurements made as a byproduct of re-
crystal orientation. For the same orientation of FCC material sugilual strain/stress measurements by X-ray micro-diffraction us-
as Al(110) and Cu(1D), the lattice rotation fields are quite simi-"9 synchrotron light source also give an indication of the extent

lar except the magnitude of rotation is less for Cu due to the larggk the plastic deformation induced by the microscale laser shock

elastic modulus and shear strength. If the orientation is differef€€MNY- .
even in same material such as(@01) and AI(1TO), the lattice The experimental methodology and results presented herein set

rotation fields on shock peened surface is still similar, howevéﬂgcsetgsg%;% gj;theer?rﬁéﬁgl gntgiénr:frgéct%ﬁ;?ﬁﬂ:zgﬂ( p(;a:sr;;)r:g
they are quite different in depth direction below the samplB ; P p ‘ p
surface. 1o systematically measure the extent and character of crystal lat-

Figure 13a) and (b) compares the indentation profiles inducecﬁ'ce rotation fields, as well as to measure the induced residual

by laser shock peening between FEM simulation and AFM res Eresses Wit.h micron spatial_ resolution_. Thus itis possible to appl_y
for the AI(lTO) sample. Figure 18) shows “composite” surface ese techniques to determine the optimum laser-shock processing

profile from several AFM measurements across the shocked Ii&%rameterﬂ.e., laser intensity, time of shock, shock spacing,)etc.

. . A ; which induce the maximum residual stress.
As is expected from the approximately incompressible material
behavior, significant pile up around the indentation regisee
Fig. 13b)) is observed and agrees well with simulation resuldcknowledgments
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A Mechanical Model for
Low-Gravity Sloshing in an
w.usumi § AXisymmetric Tank

Machine Element Department,
Technical Research Laboratory,

Ishikawajima-Harima Heavy Industries A mechanical model for Iow-gravjty sloshing in an axisymmetric tan is devgloped using
Company, Ltd., a newly developed slosh analysis method. In this method, spherical coordinates, whose

1 Shinnakaharacho, origin is at the top of the cone that is tangent to the tank at the contact line of the

Isogu-ku, Yokohama 235-8501, Japan meniscus with the tank wall, are used to analytically determine the characteristic func-

tions for an arbitrary axisymmetric tank for which it is customary to resort to numerical
methods. By this means, fast and cost-efficient computation can be conducted. Parameters
of the mechanical model are determined such that the frequency responses of the resultant
force and moment to lateral excitation coincide with those of the actual sloshing system.
Influences of the Bond number and the liquid-filling level on the parameters of the me-
chanical model are examineiDOI: 10.1115/1.1794700

1 Introduction cal model for low-gravity sloshing in an arbitrary axisymmetric

tank subject to lateral excitation. Representation of the slosh dy-

. qu-gravity_propellant sloshing h"’.‘s receivepl_ s_ubstanti_al atteﬂémics in terms of this model is useful for assessing the dynamic
tion in view of its relevance to operations of artificial satellftéf response of artificial satellite because the parameters of the

In Iowhgrlavllty slolshlng, the sgrfac;a tﬁqnsmn c.’I tthe I'?‘;'d pla}l'_ﬁ aQquivalent mechanical model are determined in such a way as to
overwneiming role in comparison 1o the gravitationa torce. Ther, tisfy a dynamic similarity condition that requires the resultant

have been a.considerable .”””?ber of studies ”Fade. on Iolw-g.ra ce and moment of the mechanical model be the same as those
slosh dynamics. For a cylindrical tank, analytical investigationss the actual sloshing system.

were presented for a rigid tafiR—5] and the hydroelastic problem
of a flexible tank botton{6,7]. Sloshing in an arbitrary axisym-
metric tank was analyzed using a marker-and-cell meflgdda
finite difference method9,10], a finite element methodll], and 2 Method of Solution
a numerical approach based on the Ritz methb2]. Further- . )
more, experimental studies were conducted by producing low-2-1 Computational Model. The sloshing system to be con-
gravity environments by means of small-scale mod@<.3, sidered is ;how_n in F|g._ 1. The tank is su_bjected to the lateral
drop-towerg 14], or parabolic flight test5]. accelgrathrf(t) in the x direction. The meanings o_f the symbols
As mentioned above, the low-gravity sloshing problem for afif€ given in t_he Nomenclature. Note that the static Iquld surface
arbitrary axisymmetric tank was generally solved by numericM (menls_cu}*,ls curved strongly due to the surface tension ef'fe_ct.
methods. However, an ingenious application of curvilinear coof"€ meniscud/ reduces to a plane surface under normal gravity.
dinates for which the Laplace equation is separable leads tol 3¢ a@nalysis is performed under the following assumptionghel
computationally efficient semi-analytical method that allows us #luid motion is inviscid, incompressible, and irrotationa); the
analytically determine the characteristic functions of the liquitf"K i rigid; and 3 the oscillatory displacement of the liquid
motion. Based on this idea, the author developed a new methodjféce¢ from its equilibrium positionM is small enough to be
previous paper§l5,16. This method uses spherical coordinated€Presented within the framework of the linear theory.
whose origin is at the top of the cone that is tangent to the tank atp 2 Spherical Coordinates. As shown in Fig. 1, we intro-
the antaCt line of the.m.enlscus W|th the tank Wa“, thereby emce Spherica| Coordinat$ 0, and(P whose 0r|g|ro is at the top
pressing the characteristic functions in terms of the Gaussian Rfthe cone that is tangent to the tank wall at the contact line of the
pergeometric function irrespective of the generatrix shape of thgeniscus. The origi® is above the tank foz.>b (Case 1 and
tank. below otherwise(Case 2. The liquid surface displacemedtis
In the previous papers, the response of low-gravity sloshir@nsidered in theR direction. In terms of the spherical coordi-

was analyzed for the case where an arbitrary axisymmetric tankigtes, the undisturbed and disturbed liquid surfaces and the tank
exposed to laterdll5] and axial[ 16] excitations. It was confirmed wall can be expressed as

that the present theoretical predictions for the eigenfrequency are

in good agreement with the previous theoretical and experimental M: R=Ry(6) 1)
results[14]. Furthermore, the analytical method was extended to a

case in which the shape of the static liquid domain is not axisym- F: R=Re(8,¢,t)=Ru(0)+{(8,¢,1) (2)
metric as with the sloshing problem for teardrop tahkg]. The

purpose of the present paper is to develop an equivalent mechani- W: R=Rw(0) ©)

Cormibuted by the Abolied Mechanics Division offE A © 2.3 \Variational Principle. The slosh analysis is performed
ontributed by the Applied Mechanics Division o MERICAN SOCIETY OF . P ; ~
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- based on a Va”atlonal. principle established as fOI!OV\{S. In the ab
CHANICS. Manuscript received by the Applied Mechanics Division, July 18, 2001$€NC€ of surface Fensmn ar!d gas pressure, the liquid pressure
final revision, April 3, 2004. Associate Editor: W. S. Saric. Discussion on the papgives the Lagrangian per unit volurfig8]. For the lowg sloshing
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligsroblem, we must take into account the potential energy due to the
Mechanics, Department of Mechanical and Environmental Engineering, Univers ; ; [P
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep@%S p_res_surpg_ and the surfaqe .energy associated with the “qUId
until four months after final publication of the paper itself in the ASME@nAL oF  das, liquid-solid, and gas-solid interfaces. Thus we obtain the fol-
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24
z z<h contact line —Pf5GJ JHCOQNF,R)dF} dt=0 (6)
= 2 (r,z)=(rc,zc) F

9 RoR.(6 which yields the field equatiofi7), the boundary condition&)—
1A C(_G M() ) (11), and the volume constant conditioh2),
I\ F 0 1 !¢;t 2 o .
\>‘ > s R=R,(6,0,1) V<=0 in V @)
T M =R, (6) +E(6,9.1) Vé-Nyw=0 on W ®)
; 4 R=R,(6) (0¢1dt)codNg ,R)—V-Ne=0 on F (9)
|
l ol % R pg—p—odivNg=0 on F (10)
0
r ’
a X Case 1 2. >b o cosf.+o,—0,=0 along C (11)
ag
5 J fFEcos(NF,R)dF—O (12)

Since Eq(12) can be derived from the other kinematic conditions
(7)—(9), Egs.(7)—(11) may be regarded as basic equations.
R=R,(6,9:) ExpressingNg, Ny, dF, dW, dC, and co%{ in Eq. (6) in

=RF (6’) ;C(B .1) terms of the spherical coordinates, making the linear approxima-

" Bl tion for the boundary conditions dausing Eq.(2), and using the

£@..1) static equations that are used to determine the meniscus shape, we
R =R, (8) transform Eq.(6) into
R=R,(6)

2 ; Rw
p,f f ef V2 5¢pR? sin 9dRdod
0 Jo JRy

Case 2: z, <b

27 (g ﬂd,
Fig. 1 Axisymmetric tank and coordinate systems ~Pi o Jo € IR R-R
—w

Rwe d¢

[ i o o
ty \Y F Wy
fzﬁf; ad
—ff azdwz}dt=0 4) T, os(g_RR—R
Wp

8¢|r=r Ry Sin6dode
R=Ry,

Ry d¢

RZ, 90

R=Ry

The liquid pressurgp, can be expressed in terms of the velocity ﬁ 2 .
potential ¢, describing the liquid motion relative to the moving ot | 9¢lr=r, Rl Sin6dode
tank
- = e T ) . s
p|:pc—pf{&qﬁ/ﬁt-i-gs[RM(G)COSH—RCOSH] + ePt e +epiRy sin 6 cosef(t)
. . 0 Jo R=R
+Rsin 6 cosef(t)+ %(V¢)2+G(t)} ) . . .
. J J
whereG(t) is an arbitrary time function. ~pi9¢ cosO— 0| Siu(0){+Sm(0) 5+ Sam(0) —z
An important work prior to the slosh analysis is to determine

the meniscus shapey (#) [Eg. (1)]. This static analysis can be 9?

Ru (R},

2
conducted by reducing Eq4) to the principle of virtual work + Sum(0) a—iH SRy sin ﬂdﬁdw—f o
from which governing equations that are equivalent to the Young- ¢ 0
Laplace equation and the contact angle condition can be derived. oL
Because the detailed procedure is explained in R, it is not +R?, 9)*3/2( Ry—— Ry 95)
presented here arR,(6) is considered to be a known function in a0
this paper. 13
Substituting Eq(5) into Eg. (4) and considering the variation (13)
with respect tog, £, andG leads to[15,16 whereS;, (6) (i=1-4) are functions depending on the meniscus
shapeRy,(6). These are listed in E¢33) of Ref.[16].

t
f [Pff f szqb&f)dV—pff f V- NydpdW 2.4 Modal Equation. Because the Laplace equati¢n is
t v w separable for the spherical coordinatgsand { can be analyti-
_PfjJ'
F

8¢ g=gRm(0)sin de=0,
0=6

FYe cally expressed as follows for the free vibration analysis:
Ecos{N,:,R)—Vqﬁ-N,:}ﬁqﬁdF —

d(R,0,0,t)=iwd(R,0,p)e"! (14)
:_ iwt
+ff(pg—p|—adivNF)5§cos(N,:,R)dF _ (6.0 0)={(6.p)e (15)
E with
— ” R\ %1k R\ @2k
+8JC(0'COSB'C+0'1—0'2)5§dC ¢(R,0,<p)—k21[ak i +bk(E) }@k(O)COSqo (16)
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?(0 ) i 0,(0) (17) Fy=FuatFot+Fya (28)
)=, C cos
T Bk ¢ My=M3+M,+ Mg (29)

wherea,, by, andc, are unknown constants, andl, are nor- where

malization parametersy;, and a,, are characteristic exponents

related to the separation variableby a(a+1)=N\, i.e., Fru= J j (—ps)
Wi st

ay=3[—1-(1+MY),  ap=3[ -1+ (144",

FY
- +xf(t)}(NW~ 8)dWyg;  (30)

(18) ap .
and®,( ) is the characteristic function expressed in terms of th'\e/I i f J’wm(pf) Eﬂ(f(t) [(Nw- 802~ (N~ €)x]dWas
Gaussian hypergeometric seriess ’ (31)

OO =sinOF[1—aq, ayt+2, 2, (1-cosh)/2] (19)

Fo= - Nw-€,)dC 32
The characteristic valuk, is determined such that x2 Sfcst( Pg~Pc)¢(Nw-8)dCs (32)

dO,/d6=0 at 6=6 (20)

Substituting Eqs(14) and (15) into Eq. (13) and applying the

Galerkin method leads to algebraic equationsdipr by, andc, .

These equations can be reduced to an eigenvalue problem from Foom | o Ng > (NEX Nw) ‘e,

which eigenfrequencies and mode shape functions can be deter- x3 ¢ INEX(NEXNw)|

mined. In terms of the fundamental mode shape functions, we

expresse and{ as M J’ Ng X (NgX Nyy)
y3—

o———— .
G(R.0,.0) =4 B(R.0,¢) (21) o INeX(Nex N
_ Using Egs.(21) and (22) and expressing the normal vectors in
(0,0, )=0a(t){(8,9) (22)  terms of the spherical coordinates using E@.and (3), we ex-
where q(t) is the modal coordinate. Substituting Eq81) and Press each component of the slosh force and moment in terms of
(22) into Eq. (13) and considering the variation with respect tghe modal coordinate(t) as

My=e fc (Pg—Pc)Z[(Nw- &)z~ (Ny-&)x]dCs;  (33)

dc (34)

(e,z—ex)dC (35)

q(t) leads to the modal equation of the form Fu=Adt) + B () (36)
g+ w?q= Bt 23 " .

drea=pio #3) My1=Cadi(t) + D (1) (37)

2.5 Equivalent Mechanical Model. To develop the equiva- Fo— At 38

lent mechanical model, we first express the slosh force and mo- x2=A20(1) (38)

ment exerted to the tank wall in terms of the modal coordinate M,,=C,q(t) (39)

q(t). The slosh force due to the fluid pressupgsand py can be Y
calculated by taking the dynamical component of the force Fy3=Azq(t) (40)
Mys=Cs5q(t) (41)

Fim f f B (Nuy- )W, + f f py(Nu-e)dW,  (24)
Wy W,

For brevity, constant&, —A;, B;, C;,—Cj3, andD, are not pre-
sented here. When surface tension is not present, we have

o A2:A3:C2:C3:O (42)

Fxay= f fw Pray(Nw-8)dWy g+ f fw Pi,st because the components of the slosh force and momgntF,,
Lst Ldy My, andM; do not arise.

Substituting the solution to the modal equati@8) for the

X(NW’ex)dwl,dy+f Pg(Nw-€)dW,4, (25)  sinusoidal excitation
Wz,dy

That is

whereW; 4, and W, 4, are the variations iW,; and W, respec- f(t)=sinojt (43)

tively, due to the dynamical liquid surface displacement. Hencito Eqgs.(36)—(41) and using Eqs(28) and(29) leads to

the surface elements &%, 4, andW, 4, can be expressed as ) 2
A1Boi+Biwf—w%)— (At A3)B

dW, gy= —dW, 4= —e{dCq; (26) Fx= 7 Sinw;t (44)

2
Wi~ o
Substituting Eqs(5) and(26) into Eq. (25) yields

Ex,dy: f Jw (=p1)

C1B0i+Dy(wf—w?)—(Cy+Ca)B
y= w?— 2 sinw;t (45)

M

i .
E"‘Xf(t) (Nw- &) dWi g
On the other hand, for the mechanical model as shown in Fig. 2,

the equation of motion of the slosh mass and the resultant force
+e . (Pg—Pc){(Nw- &)dCq; (27)  and moment are given by
st
m,i+ku=—m,f(t) (46)

The slosh moment induced by the fluid pressygieandpg can be
calculated likewise. In addition to these fluid pressures, we should
take into account the surface tension force vector applied along
the moving contact lineC. This force vector is perpendicular to
the contact lineC and parallel to the oscillating liquid surfaée
having the magnituder. Thus, the slosh force and moment exThe responses of the forég ecnand the moment, oqnto the
erted on the tank wall are calculated by sinusoidal excitationt43) are

Fyx.mech= klu_mo.f(t) (47)

My, mecr= Kal 1u—mglof (t) +mygu (48)
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z whereSis the planez=z., including the static contact lingsee
Fig. 1), Ng is the outer unit normal vector of the plageandV,
is the domain bounded by the tank walll; ;; and the planes.
X SinceNg-e,=0, Eq.(60) becomes

Bi=—piVo (61)

which transforms Eq(58) into

1
Mg+m;=p¢Vo— F(A2+A3),’3 (62)

For the case Be»x, p;V, is equal to the liquid mass;V because
the planeS coincides with the liquid surface. Furthermore, the
second term on the right-hand side of E8R) vanishes, as can be
seen from Eq(42). Hence, the sum of the slosh and fixed masses
is equal to the liquid mass.

On the other hand, for finite Bond numbepsV, is larger than
the liquid mass and the following discussion can be made. First,
when the frequency»; of the acceleration(43) of the tank is
lower than the eigenfrequeney of the sloshing, the slosh force
component~,; is out of phase with the acceleratiof3) of the
tank. Hence, it can be seen from Ed4) that

Fig. 2 Mechanical model

Ky —mg( wfz_ wrznecl“)
I:x,mech: 2_ 2 sinwit (49)
W~ Wmech

Kql1— Mgl o( @2 — w2, .. +m
My e LT Oeed TN G () AB>0 (63)

2_ 2
W§ ™ Wmech

Second, the dynamic liquid pressurep;d¢/dt and the outward
where liquid surface displacemente{ are in phase for an arbitrary,
omeor= (kg /M) Y2 (51) andpy is larger thampc . This fact renders the force components
mech AR F,, andF,, given by Eqs(30) and(32) out of phasgthe phase
The parameters of the mechanical model can be determined frdifierence is 180fto one another. Hence, from Edqd4) and(63),

the dynamic similarity condition that requires we can see that
Fx,mech: Fx (529) —A,8<0 (64)
My meci= My (52b) Third, the dynamical component &,; is in phase with thep

o . derivative of the outward liquid surface displacementd/d¢p at
for any frequencyw of the excitation. First, from Eq52a), the  ,—270°, which is in phase witlf,,. Therefore, it is revealed
fixed and slosh masses and the spring constant are determineg s Egs.(44) and (63) that

mo=—A;8-B; (53) —A3B>0 (65)
1 It can be expected that the combined effecFgf andF,5 satis-
ml=Alﬁ—;(A2+A3),8 G4 fies —(A,+A3)B<0 and consequently makes the sum of the
fixed and slosh masses given by E6R) close to the liquid mass.
ky=mw? (55) In fact, this conservation of mass is satisfied by the values of the

fixed and slosh masses numerically computed based on the

and then from Eq(52b), the z coordinates of the slosh and flxedpresem theory.

masses are determined by

C.8+D
=22 (56) .
—Mg 3 Numerical Results
—mglgw?—D30?—(Cy+ Cg) B—Mmyg The numerical computation is carried out using dimensionless
l1= K (57)  quantities normalized by the characteristic lengfhmassp;b?,
and frequencyw.,. The Bond number defined by
From Egs.(53) and(54), the sum of the fixed and slosh masses b2
is Bo— P9 (66)
1 g
Mo+m;=—By— —5(Ax+Ag)B (58) is used as a dimensionless parameter relating the magnitude of

gravity to surface tension. The characteristic frequency is defined
Equationg(30) and(36) indicate that the parametBy, is given by by

wep=(g/b)*? for Bo#0 (67a)
wen= (0l psh®)Y? for Bo=0 (670)

Figure 3 shows the dependence of the slosh mass on the Bond
number and the liquid-filling level for the case of a spherical tank

and a contact angle of 5° between meniscus and tank wall. It can

B,= —pff f f div(xex)dvo+pff fx(Ns- e)dS be seen from Fig. 3 that when the Bond number is decreased for a
Vo S given liquid-filling level, the slosh mass decreases. For high
liquid-filling levels, the slosh mass is small because the liquid

= _PfVo+Pff jX(NS'ex)dS (60) surfaceM is narrow and results in small kinematic energy of the
s liquid relative to the tank given by

Bl: _pff j X(NW‘ex)dwl,st (59)
Wi st

By using the divergence theorem, E&9) can be transformed
into
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0.4
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===21( 1.0
% o2 b 100 Bo =0, 1,10, 100, ®
o 0.
Frrm Bo=0 110 | | | 1

0.0
0.0 ‘

o |~

| ] | 0 20 40 60 80 100
0 20 40 60 80 100

Fill %
Fill %
Fig. 4 Dimensionless position of fixed mass
Fig. 3 Dimensionless slosh mass

Cl:bA11 D]_:bBl (70)
1 ] 20 1 ) as can be seen from EqR0), (31), (36), and (37). Substituting
Zf f jv (V¢)dv= Zj JM¢(V¢ Ni)dM Egs.(53) and(70) into Eqg. (56) leads tol ,=Db.

Figure 5 shows the coordinatel ; of the slosh mass. For non-
1 zero Bond numbers, the variation lgfwith the liquid-filling level
+§J' f d(Ve-Nw)dW  (68)  can pe explained by the dependence of the dimensionless eigen-
W frequencyw/(g/b)*? on the liquid-filling level(Fig. 6) as follows.

where the integral over the tank waW is zero in Eq.(8). The By using Egs(53)—(56), Eq.(57) can be transformed into
small values of the slosh mass for low liquid-filling levels are | 1 02Ce—(Cot C 1
evident because the total liquid mass is small. Thus, the slosh n_-9 (Co 3)_ (71)
mass is small for both high and low liquid-filling levels and con- b b w'A—(A+Az)  w(glb)

sequently exhibits a maximum value at a certain intermedia®, (e case Besoo. in which the surface tension effect is not

liquid-filling level. ken i II, the relati 7 f E
Another significant observation that can be made from Fig. Sﬁgl;a?n[[rg)to account at all, the relatioGt2) and(70) transform Eq.

that the liquid-filling level yielding the maximum slosh mass is

lower for the case of finite Bond numbers than for the case Bo I 1
—oo, in which the surface tension effect is not taken into account. b 1- w?l(g/b) (72)

The reason for this can be discussed as follows. The magnitude of
the dynamic liquid pressure applied along the generates0 of The dimensionless eigenfrequenay(g/b)"? increases with in-
the tank wall is large near the contact pointz.. Hence, the creasing liquid-filling level, as can be seen from Fig. 6. Therefore,
magnitude of the forc€,, given by Eq.(30) is greatly influenced 1.1/b increases with the increase of the liquid-filling level. For
by the direction cosinély,- e, of the unit normal vectoN,y at the ~finite Bond numbers, the variations bf/b with the liquid-filling
contact pointz=zc. This direction cosine is maximal ar=1, level determined from Eqg71) and (72) exhibit a similar ten-
which corresponds to 50% filling level for Be=. The forceF,, dency because the relatid@®,=bA, holds[see Eqs(32), (33),

for Bo— is maximum at somewhat higher 65% filling level,(38), (39), and(69)] andC; does not largely differ froniA; for
because an increase in the liquid-filling level extends the areasnall contact angles for the following reason. The vedtr

the tank wall subjected to the liquid pressure. When the Bond(NgXNy,) appearing in Eqs(34) and(35) can be expressed in
number is decreased while keeping the same filling level 65%, tig¥ms of the linear combination of two vectors that are exactly and
contact point goes up reducing the valueNg§- e, at the contact approximately proportional tdly, as

point and, therefore, the magnitude of the fofeg decreases.

Consequently, the liquid-filling level yielding the maximum mag-

nitude of F,; becomes lower. Also, the variations in the ampli-

tudes of the force componerfs, andF,; with the liquid-filling 0.8
level exhibit a tendency similar to the dependencé-gf on the

liquid-filling level due to the following factors:

a. Ny- e, that appears in Eq32) is maximum atzc=1.

b. As can be seen from Eq&2) and (34), F,, andF,; are /
influenced by the length of the contact line and the amplitude of
the liquid surface displacemeijtat the contact point; the former
is maximum atzc=1 while the latter increases as the liquid-
filling level increaseg$15].

-+ 0.4
b

As a result, the amplitudes of the force componéfyts, F,,, and

F,s are maximum at nearly the same liquid-filling level. Hence, 0.0
althoughF,, is out-of-phase withF,; and F,;, the total slosh

force is maximum at a liquid-filling level that is lower than the Fill %
liquid-filling level giving the maximum magnitude of,; for

Bo— oo,

Figure 4 shows the coordinate of the fixed mass. It can be 1.0
seen from Fig. 4 that thecoordinatd ; of the fixed mass is equal
to the radiud of the tank irrespective of the Bond number and the
quuid-fillin.g level. This is due to the fact that for a spherical tank, 0.0 0 20 40 60 80 100
the following relation holds.

(Nw- €)z— (N €,)x=Db(Ny-€,) (69)
This relation results in Fig. 5 Dimensionless position of slosh mass

o |~

Fill %
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1.8 &, &, & = unit vectors inx, y, andz directions
o ~ F = disturbed liquid surfaceFig. 1)
16 L f(t) = acceleration of tank ix direction
: g = gravitational acceleration
@ 100 lg, 11 = zcoordinates of fixed and slosh masses, re-
8" 14 spectively(Fig. 2
(b) M = meniscugundisturbed liquid surface, Fig) 1
10 mg, Mm; = fixed and slosh masses respectivéhg. 2)
12 - Ng = unit normal vector of pointing into liquid
domain
1.0 1 ! L L Ny = unit normal vector oM pointing into liquid
0 20 40 60 80 100 domain
Ny = unit normal vector ofW pointing outwards
Fill % from liquid domain
pc = static liquid pressure at contact line
pg = gas pressure
° 10 p; = liquid pressure

q(t) = modal coordinate

( . ) %l\ R, 6, ¢ = spherical coordinated=ig. 1)
? 1 ! 1 RF(Q,QD,t) =

pb 0.0 function expressing shape of disturbed liquid
0 20 40 60 80 100 surfaceF (Fig. 1)
Fill % Ru(6) = function expressing shape of menisdds
(Fig. 1)
Fig. 6 Dimensionless eigenfrequency Rvo, Rwes = dRy/d8, d?Ry /d6?
Rw(#) = function expressing shape of tank wéflig. 1)
Rwe = dRy/d6
_ ) _ . _ _ V = liquid domain(Fig. 1)
N X (NgX Nyg) = (N Nu) Ne = (N Ni) Ny = Ni: cosfl n(% W — tank wall (Fig. 1
. ) ) W,, W, = liquid-solid and gas-solid interfaces, respec-
and the magnitude of this vector assumes a constant valui sin tively
as can be readily seen from a geometrical consideration. B = coefficient in modal equatiof23)
For the case of Be 0, on the other hand, the second term on e = 1 and—1, respectively, for Cases 1 and 2
the right-hand side of E¢(71) vanishes. This indicates that the (Fig. 1)
variation ofl /b with the liquid-filling level is not strongly influ- ¢ = liquid surface displacemertEig. 1)
enced by the dependence of the dimensionless eigenfrequency on 0 = maximum value off (Fig. 1)

the liquid-filling level shown in Fig. 6. Thereford, /b for Bo fc

. . = contact angle between meniscus and tank wall
=0 is almost constant, as can be seen from Fig. 5.

6¢ = contact angle between disturbed liquid surface

) and tank wall
4 Conclusions pr = liquid density

A mechanical model for low-gravity sloshing in an axisymmet- ¢, o,, 0, = surface energy per unit area associated with

ric tank has been developed in this paper. The parameters of the liquid-gas, liquid-solid, and gas-solid inter-
mechanical model were determined such that the resultant force faces, respectively

and moment of the mechanical model are the same as the slosh ¢ = velocity potential describing the liquid motion
force and moment. In evaluating the slosh force and moment, relative to the tank

dynamical forces due to the pressure difference across the liquid- o = eigenfrequency of sloshing

gas interface and the surface tension force applied along the mov- w; = excitation frequency

ing contact line were taken into account in addition to the dynami-
cal liquid pressure. Numerical results were presented for a
spherical tank. The numerical results show thatvhen the Bond
number is decreased for a given liquid-filling level, the slosh maf¥eferences

decreases;)2he liquid-filling level yielding the maximum slosh 1] Abramson, H. N., ed, 1966, “The Dynamic Behavior of Liquids in Moving
mass is lower for finite Bond numbers than for infinite Bond num-  Containers,” NASA SP-106.

ber; 3 the height of the fixed mass is equal to the radius of thel2l Dodge, F. T., and Garza, L. R., 1967, “E)fp(e”rimental and Theoretical Studies
tank; and 4 for nonzero Bond numbers, the variation of the height gg'gf‘ggsmsm”g at Simulated Low Gravity,” ASME J. Appl. Mecla, pp.

of the slosh mass with the liquid-filling level can be explained by [3] Bauer, H. F., and Eidel, W., 1990, “Linear Liquid Oscillations in Cylindrical
the dependence of the eigenfrequency on the liquid-filling level,  Container Under Zero-Gravity,” Appl. Microgravity Techno2, pp. 212—220.
whereas for zero Bond number, the height of the slosh mass ik Satterlee, H. M., and Reynolds, W. C., 1964, “The Dynamics of the Free

. o . Liquid Surface in Cylindrical Containers Under Strong Capillary and Weak
almost constant since it is not strongly influenced by the depen- Gravity Conditions,” Technical Report LG-2, Dept. of Mech. Eng., Stanford

omech = eigenfrequency of mechanical model

dence of the eigenfrequency on the liquid-filling level. University, Stanford, CA.
[5] Peterson, L. D., Crawley, E. F., and Hansman, R. J., 1989, “Nonlinear Fluid
Slosh Coupled to the Dynamics of a Spacecraft,” AIAAZTZ, pp. 1230-1240.
Nomenclature [6] Bauer, H. F., and Eidel, W., 1993, “Hydroelastic Vibrations in a Circular
A,—A;, B; = constants in slosh forddegs. (36), (38), and Cylindrical Container with a Flexible Bottom in Zero-Gravity,” J. Fluids
(40)] Struct.,7, pp. 783—-802.
[7] Tong, P., 1967, “Liquid Motion in a Circular Cylindrical Container With a
Bo = Bond numbefEgs.(66)] Flexible Bottom,” AIAA J., 5, pp. 1842-1848.
b = half height of tank(characteristic length, [8] Hung, R. J., and Lee, C. C., 1992, “Similarity Rules in Gravity Jitter-Related
Fig. 1 Spacecraft Liquid Propellant Slosh Waves Excitation,” J. Fluids Str@cpp.
—_ H 493-522.
C = contact “n.e [9] Chu, W. H., 1970, “Low-Gravity Fuel Sloshing in an Arbitrary Axisymmetric
C,;—Cs, Dy = constants in slosh momeftqs.(37), (39), Rigid Tank,” ASME J. Appl. Mech.37, pp. 828—837.
and (41)] [10] Concus, P., Crane, G. E., and Satterlee, H. M., 1969, “Small Amplitude Lateral
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A Brief Note is a short paper that presents a specific solution of technical interest in mechanics but
which does not necessarily contain new general methods or results. A Brief Note should not exceed
2500 wordsor equivalent(a typical one-column figure or table is equivalent to 250 words; a one line
equation to 30 words Brief Notes will be subject to the usual review procedures prior to
publication. After approval such Notes will be published as soon as possible. The Notes should be
submitted to the Editor of theoRNAL OF APPLIED MECHANICS. Discussions on the Brief Notes
should be addressed to the Editorial Department, ASME International, Three Park Avenue, New
York, NY 10016-5990, or to the Editor of theoURNAL OF APPLIED MECHANICS. Discussions on

Brief Notes appearing in this issue will be accepted until two months after publication. Readers who
need more time to prepare a Discussion should request an extension of the deadline from the
Editorial Department.

Volumetric Constraint Models for the present note we examine three volumetric constraint models of

a linearly elastic anisotropic solid. The following definitions are

Anisotropic Elastic Solids used for that examination:
1. A material is calledrigidtropic if it does not deform(i.e.,
Carlos A. Felippa experiences zero strajnsinder a specific stress pattern,

which is a null eigenvector of the strain-stréssmpliance
matrix. The term “rigidtropic” is used in the sense of “ri-
gidity in a certain way” as defined by that eigenvector.

Department of Aerospace Engineering Sciences and
Center for Aerospace Structures, University of Colorado,

Boulder, CO 80309-0429 Mem. ASME 2. A material is calledsochoricif it does not change volume
under any applied stress systé], Sec. 77. Alternatively:

Eugenio Orate the volumetric strain is zero under any stress state.

International Center for Numerical Methods in 3. A material is callechydroisochoricif it is isochoric under

hydrostatic stress. Isochoric materials are hydroisochoric but

Engineering(CIMNE), Edificio C-1, c. Gran Capitas/n, the converse is not necessarily true.

Universidad Politenica de Cataltes, Campus Norte _ _ _
UPC, 08034 Barcelona, Spain As noted the three models coalesce for an isotropic material.
For an arbitrary anisotropic solid, however, it will be shown that
imposing a isochoric or hydroisochoric constraint may produce a
compliance matrix that has at least one negative eigenvalue. This
We study three “incompressibility flavors” of linearly elastic an-means that under some stress system the material is able to create
iSOtrOpiC solids that exhibit volumetric constraints: iSOChoriC, hyenergy, Contradicting the laws of thermodynamics_ Such model
droisochoric, and rigidtropic. An isochoric material deforms With-cannot represent a physically stable material. On the other hand,
out volume change under any stress system. An hydroisoch@ge rigidtropic behavior it is easier to control material stability for

material does so under hy_drOStatiC stress. A r|g|dtr0p|c materi%ny type of anisotropy because constraints are posed directly on
undergoes zero deformations under a certain stress patteffie spectral form.

Whereas the three models coalesce for isotropic materials, impor-

tant differences appear for anisotropic behavior. We find that iso-

choric and hydroisochoric models under certain conditions m . .

be hampered by unstable physical behavior. Rigidtropic mod?s Compliance Relations

can represent semistable physical materials of arbitrary anisot- We consider a linearly elastic anisotropic solid in three dimen-

ropy while including isochoric and hydroisochoric behavior asions referred to axefx}. Stressesr; and strainse;; will be

special cases.[DOI: 10.1115/1.1748318 arranged as six-component column vectors constructed from
the respective tensors through the usual conventions of structural
mechanics:

0=[011 03 033 013 O3 U3ﬂTv
1 Introduction e=[e1; ey €33 2€1, 2653 2e3] . (1)
An incompressible linearly elastic isotropic solid does not déFhe strain-stress constitutive equations in matrix notation are

form under hydrostatic stress. It does not change volume under e c c c c C.]
H i : § i 11 12 13 14 15 16
pressure. Since deviatoric and volumetric deformations uncouple, ey o1
no volume change occurs under any stress state. The three volu- €55 Coz Cpz Cyy Cys Cye O
metric constraints just stated coalesce, and it is sufficient to I c I c
. . . . €33 33 34 35 36 033
qualify the material as incompressible. e=| 5 =
A more careful study is necessary for anisotropic materials. In €23 Cas Cus Cys|| 23
2ey Css Csgl| 73
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 2eq, 012
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- symm Ces
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August 9, B )
2002, final revision, February 15, 2004. Associate Editor: K. R. Rajagopal. =Co. (2)
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HereC;; are compliance coefficients arranged into the symmetrigigenvaluesf5 3 2 1.181038 0.180074].0The compliance matrix
compliance matrixC. All diagonal entriesC;; are assumed to be is semistable. The null eigenvector defining the rigid mode; is
nonnegative with a positive sum. The compliance matrix is called \547351/25/6 100Q".

stable, semistableor unstableif C is positive definite, positive Hydroisochoric:

semidefinite, or indefinite, respectively. In the semistable case it

will be assumed tha€ has a rank deficiency of at most one to 1 —11/27 -95/432 0 0 0
simplify the analysis. The eigenvalues @ are y; for i —11/27 1/4 —23/432 0 0 O
=1,2...6, withy; being the corresponding eigenvector normal-
ized to length/3. (This nonstandard normalization simplifies link- Coo— —95/432 —23/432 19 0 0 (
ing up to the hydrostatic stress vector in Sections) 4itcord- hyd™ 0 0 0 2 0 0
ingly the spectral decomposition is
0 0 0 0 5 0
la - 0 0 0 o0 0 3
§2 Yivivi =36, ®3) . -
= 432 —-176 —-95 O 0 0
whereg; is the Kronecker delta. The eigenvalues will be arranged —176 108 -23 O 0 0
so thaty;= Ymin IS the algebraically smallest one ang= ymax 1] -95 -—23 48 0 0 0
the maxnmum For stable or semistable models=0 and v; =___ )
>0 for j= 6. 432 0 0 0 576 O 0
If y1=0 the material is rigidtropic according to the definition 0 0 0 0O 1440 0
given in the Introduction, withv, defining the corresponding
stress pattern. The volumetric straingis=e;;+ e€,,+ e33. Isoch- L O 0 0 0 0 864

oric behavior is mathematically characterizedeyy= 0 under any
o. Hydroisochoric behavior means that,=0 under o

©)

=p[11100QT for anyp. These constraints are mathematlcall)ﬁ'gem’alues[5 321.208689 0.2115860.059158. The compli-

expressed in terms @ as follows:

ance matrix is unstable. Isochoric:

rigidtropic:  y,=0, ¥;>0, i=2,...6. L —allr2 —=31/72.0 0 0
—41/72 1/4 23/(72 0 0 0
hydroisochoric: C;+Cyyt+ Cazt+2C5+2C 3+ 2Cy3=0. —31/72 2372 1/9 00 0
Ci. =
isochoric:  Cyj+Cy+Cs=0, j=1,2,3. (4) ® o 0 0 200
. . . 0 0 0 0 5 0
Diagonal compliances are often known reliably from exten-
sional and torsion tests. Off-diagonal entries are typically less | O 0 0 0 0 3
amenable to accurate measurement. Volumetric constraints, for 144 -82 —62 O 0 07
example on volume change, are checked with triaxial tests. In any
case, such constraints may be satisfied only approximately. Refer- —-82 36 46 0 0
ence[ 2] discusses projection and scaling techniques for finding a _
p y . ) . 1 62 46 16 0 0
reference model” that satisfies constraints accurately while re- - )
moving spurious instabilities due to experimental noise. 1441 0 0 0 288 O 0
0 0 0 0 720 O
| 0 0 0 0 0 437

3 Examples

Eigenvalues|5 3 2 1.508781 0-0.147669. The compliance ma-

The following examples of compliance matrices pertain to aflix is unstable.

orthotropic material with théx;} aligned with the principal ma-
terial axes. The diagonal entries are kept the same. The three
nonzero off-diagonal entries are adjusted to meet the definitions

(4). 4 Hydroisochoric Model

Rigidtropic: Assume that the material modeled 18) is hydroisochoric.
1 -3/8 —3/16 0 0 0 Consequently
—3/8 1/4 -1/48 0 0 O [ Ciu Cip Ciz Ciy Cis Cyg)
o —-3/16 —1/48 19 0 0 O Cos Coz Cyy Cys Cy S
"9 0 0 0 2 00 Co— Csz Cas Csz5 Csg|| p
0 0 0 0 5 0 P Cau Cus Cue|| O
| 0 0 0 0 0 3 Css Cse g
(144 -54 —-27 0 0 0] | symm Ces
-54 36 -3 0 0 0 [ P(C11+C1o+Cyy) e
11-27 =3 16 o 0o 0 P(CyotCoptCya) €2
"4 o o o 28 o of © = p(cngff%) 2ee3233 :
0O 0 0 0 720 0 €y 2e4
0 0 0 0 0 437 2e3 2e1;
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W|th ev = ell+ 622+ e33 10F : ' e
=P(Cp1+ Copt Ca3+2C 15+ 2C131+2Cyy) B=C/Cs %
—o. ®) 8 §
(The value of the shear strains is of no inteneEhe complemen- =S
tary energy density produced ly, is unstable
1.1 1 6
Uﬁ:EUpCUpZEP(911+922+933):Epeuzo- (9)
But ypzl/{gl(a-go-) =Z/{;/(3p2) =0 is the Rayleigh quotient af;, 4t
with C. According to the Courant-Fisher theorel®], v, must lie iall
in the closed interval Ymin » Ymasl: POtefmab ly
semistable
Y1 Yp=0<7s. (10) 2} =1
If o, is not an eigenvector a@: Co,#0, the leftmost equality in 2
(10) is not possible. Consequently . . . unstable |
¥1<0, (11) 0 2 4 6 8 10
and the model is unstable. o=0/C

If Cop,=0 the sum of the first three columrier rows of C i
must vanish. The hydroisochoric model then coalesces with tEF?dri
isochoric one, which is analyzed next.

1 Stability chart for the principal minor (12) of an iso
c material as function of the ratios C11/Cy and Cy1/Cg3

5 Isochoric Model stress mode. For an anisotropic material medgenerally will
The model is isochoric if the sum of the first three roes contain shear stresses. Introducing effective pressurep as

columng of C is the null six-vector. Equivalentlyr, is a null =1/3w" o and effective volumetric strain as=w'o, the volu-
eigenvector ofC. The Rayleigh quotient te¢.0) does not offer metric and deviatoric energies can be uncoupfafl, _
sufficient information on stability and a deeper lookQtis re- If the rigid stress mode is,, rigidtropic reduces to isochoric.

quired. Nonetheless sufficientcriterion for instability can be de- This inclusion is pictured in Fig. 2.
rived by considering the upper33 principal minorC. From the

last of (4), C must have the form 7 Isotropic Material
[Ciy Cp  Cys If the solid is isotropic with elastic modulus>0 and Pois-
_ son’s ratiov,
C= Cz Cys
C
symm C33 _ :
_ 1 1 1 -v —v 0 0 0
Cu > (C33—=C11—Cy) 5 (C22—=C11—Cs) 1 —v 0 0 0
_ 1 1 1 0 0 0
Co 5 (C1i—Cpp—Csq9 | "E 2(1+v) 0 0
symm Cas 2(1+v) 0
(12) | symm A1+v) |
This matrix is singular. Takinge=C;/C, and 8= Cy,/Cgs for (14)
convenience, an eigenvalue analysis shows @hat indefinite if
2 1Jrl)<1+ 1oL (13)
a B Bl

and is positive semidefinite if the inequality is reversedClfs Rigidtropic
indefinite, so isC and the model is unstable. @ is semidefinite,

an eigenvalue analysis of the compl€es required to decide on Semistable

Isochoric

stability. The stability regions o€ are shown in Fig. 1, where semistable =
« . R "o g . . . hydroisochoric
potentially semistable” indicates that confirmation by a analysis % semistable =

incompressible

of the full C is required. An exception is an orthotropic material
referred to principal material axes, in which case no further tes ¥
are necessary €44, Cs5, andCgg are positive.

Figure 1 illustrates that a wide range of diagonal compliances i
C is detrimental to stability. For example if= 3, instability is
guaranteed to happen far>4.

Isochoric
unstable

Unstable

Hydroisochoric
unstable

6 Rigidtropic Model

If C is nonnegative withy,;=0 andw=v; is the only null  gjy 5 schematic of inclusions between rigidtropic, isochoric
eigenvector the material is rigidtropic under that stress mode. Rg{d hydroisochoric models. The crosshatched area marks a
an isotropic materialw=[11100Q"= o,, the hydrostatic singular C matrix.
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Under hydrostatic stress,,, e,=3(1—2»)p/E, which vanishes fellowship from the Spanish Ministerio of Educaniy Cultura
for v=1/2. It is easy to verify that it=1/2,e,=0 for anyo and while visiting CIMNE over the period April through June 2002.

the material is isochoric. Furthermous, is the only null eigen-

vector of C. Consequentlyy,=vy;=0 and C has no negative Nomenclature

eigenvalues. The definitions of rigidtropic, incompressible and
isochoric behavior coalesce for this model.

C
8 Conclusions Cjj
It remains to pin down the label “incompressible.” In con-

tinuum mechanics this term means that the stress is determined bye__

the deformation history only up to a hydrostatic pressure or “extra

stress”p ([4], Sec. 30. This is equivalent to what we call here the 6
hydroisochoric model, which as previously shown for semistable

materials merges with the isochoric model. Restricting attention to v\',

the semistable case, the model nesting is: o

Isotropic semistablke Hydroisochoric semistable B

¥i

=Incompressible Rigidtropic. (15) ;',

g

These and related model inclusions are sketched in Fig. 2. From a
mathematical standpoint, the splitting techniques used for the Cp
rigidtropic model by Felippa and @te[3] apply equally to iso- gij
choric behavior, and no special distinction for the incompressible
case needs to be made.

We do not consider here the comparatively rare case of a com-

compliance matrix

upper 3x 3 minor of compliance matrix
entries of compliance matrix

elastic modulus of isotropic model
strain 6-vector arranged as pdy

strain tensor components

volumetric strain

amplitude of hydrostatic stress state
eigenvectors of compliance matrix

null eigenvector of singular compliance matrix
compliance ratiadC,,/Cyy

compliance ratidC,;/Cs3

eigenvalues of compliance matrix
Poisson’s ratio of isotropic model
stress 6-vector, arranged as [p&r
hydrostatic stress 6-vector

stress tensor components

strain energy density
stress(complementaryenergy density

pliance matrix possessing two or more zero eigenvalues. For th@®eferences
the analysis is complicated by the appearance of a mUIt'd'men[l] Truesdell, C. A., and Toupin, R., 1960, “The Classical Field Theoriefhd-

sional null space. Such “multi-rigidtropic” models require sepa-
rate treatment.

book der PhysikS. Flugge, ed.lll /1, Springer-Verlag, Berlin.
[2] Courant, R., and Hilbert, D., 195Rjethods of Mathematical Physids Inter-

science, New York.
[3] Felippa, C. A., and Qate, E., 2003, “Stress, Strain and Energy Splittings for
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A Basic Power Decomposition in systems, a derivation of Lagrange’s equations based on such an
approach was first published by Synge and Schild], who

Lagrangian Mechanics proved that Lagrange’s equations are just the covariant compo-
nents, in the configuration manifol of the constrained system,
of Newton’s second law. In this kind of derivation, no appeal to

J. Casey the concepts of virtual displacements, virtual velocities, nor vir-
Mem. ASME, tual work is necessargalthough the majority of authors of mono-
Departments of Mechanical Engineering and graphs on tensor calculus still prefer to employ thesee, e.g.,
Bioengineering, University of California, [11,12)). Moreover, the exact physical content of Lagrange’s

equations is revealed clearly. Recently, Cqse8} showed that, in
6125 Etcheverry Hall, Synge and Schild’s type of derivation, it is actually possible to
Berkeley, CA 94720-1740. bypass the cumbersome manipulations of Christoffel symbols,
e-mail: jcasey@me.berkeley.edu. while maintaining the logical thrust of the original argumawmn

additional major advantage of the geometrical approach to dynam-

ics is that it places the subject in the rich mathematical environ-

) ment of the global theory of differential equations on manifolds, a

[DOI: 10.1115/1.1778413 theory which is undoubtedly one of the most beautiful and pow-
erful in all of mathematic.

1 Introduction

In Lagrangian mechanics, under certain conditions, the Jacgbi Representation of Particle Systems in Configuration
energy integral exists and plays a fundamental (eke[1-6]). pace
More generally, when Jacobi’s integral does not exist, it is stiﬁ ) o ] )
possible to gain useful engineering information from a consider- Consider a system consisting of particlés (i=1,... N)
ation of power versus rate-of-energy relations. In the present nofeoving relative to a Newtonian frame of reference under the in-
we are concerned with a system Nf(=1) particles subject to fluence of forces and possibly subject to time-dependent holo-
general holonomic and non-holonomic constraints. The uncof@Mic and non-holonomic constraints. Liet with rectangular
strained physical system may be represented by an abstract gz@ttesian componentsq{,x?,x’), be the position vector of the
ticle P in a 3N-dimensional Euclidean configuration space. In thparticle P; relative to the origino of the Newtonian frame, let
presence of holonomic constraints, the motiorPaé confined to  M; (>0) be the mass d?;, and let the total mass of the system
a submanifoldM whose dimension is equal to the number obem. Let the resultant force vector acting 8beF;, and denote
generalized coordinates needed to describe the system. In genéslrectangular components byF{,F2,F?). We represent the
M moves throue?h configuration space and may also change ptsysical system by an abstract parti€leof massm moving in a
shape with time. Now, the velocityv of P can always be ex- fixed 3N-dimensional Euclidean vector spacepnfiguration
pressed as the vector sum of two componentandv” such that space E3V, as follows: The coordinatas (i=1,2, ... ,3N) of P,
V" is the velocity of the poin& (say) of M thatP occupies at time taken along mutually orthogonal axes through an arbitrarily cho-
t, andVv’ is the velocity ofP relative toA. It will be shown that sen originO, are identified asu®2,uf L u¥y=(x!x?x?), (i
when this decomposition is employed, the corresponding portions; > * N). Correspondingly, the position & may be repre-

P’ andP" of the total powerP of the forces acting on the par- senteq py its position vector A metric onE3N may be defined b
ticles, can be expressed as time derivatijgertial and total of yrsp y y

portions of the kinetic enercyThese expressions furnish a con- ,

venient means for calculating the power expended in moving the de(P,O):E Miri'rizz mi(u')?, 1)

manifold M, and in movingP relative toM. This is particularly =1 -

useful in the former case, because the constraint forces that meugere m,;_,=mg_;=mg=M; (i=1,2, ... N). Thus, the dis-

M would have been eliminated from the Lagrangian analysis. tanced of P from O is defined to be the radius of gyration of the
The discussion is presented both in terms of physical quantitiggrticle system about the origimin physical space.The corre-

and abstract variables in configuration space. A few remarks kponding inner product is

garding the desirability of the latter geometrical representation are N

in order: e 1 N

Several different approaches to Lagrange’s equations can be [r.r*]= 521 Miri-ri, @

found in the literature. These vary both in generality and in the -

degree of physical insight that they provide. Some are based where the asterisk denotes a second set of position vectors for the

d'Alembert’s principle and the principle of virtual work, while system. The position vector oP can be expressed as

some others use variational principles. With the advent of Rie=33N u'e, whereg (1=1,2,...,3) are pairwise orthogonal

mannian geometry and tensor calculus in the 19th century, a nésisis vectors, whose magnitudes are determine@bYA recip-

abstract approach to dynamical theory arose, represented meghl basise (i=1,2,...,3N) may be defined by the conditions

cogently, perhaps, by Her{z]. In 1927, Syngd8] argued pas- [d e]=¢, (i=1,2,...,;j=1,2,..., ), where & is the

sionately for an approach to dynamics that is phrased in geomeftfonecker delta, having the value unityiifj, and zero other-

cal terms using the analytical apparatus of the tensor cal¢sis \,ise \We introduce an abstract force vectbrin E3N by @
also Section 186 of1], as well as Synge’s addre4$§), to the ’ y

American Mathematical Society in 198%-or constrained particle

N 3N

The corresponding derivation of Lagrange’s equations for a single rigid body and
a system of rigid bodies may be found[it¥,15. A similar derivation of Lagrange’s
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  equations for a pseudo-rigid body is given[it6].

MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- “The qualitative study of ordinary differential equations was initiated by Henri
CHANICS. Manuscript received by the ASME Applied Mechanics Division, MarchPoincare(1854-1912 well over a century ago, and has truly blossomed during the
25, 2003, final revision, February 6, 2004. Associate Editor: I. Mezic. twentieth century. See the monographs by Arridid], Abraham and Marsdefi8],

1A simple example is provided by a heavy bead sliding on a spinning wire who&uckenheimer and Holmd49], Marsden[20], and Marsden and Ratj21] for an
motion is prescribed as a function of tinfa special case of this is analyzed in account of modern developments. See also Hif&&h and Smalg23].
Example 3 at the end of the natdn practice, almost all mechanical engineering  °This inertia metrig or more precisely, thenoment of inertia metriovas utilized
devices involve parts that move on other moving parts. by Hertz[7] (see[13,14] for further references

’See Eqgs(15a,h and(6). 5Thus, the magnitude of each of the first three of these vectafgigm.
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=33 ¢p.d with (Dgi_p, P51, Pg)=(FLF2F3), (i ho assumption whatsoever is being made regarding the nature of
i=1%1% 3i—21+F3i—1+3i it . . ..

—1,... N). Newton’s second law, written for each partiélg, is the constraint forceswhich may, for example, be dissipatjve
equivalent to the vector equation Recalling the relationship that the abstract vectore bear to

- physical position and force vectors, and making us€4df we
d=mr (3) obtain

in E3N (see[13]). Thus, the dynamics of the unconstrained physi- N P
cal system is now represented by the dynamics of a single abstract Q,= 2 = Rl (y=1,2,...n). (10)
particle P of massm moving through configuration space. =1 aq”

In the presence df holonomic constraintsl(<3N), which are ) .
allowed to be time-dependerf®, will be confined to a moving Further, we note that the velocity ¢ (i=1,2,...N) can be
manifold M, called theconfiguration space of the constrainedéXPressed as
system or simply the constraint manifoldof dimensionn=3N

—L.” Let q*(a=1,2,...n) be convected coordinates dvi; vishi=vitvi, (=12, N) (112)
these are our “generalized coordinates.” The position vectd? of with
can now be written as a functian=r(q“,t). The covariant basis
vectors inM are defined by o ary
V=2 —q% V'=— (i=12,...N). (11b)
ar a=1 aqa ot
8. =gqs (a=12....n). (@)

3 The Power Decomposition

The  inner roducts a,z=[a,,as], =12,...n; . .
b «p =80 3] (a n Let P be the power of all of the forces acting on the system, i.e.,

B=1,2,...n) furnish a Riemannian metric dvi. The velocityv
of the particleP has the decomposition N
v=V'+V", (5a) P= zl Fi-ri=[®,v]. 12)
n
, - It is obvious from(12), (3), and(6) that
V=3 aa, (55) (12, 3, and(® th
“ P=m[v,v]=T. (13)
V' = &_r, (50) Further, it is evident froni12), (5), and(11a,b) thatP can always
ot be decomposed as
The component”=Vv"(q%t) is the velocity of the poinA of M P=P’+pP" (14a)
that P instantaneously occupies at tintg the componentv’ '

=v’(q%q%,t) is the velocity ofP relative toA, and it lies in the n N

N
tangent space thl at A. In general, these two components are noP’ =[®,v' |= E qu7= E Fievi, P'=[®V']= 2 Fievi .
orthogonal to one another. The kinetic energy of the system can be r=1 i=1 i=1

expressed as (14b)
T=Imv,v]=T,+T,+To, (6) One can now establish the following resuits:
wheré . d aT
n o P :ﬁ(Tz_To)"‘ R (1%3)
Tmamv v I=3mY, Y a4 (73)
=-m[v,v']==m a,50%qP, A
2 2E pro Loy T 15
. = a( 1+2Tg)— e (1%0)
Tl:m[v’,v”]:mgl b.q%  b.=[Via], (e=12,...n) To prove(15a), note that by virtue of (14), and(8),
(75) o “fd[aT| aT). .,
1 I " = —_— — —_——
To=3zm[V",V"]. (70) = ldtioag?)  ag” q
The Lagrange’s equations for the system can be written in the q
general form :E (_ ﬂqy _ ﬂqy_ ﬂqy . (16)
y=1 dt aq)’ aq)’ (yqy
d|[oT aT
dtl g g =Qy, (y=12,...n) (®)  But, in view of (6) and (7a,b,c)
where aT 1 & 1
—=-m, aqf+sm>, ag qf+mb,,
Q,=[®a,] (y=12,...n) ©) oqr 2 TP 2 TR 4
are the covariant components @f in the manifoldM.° These (y=1,2 n) 17)
“generalized forces” need not be derivable from a potential, and B
Hence,
7Recall t_hat non-holonomic constraints will not alter the dimension of the con-
straint manifold. 10The formula (15a) appears in published lecture not§&4], p. 89 of Paul

®Note that the lengthds of the line element inM is related toT, by ds”  Ppainleve(1863—1933 His course, given at the University of Lille in 1891, and at the
=(2T,/m)/mde. The kinetic energyl, depending on both generalized coordinatesFaculty of Sciences in Paris in 1895, was devoted to the integration of the equations
and generalized velocities, is a function defined on tmediEnensional tangent of mechanics. | am not aware of any earlier reference. See also PdiagyAppell

bundle ofM at timet. [26], and Brillouin[11]. In addition to his contributions to mathematics and mechan-
9The left-hand s[de of8) is equal to then covariant components of mass timesics, Painlevavas active in politics. He became French minister for war in 1917, and
acceleration, i.e[mv,a,] (see[13] for details. subsequently was minister for aviation.
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T L S s -
;Eyq =2T,+T,. (18) T at :
Example 2 Suppose tha® is constrained to move on a frictionless

Also, the total time derivative oT is given by horizontal circle fixed at the origin of a Newtonian frame, and

JT JT P having a prescribed radil$t). Suppose that no other forces are
T= _+E —q7+ _qv) (19) applied toP. Here, the constraint manifold is a time-dependent
gt =1\ aq” aq” circle centered at the origin and we may take the polar coordinate

6 as our generalized coordinate. Leg (e;) be the usual ortho-

normal basis of polar coordinates. The covariant basis vector is

) ay=dr/d0=le,. The velocity components in5b,c) are v’
o +—T. (20)  =46(ley), v'=le . The kinetic energy oP comprises

5=

_1_ 1292 — 1.2
Equation(15a) follows immediately from(20), (18), and (6). T er.1| o, .Tl 0. To=aml® . . (28.)
Equation(15b) may be readily deduced frofd3), (14a), (6), and The only force acting ol is that of the constraint and it points
(20). in the radial direction. The Lagrange’s equationdiglt(dT/d6)
We mention two important consequences 1a): =0, which yields the angular momentum integral®6=const.
(I) Suppose thatta) the constraint forces do not contribute toThe power decomposes as
the powerP’; and (b) the remaining forces are derivable from a

From (16) and (19), it is clear that

d{ < JT.
[ —q”

potential functionV. Let L=T—V be the Lagrangian function. r_n— i _ ﬂ
Then, P'=0=q;(T2 To)+ -
O T-Tor v+ =0 21 popr—2 810 T i) 29
Gt (T~ To+ V) + —=0. (21) =P'=2- - —=m(i- 1)L, (29)
To prove this, note that in view of assumptiéin, the covariant Example 3Suppose tha® is constrained to move on a frictionless
components of the nonconstraint forces wiltbhe rigid circle that is rotating with constant angular velocityabout
a fixed vertical axis under the influence of gravity. Let us use
. oV spherical coordinates 6, ¢, the anglep being measured from the
Qy=- ; (y=12,...n). (22)  positive z-axis. Takinge as our generalized coordinate, the posi-
q tion vector of P is r=r(¢,t), and the velocity components in
The contribution of the componen@}, to the powerP’ is (5b,c) arev' =¢(le,), v'=1Q sinp e,. The kinetic and potential
energies are
n n
Y AV . ]
> Qrgr=—2, =1 —q7=—-V. (23) T,=3ml2¢?, T,;=0, To=3mlPQ2%sirte,
— = Y
vt =t V=mglcose. (30)

By assumptiona), the constraint forces contribute nothing Orhe constraint force has the fornN=N.e +N.e.. The
P’. With the help of (14), and(15a), it then follows that Lagrange’s equation yields— (g/l + 02 cos<p)sri(re1r<p:g. (zl'he La

N . d AL+V) grangian does not depend explicitly on time. We therefore have a
E*V= a(TszOH o (24) Jacobi integral(25). The portionP” of the power is

from which (21) can be concluded at once. p’=2 ﬂ =ml?Q2p sin 2¢, (31)

(I (Jacobi Integral. In addition to the condition&) and (b) dt
assumed ir{l), suppose that the Lagrangian does not depend &x., the power supplied bM,, .
plicitly on t. Then,(21) immediately yields the integral: Example 4 Suppose tha® is confined to move on a fixed plane
_ - - z=0 under the action of potential forces. If fixed Cartesian coor-
T,=To+V=const=E’ (say. (5) dinates are used, obvioudB/=0 andT+V=const. Instead, take

another frame of reference, also witk 0, but which rotates with

4 Examples constant angular velocit§) about thez-axis. Let (b;,b,) be an

Let us take some illustrative examples involving a single paorthonormal basis fixed to the rotating frame and let the position
ticle P of massm. The configuration space now coincides with therector of P be written ag = pb; + p,b,. The constraint manifold
physical three-dimensional space having the ordinary Euclideihcoincides with the rotating frame. Choosipg andp, as gen-
metric. eralized coordinates, we see that the covariant basiMois

Example 1 Suppose tha® moves on a horizontal plarfeleva- (b,,b,). The velocity components ifbb,c) are
tor floor) that is being driven vertically upwards in a Newtonian ,_ . 0
frame. The floor is the constraint manifold. Using a fixed rectan- V'=pabitpoby,  VI=(= pobitpiby). (32)
gular Cartesian coordinate system, we may write the velocity The kinetic energy oP has the three portions

components in5b,c) asv’' =xi+yj, v"=hk, whereh=h(t) is a T= 2024 52)  Tr=mOpcoo— i
prescribed function. The force acting &his F=F,i+Fj+(N 2=2M(pitpz). T (p1p27 p1pP2),
—mg)k, whereN is the force supplied by the floor. The kinetic To=3mQ2(p3+ p3), (33)

energy ofP? comprises andV=V(p,p»,t). The Lagrange’s equations yield

T,=m(2+y?), T,=0, To=3imH2 (26) oV ,
. .. ——=m(p;—2Qp,— O ,
Lagrange’s equations yielthk=F,, my=F,. The two por- apy (P1 P2 Py
tions of the power that appear ifl4b) are P'=Fx+Fy, N
P”"=(N—mg)h. Equations(15a,h reduce to — ﬁzm(bﬁz&)plfﬂzpz). (34)
2
UThe potential function if22) may depend explicitly o. In view of the definitiong14b,c),
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System Identification Including the where ;= VElo/pA(i7/L)*~T/pA(i/L)?, & andm; are the
L oad Environment reduced modal frequency, the damping ratio and the modal mass

of the ith mode;fi(t)=EleP,(t)Yi(x|(t)) is the modal force.
Since the modal shape functions of the prestressed beam resemble

Z. R. Lu those of a beam without prestress fori®, and it can be written
in the normalized form e_téj(i(x)_z \/27Zp_AL5 siniz/Lx for a sim-
S. S. Law ply supp(.).rted beam. .ertlngz) in matrix form
B - [IHQDI+ICHRI+ ([KI-[K'D{QMI={F(1)}, (3)
Civil and Structural Engineering Department, the modal response of the system under load is computed in the
The Hong Kong Polytechnic University, time domain numerically by using the Newmark’s integration
Hunghom, Kowloon, Hong Kong scheme[10].

3 Identification of the Prestress and Moving Forces

[DOI: 10.1115/1.177841]2 Expressing the measured displaceméitts,, ,t) at a pointx,,
from the left support in modal coordinatesy(Xpy,,t)

=2i'\':lei(x)qi(t), (m=1,2,... Ny, orin vector

1 Introduction Vv =[YIn xnd @i (4)

A number of methods for the identification of the axle loads ofhere{y1,, ., is the vector of displacements lf, measurement

vehicles using a bridge's static and pseudo-dynamic reSPONg S ations. The vector of generalized coordinates can be obtained

have been developefll-5]. Identification of moving loads has  _: : :

; L using the least-squares pseudo-inverse. A generalized orthogonal
ﬁqeeetﬂoﬁg%e%;?ﬁ;rﬁgglg t;)t/etrge g:j;rr]r?eﬁtsg?s]'otkt)r\:; eﬁorvien)qslgr;%spolynomial,[7], is used to model the measured displacement so as
not consider the influenze frorﬁ the environment or th% S stet reduce the computation error for the modal velocity and accel-
. ; ; X ysteMation. The velocity and acceleration are then approximated by
itself, respectively. This paper attempts to include the external

¢ X . e . e first and second derivatives of the orthogonal polynomial. Af-
orce system in the identification of system parameters of a SIMRY. < ome transformations. we have

supported beam. The dynamic response of a prestressed beam ’

under moving load is studied based on modal superposition in a[K’]{Q(t)}+{F(t)}:[I]{("g(t)}+[C]{Q(t)}+[K]{Q(t)}.
forward problem. An inverse problem to identify both the pre- (5
stress force and the moving load is then formulated. It is further
extended to include the flexural rigidity of the beam as variable
the identification. Results from the studies indicate that the ide
tification of both the system parameters and the moving loads wi
normal modal testing technique is feasible even with noisy data. {F(t)}=[BYP(1)}. (6)

atrix [K'] contains the prestress fordewhich is assumed con-
tant throughout the length of the beam. The vector of generalized
ce{F(t)} can also be found from

Rewriting Eq.(5) in a simple form
2 Equation of Motion {drhnxa THBlnxn (PN, x1={r fnxa (1)

The bridge deck is modeled as a single-span simply supportggy vectolr] contains all the terms on the right-hand side®t
unbonded prestressed uniform Euler-Bernoulli beam subjected§(7) T is the unknown prestress force of the beam #R()} is
a set of moving load#, (1=1,2,... Np) as shown in Fig. 1. he unknown moving load vector to be identified.

These forces are assumed to be moving as a group at a prescribeghe inverse problem is to solv@) in the time domain. Since

velocity v(t) along the axial direction of the beam from Ieft topoth T and{P(t)} are uncoupled;7) can be further simplified into
right. The equation of motion of the beam can be written as

) , . [BalX={r} (®)
Y - ay(xt)  _dy(xt) 4 7y(x,1) T
pA S —t¢ ot +T >+ —Ele——— where[By]=[{d},[B]], X={;p}. The prestress forc& and the
ot IX X IX moving load{P} can be calcuﬂated directly using the least-squares
Np method.
:2 P, (1) 8(x—x,(1)) 1) In order to have bounds on the ill-conditioned solution, the

damped least-squares method is adogtet], and singular value

decomposition is used in the pseudo-inverse computation. The
prestress force and moving loads can also be identified from the
measured strains. The strain at the bottom of the beam at a point

moment of inertia of the beam cross sectidnthe externally "t the left support can be expressed similaf4rin terms of
applied compressive axial for¢aote that compression is posntlve,[r’]"e generalized coordinates as

and tension is negatiyey(x,t) the transverse displacement func-
tion of the beamx(t) the location of the moving loaB,(t) at the - ho

time t, N, the number of the moving loadi(t) the Dirac delta {e0m O} == S [Y' ) Hai(O}  (M=1,2,... Np). (9)
function andb is the width of the beam.

=

where p is the mass densityd the cross-sectional area, the
damping of the beant the Young’'s modulus of materialy the

Expressing1) using generalized coordinates, The rest of the computation for the identification is similar to that
1 for identification from measured displacements mentioned above.
. w2a:(t) = —f. e .
G0+ 28 @iq(0) + oV m; fi®, 2) 4 Identification of the Prestress, Moving Forces, and

the Flexural Rigidity of the Beam
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; ; : ;
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Other variables in the system should also be included in the

CHANICS. Manuscript received by the ASME Applied Mechanics Division, June Zi,dentiﬁcation_ fc_)r a real applicatiqn_. _One parameter that i_S sub-
2003; final revision, Jan. 21, 2004. Associate Editor: O. O'Reilly. jected to variation is the flexural rigiditi 1, of the beam section.
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Fig. 1 A simply supported prestressed beam under N, moving loads

Table 1 Errors in the identified single moving load and pre-

stress force (in percent ) {r'}=0KQM}+[CKQ()} (11)
The rest is similar as Section 3.

Noise Level
Number of
Vibration Modes 1% 5% 10% 5 Simulations
3 5.8/27.2 6.0/28.9 7.6/36.0 A 30-meters long simply supported Euler-Bernoulli beam with
g giggi ggggg g%gj{g an axial prestress force of 03=8.2247x10°N is studied,
6 4:8/25:8 4:9/27:6 5:4/32:7 where T, is the critical buckling load of the beam anm.,

=m?Ely/L2. The first six natural frequencies of the beam are:
Note: «/» denotes errors for the moving load and the prestress force, respectivelyl.03, 4.75, 10.11, 19.56, 30.67, and 44.25 Hz. The damping ratios
for these six modes are all equal to 0.02. The prestress force is
assumed constant along the beam. The moving load is taken as
f we have a uriform uncracked beam in the problem, we haige) 22 S0 tne beam &L 20 mié from the et to
prestress forcd, flexural rigidity Ely, and moving loadP(t) as 9

X . > L 0! ” right supports. The parameters of the beam gi&=5.0
the three variables in the identification. Rewriti(@ as X 10° kg/m, E=5x10°N/m?, L—30m, b=0.6m, and h,
{dthnx1TH[Bloxn {P(1)}n x1—{dg }Elg =1.0m. The flexural rigidityEl, of the beam is calculated as
P ° 2.5x 10° Nm?. White noise is added to the calculated displace-
={r'}nx1 (10)  ments and strains to simulate the polluted measurements. 5% and

z
(a) moving force
-05¢ —
_1 1 1 1 1 1 1 1 1 1
x10" 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
27 T T T T T T T T L T
i Fyo
i - Fyo
1h AR — P . ! ! i
1 ot / - N2
1 S A N NIUEANE S
. N\ . AN - - .
= 0.3/'\'\_'/ \../ ~ 7 \ t e
vy * !
: i
-1F (b) prestress force ¢4
1
1l
-2 ! 1 1 1 { 1 1 L [ 1t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
Time( second)
Fig. 2 Identification of single moving force and prestress force (— true, ... 5% noise, --- 10%
noise )
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0° This is because the measurement noise has been substantially re-

) i " i ‘ moved by the orthogonal function approximation.
/7 N

1
[
LH—W Case 2—Ildentification of two moving loads, prestress force and
] -
by
|
1

z Of N the flexural rigidity of the beam.
1 (a) first moving force

|
:: The two moving loads are

0)\(1:05 0.2 0.4 0I6 0'8 1 1o P,(t)=20,0001+0.5sin27t)—0.3siM10xt)] N,
9 — . y T " I' P,(t)=20,0001+ 0.5 sif27t)+0.2 sif10xt)] N.

i _ V= 7 A moving as a group at 4-meters spacing at 30 m/s from left to right.
z 0 Yy The sampling rate is 500 Hz and four modes are used for the
(b) second moving force identification. 5% noise is included in the response measurements.
2 . The same system as for Case 1 is studied. Figure 3 shows that the
0.2 0.4 0.6 08 1 1.2 identified prestress force, two moving loads and the flexural stiff-
ness are fluctuating around the true values, especially around the
middle half of the time histories.

-1

N
T

4 6 Conclusion

This paper includes the load environment in the system identi-
] fication of a structure. A method is presented in the time domain
Q1g° 02 0.4 0.6 0.8 1 12 to identif_y the prestress fo_rce and the_ flexural rigidity of a Euler-
— T T T T 1 Bernoulli beam under moving loads with regularized solution. The
: s =y 11 noise effect is minimized using orthogonal polynomial functions.
Y | Copytd The method gives some good results from the first few measured
|

]

1

*b) prestress force v E
.

Nfm?
o

by modes and data obtained from several measurement points. Nu-
merical results demonstrate the feasibility of indirectly identifying

both the moving loads on the beam and prestress force as well as

0 0.2 04 086 0.8 1 12 the flexural rigidity of the beam from noisy measurements.
Time( second)
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that: (a) the error decreases with the increase in the number of th€7] zhu, X. Q., and Law, S. S., 2001, “Orthogonal Function in Moving Loads
vibration modes used in the identificatiofh) the error in the Identification on a Multi-Span Bridge,” J. Sound Vi245, pp. 329-345.

moving load is much less than the error in the prestress force. Thit! k/l"z":’/'inz's; dalrcliin%irf}géti);n?l]’ 25%%% d“\s,ii‘,‘§§4°3p[’gée{f’§7§ea’“ Models in
may be due to the reason that the response is not sensitive to tfp@ Abraham. M. A.. Park. S. Y., and Stubbs, N., 1995, “Loss of Prestress Predic-
prestress force; an@) the error is not sensitive to the noise level tion on Nondestructive Damage Location Algorithms,” SPIE Smart Struct.
in the response measurements. Mater., 2446 pp. 60-67. ) _
Figure 2 shows the identified results from measured strains witH? Teggam t‘hvgiéfﬁp% "GAMZTO" of Computation for Structural Dynamics,”
5% and 10% noise. There is only a slight difference in the tim?ll] Tikhonov, A. M., 1963, “On the Solution of Illl-Posed Problems and the

histories of the identified moving load with the two noise levels.  Method of Regularization,” Sov. Math4, pp. 1035-1038.
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The Effect of Warping Stress on the pressive stress and so the warping stresses can simply be added

into the local compressive stress caused by bending to conduct the

Lateral-Torsion Buckling of local and distortional buckling analyses.
Cold-Formed Zed-Purlins

. . . 2 Analytical Model
Xiao-ting Chu, Long-yuan Li, and Roger nalytical Mode

Kettle Consider a purlin, the section of which is shown in Fig. 1, that
. . . . is laterally restrained in the translational direction but free in the

School of Engineering and Applied Science, Aston rotational direction, which is the case for most practical applica-

University, Aston Triangle, Birmingham B4 7ET, UK tions. Let the origin of the coordinate systemy,z) be the cen-

troid of the cross section, with theaxis being along the longitu-
dinal direction of the beam, and the and z-axes taken in the
ap_lane of the cross section. The strain energy of the beam due to

An analytical model is developed for analysing the elastic later - -
vt P ysing deflections and rotation can be expressed as

torsion buckling of cold-formed zed-purlins with partially lateral
restraint from metal sheeting. The model is used to estimate the
effects of warping stresses on the lateral-torsion buckling behav-

. i . . . E (] [d?w)? d?w d% d%v\?

ior of cold-formed zed-purlins with various boundaries and inter- U :_j [| (_ 21—~ 1. =] ldx

val braces provided by antisag bars. The results show that the ° 2 J [ M dx YZdx? dx® 7l dx?

warping stress only has remarkable influence on the lateral- ) 9,2

torsion buckling when the boundary of the member is fixed and GJ (!(d¢ dxt v '[d°¢ :
there is no antisag bar presen{.DOI: 10.1115/1.1781178 2 J,\dx Xt o L dx? X 1)

wherev and w are the deflections of the beam in tgeand
z-directions, ¢ is the angle of twistl, and |, are the second
1 Introduction moments of the cross-section area aboutythend z-axes, |, is
) ) ) . the product moment of the cross-section ateds the Young’s
Cold-formed sections are widely used as purlins or rails, thfiodulus,G is the shear modulus, is the torsion constan€,, is
intermediate members between the main structural frame and the warping constant, andis the span length of the beam. The
corrugated roof or wall sheeting in light gauge steel constructioperresponding work done by the uniformly distributed uplift load,
These cold-formed sections are produced in a variety of formg, | is
such as zed, channel, and sigma, which are inherently sensitive to
local, distortional, and lateral-torsion bucklifd,2]. In the codes W= ' v 2
and standards local buckling is taken into account by using effec- o qu(aqb v)dx @
tive widths for plane element$3—6], originally developed by

Winter [7] from the post-buckling analysis of plates under com-

pression. This concept has now been extended to account for ‘(H"éere a IS thg distance petvyeen the loading “n.e and the web
(fentral line. Since the purlin, in the present case, is assumed to be

effect of distortional buckling of edge-stiffened elements or qaterall restrained in its upper flange, the angle of rotation can be
stiffened elements with an intermediate stiffengs,6]. The y . Pp ge, 9 .
xpressed in terms of the horizontal displacement, ig.,

lateral-torsion buckling of cold-formed members is generally caﬁ >w/d. whered is the midline de -
. = , pth of the section. The deflec-
i which he efects of warping torsion. prior 1o bucking, is norioTS: 2(X) andw(). and the angle of wisty(x) due to the
mally not consideredg] ’ ’ externally_applled load can be determined by employing the prin-
As most cold-formed sections are restrained by cladding glrple of minimum potential energy as follows:
metal sheeting, the loads acting on the sections not only cause
bending of the member about its two principal axes but also tor- S(Ug—W,)=0 3)
sion of the cross section. Recently, [I8] developed an analytical © ° '
model for predicting the lateral-torsion buckling of cold-formed
zed-purlins partially restrained by the sheeting. The model consid-
ers bending and torsion for both pre-buckling and buckling analy-
ses. However, the torsion considered in the model is only non-
warping torsion. In other words, the longitudinal stress generated
by warping torsion is ignored in the model, which is the same as
that treated in the lateral buckling of beams.
This paper is a further development of Li's model to consider
the effect of warping stress on the lateral-torsion buckling of cold-
formed members. It is well known that, when a thin-walled beam
has one or more cross sections that are constrained against warp- M;
ing, a complex distribution of longitudinal warping stresses is
developed. These longitudinal warping stresses, together with the
longitudinal stresses generated by the two bending moments, may

cause the beam to have local, distortional, or lateral-torsion buck- I |
\

ling. In the present paper, the focus will only be on lateral-torsion
buckling. Local and distortional buckling only use the local com-

y
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ¥, M
Py

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 22,
2003, final revision, November 25, 2004. Associate Editor: S. Mukherjee. Fig. 1 Analytical model for lateral-torsion buckling analysis
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Fig. 3 Comparison of critical loads for no antisag bar purlin.

(a) Both ends simply supported.  (b) One end simply supported
and the other end fixed. (c) Both ends fixed.

Span in meters

Fig. 2 Comparison of critical loads (a=b/2). (a) Both ends

simply supported. (b) One end simply supported and the other | d?vy, d?w,
end fixed. (c) Both ends fixed. Wl:_j j Oy ¢b(ZW_yW) dAdx
oJA

After the deflections and rotation are determined, the pre-buckling 1! _— depy\? d (! )
longitudinal stresses can be calculated which are then used to 3 Txw (Y7 +2 )(W dAdx= 7 | gy¢pdx
calculate the work done by the stresses through the buckling dis- oA °
placements as follow$8]: 4)
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wherev,, andw,, are the buckling deflections of the beam in the ported or that has one or two antisag bars. The influence of the
andz directions, andp,=2w,/d is the buckling angle of twist, warping stress on the critical load is noticed only in the case
oyp and oy, are the bending and warping stresses generated Where the purlin has no antisag bars and is fixed at least at one
the pre-buckling bending and twisting moments, respectivelgnd. The influence is found to decrease with the increased span
which can be calculated directly from the obtained pre-bucklingngth.

displacementsy, w, and ¢. In Eq. (4), the first term represents The influence of the warping stress on the critical load due to
the work done by the pre-buckling bending stress, the second tevarious loading positions is shown in Fig. 3 for the purlin without
represents the work done by the pre-buckling warping stress atisag bars. Again, the influence of the warping stress on the
the third term represents the work done by the distributed load datical load is found merely in the purlin with one or two fixed

to the load that is acting above the shear celifdr,The expres- ends. It is interesting to notice that the worst case associated with
sion used for calculating the strain energy generated by the the lowest critical load occurs when the load is placed at the
buckling displacements is the same as @gbutv andw need to corner between the flange and the lip, whereas the highest critical
be replaced by, andw,. The minimum critical buckling load load occurs when the load is applied through the central line of the
and the corresponding buckling mode displacements can thusvieeb. The influence of the warping stress on the critical load is

determined by the following variational equation: variable. When the warping stress is considered, the critical load
factor is reduced fora=b/2 and a=b, but increases when
(U3~ AW;)=0 5) a=o.

where\ is the loading proportional factor. If the work done by the, .
warping stress is neglected in E@), then the present model4 Conclusions
reduces to the conventional lateral buckling modg8s10-13. An analytical model based on the energy method has been de-
In the present study, both Eq) and (5) are solved using a Vveloped to estimate the effect of the warping stress on the lateral-
numerical method in which cubic spline interpolations are used torsion buckling of cold-formed zed-purlins subject to partial-
construct the deflection distribution with seven nodal displacéateral restraint from the metal sheeting under a uniformly
ments as the unknowns. The numerical solutions are not sensitiljgtributed uplift load. From the present numerical studies the
to the number of points chosen, as long as there is at least dakowing conclusions are drawn:
e s Do i 1 s hech s The remariabe nflence of e warging sess on he crica
boundary conditions. In this way, the variational E.and (5) Ioao! for Iate_ral—torsnon buckling of the partlal—lateral_ly re-
are reduced to the matrix forms of a set of linear algebraic equa- strained purlin was found only when the purlin was fixed at

tions and a set of eigenvalue equations. The details of the numeri- least at one end and no antisag bars were present.

cal treatment can bge found inqour a 'e[ra;], and thus are not  ° For simply supported purlins or purlins with antisag bars, the
Papais), effect of the warping stress on the critical load for lateral-

presented further here.

torsion buckling is almost negligible.
* As far as lateral-torsion buckling is concerned, the ideal load-

3 Numerical Example ; ) > h .

) ) P ) ing place is at the web central line as this leads to the highest

The pu_rlln considered h_ere is that: web demth'ZOZ mm, values of the critical load.

flange width b=75mm, lip length c=20 mm, thicknesst
=2 mm, Young's modulu€ =205 Gpa, Poisson’s ratie=0.3, References
and yield stressry= 390 Mpa. The boundary conditions for the [1] Hancock, G., 1997, “The Behaviour and Design of Cold-Formed Purlins,”
lateral displacementy andw,,, are simply supported whereas, Steel Construction15(3), pp. 2-16.
for the vertical displacemenu and v are specified in each [2] Davies, J. M., 2000, “Recent Research Advances in Cold-Formed Steel Struc-
individual = h th b lin is lat I trai tures,” Journal of Constructional Steel Reseai®h, pp. 267—-288.
Inaivi _ua case. d (_)r cases wnere the pur m IS laterally res ra'”ecﬂs] British Standards Institution, 1987, BS5950, Structural Use of Steel in Build-
by anti-sag bars it is assumed that the position of the bars be at the  ing, Part 5. Code of Practice for Design of Cold-Formed Sections, BCI.
center of the spa(for one ba)' or at 3/8 and 5/8 of the span |ength [4] European Committee for Standardization, 1996, EuroCode 3, Design of Steel

(fOI’ two barg. The Ioading density is assumed as thpyt Structures, Part 1.3: General Rules for Cold Formed Thin Gauge Members and
2 . . ) 2 Sheeting.

= 12My/|_ for purlins with both en_qs fixed anqy: 8My/I fc_’r [5] American Iron and Steel Institute, 2001, North American Specification for the

purlins with other boundary conditionsvhereM,=2al,/d is Design of Cold-Formed Steel Structural Membggft edition.

the yield moment [6] Standards Australia/Standards New Zealand, 1996, Cold-Formed Steel Struc-

: : tures, AS/NZS 4600.
The present pre bUCk“ng stress analySlS showed that the Warﬁé} Winter, G., 1947, Strength of Thin Steel Compression Flanges, Cornell Uni-

ing stress is considerably lower than the two bending stresses and versity Engineering Experimental Station, Print No. 32.
is strongly dependent on the position of the applied load, bound+g] Li, L. Y., 2003, “Lateral-Torsion Buckling of Cold-Formed Zed-Purlins
ary conditions on the beam and whether there are any antisag bars. Paﬂi;ll-l-atera"y Restrained by Metal Sheeting,” Thin-Walled Struin,
; ; _ press.

The.refore’ the I.nﬂuence of .the warping stress on the I.aFeral [9] Timoshenko, S. P., and Gere, J. M., 196lheory of Elastic Stability
torsion buckl!ng is examined in terms of _the boundar_y conditions, " \cGraw-Hill New York.
loading positions, and the number of antisag bars. Figure 2 shows]| Tarnai, T., 1979, “Variational Methods for Analysis of Lateral Buckling of

i iti i i i Beams Hung at Both Ends,” Int. J. Mech. S@1, pp. 329-337.
the comparison of critical loads of the purlin with and without ' F : F
considering the warping stress, for three different boundary contt! ?Zeésgs_”leéb 'é-' 1989, “Lateral Buckling of Beams,” Comput. Stru8&(5), pp.
ditions. The results show that, the warping stress has almost M) Lee, J., and Kim, S. E., 2002, “Lateral Buckling Analysis of Thin-Walled

influence on the critical load for the purlin that is simply sup-  Laminated Channel-Section Beams,” Compos. Stri&8, pp. 391—399.
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Effect of Loop Shape on the propagate farther. Fly casters sometimes say these loops “stay

. . aerialized” longer and also use the term “climbing loops” to de-
Drag-lnduced Lift of FIy Line scribe this effect. The purpose of this note is to explain this ob-
served phenomenon by analyzing the drag on a loop as a function
. . of its shape. Below, we consider four qualitatively distinct loop
Caroline Gatti-Bono shapes and compare their vertical drag components.
e-mail: gattic@umich.edu
Applied Numerical Algorithms, Computational Research
Division, Lawrence Berkeley National Laboratory, 2 Analysis of Loop Drag

Berkeley, CA 94720

Four loop shapes are illustrated in Fig. 2. These loops have
identical lengthl==7R and diameter R, and are assumed to

N. C_- Perkins _ propagate to the right without changing shape. Two loops are
e-mail: ncp@umich.edu asymmetricalFigs. 4a) and 4b)) and two are symmetricdFigs.
Mechanical Engineering, University of Michigan, Ann  2(c) and 2d)). The first asymmetrical looffFig. 2(a)) has a posi-
Arbor. MI 48109-2125. Fellow ASME tive angle of attack and is termed a “climbing loop,” while the

second(Fig. 2(b)) has a negative angle of attack and is termed a
“falling loop.” The two symmetrical loops consist of a “pointed
loop” and a “circular loop” as illustrated in Figs.(2) and 2d),
This note explains why casting a loop with a positive angle eéspectively. It should be noted that the shapes of these loops do
attack is advantageous in distance fly casting. Several logit satisfy the steady-state conditions. However, they are close to
shapes, one with a positive angle of attack, one with a negatiige shapes observed in real casts and, therefore, they do provide
angle of attack, and two symmetrical loops with zero angle gbod insight into the mechanics of a cast. Below we demonstrate
attack are studied. For each loop, we compute the vertical dragow the loop shape significantly affects the vertical component of
component, i.e., the “lift.” It is found that a loop with a positivedrag on fly line. We begin by computing the velocity field for an
angle of attack generates lift about four times larger than a synarbitrary loop shape.
metrical loop. Thus, loops with positive angles of attack stay “ae- . . . . .
rialized longer” which is consistent with observations made by 2-1 Velocity Field. Figure 3 illustrates an arbitrary loop

(competition) distance fly casterdDOI: 10.1115/1.1778414 Shape and a control volume that travels with the loop with veloc-
ity v, =v,i. The upper portion of the loofassumed horizontal

travels with velocityv,=v,i and the velocity of the bottom por-
1 Introduction tion of the Ioop(gssumed horizontals zero as it is attac_:hed to the
o . i end of the stationary fly rodand the effects of gravity are ne-
Fly casting involves considerable mechanics of both the fly raglected. The velocity of an arbitrary material point P relative to
and fly line as described in several studigs:9]. For instance, the control volume is denoted a&s and its magnitude is uniform
the angler impartS both rlgld and flexible bOdy motions of the ﬂﬁ|ong the |00p since the |Oop does not deform as it propagates_
rod in accelerating the fly line during the forward and back castinghe absolute velocity of point P is
strokes. These strokes end with an abrupt deceleration of the fly
rod, often referred to as the “stop,” after which a “loop” of fly Vp= Ve, TV, 1)
line is formed as shown in the photograph below. This loop propa; - . . A . .
gates as a nonlinear wave under the action of fly line tension, gﬁf\)Vae:]%c'ggéoor;(th;r:?gg'ilf ﬁ)rc])lenltgocogrceldent with the top point
drag and gravity. The initial conditions that form the initial shap P P
and velocity of this loop are generated during a short time interval VAA= U, 2
following the stop[10]. Eventually the loop propagates to the end
of the fly line and the attached “leader” and “fly” turn over as the Vge=0, 3)
line straightens at the end of the cast.

The dynamics of this loop is the subject of a number of studié%SpeCtively' Using Eqs2) and (3) in Eq. (1) leads to the con-

beginning with those that assume idealized semi-circular or squ& gsion that

loop shapes|[1-3]. Further studies|5-9|, relax these assump- Vo

tions and compute the loop shape from the kinematics of the at- Ve =Ur =% (4)
tached fly rod and the equations of motion of the flexible fly line.

Fly casting expertgsee, for example[11-13) are fully aware Therefore,

that the shape of the loop has considerable influence on its dy-

namics. For instance, it is well understood that loops with smaller Uo. Vo

diameters propagate farther as they provide less projected area in VP=7'+ 731 ®)

the flow, hence less air drag. As a result, casting small loops are a ] ) )

distinct advantage when casting longer distances or into a hes@eree; is the unit tangent vector to the loop at P. Thus, given the

wind. shape of the loop, Ed5) can be used to evaluate the velocity of
The purpose of this note is to explain a second advantage tR& arbitrary material point. Resolving this velocity into compo-

results from casting loops that are asymmetrical and with a po8gnts tangential and normal to the loop allows one to compute the

tive angle of attack such as shown in Fig. 1. Fly casting loops 8fag components due to skin friction and form drag as follows.

this form have a “pointed” top portion followed by a larger and 5 5 \sertical Drag Component. The drag on an element of
more rounded *belly” beneath. The belly forms a positive anglgy jine derives from skin friction(tangent to the elemenand
of attack in the flow and the air drag along this portion of the loo rm drag(normal to the elementThe drag coefficients for skin

generates a component tha_t is ver_tically upwards. The uDW&}FQ:tion and form drag are denoted I, andCy,,, respectively.
drag component acts opposite gravity and allows these 100ps g , "genote the density of air and ldtdenote the diameter of

Comibuted by the Anplied Mechanics Division OfE A © the fly line (considered uniform for this example
ontributed by the Applied Mechanics Division ol MERICAN SOCIETY OF ; : :
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- The loops shown in Fig. 2 are composed of straight segments

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augustand. circular segments that, in total,. subtend a semi-circle. .For a
28, 2003; final revision, December 16, 2003. Associate Editor: O. M. O'Reilly. ~ straight segment of lengthy, the vertical component of drag is

Journal of Applied Mechanics Copyright © 2004 by ASME SEPTEMBER 2004, Vol. 71 / 745



e

Fig. 3 Kinematics of arbitrary loop

and the contribution due to form drag on the straight segment

) ) ) ] (second termis negative due to the negative angle of attéeig.

Fig. 1 The fly line “loop” is formed after the “stop” in a cast- 2(b))

ing stroke and propagates as a nonlinear wave. This loop is ; . . _

asymmetrical and possesses a positive angle of attack. Such - Pointed Loop For t.hl.s loop, the. straight segmerC=DE

loops are a hallmark of expert fly casters. = 7R/4 and the seml-C|rcIe_ of radiuR/2, composed of the arcs
AB, CD, and EF, are subject to drag. The total vertical drag

becomes

o 14 2m(7?—4)
1 1 _ Dy=1gPadRus| 5=+ — = |Ca (10)
DY=_EpaWdlsttUt|vt|et’J_Epadlscdnvn|vn|en'1 (6) o
and the contributions due to form drag cancel due to symmetry.
wherev; andv, are the velocity components tangential and nor- Circular Loop: The result for this loop follows directly from
mal to the fly line, respectivelysee, for exampld,14]). Note the Eq. (7)
contributions of both skin friction and form drag to this result. For -
the(sum_ of circular segments of radil®, the vertical component Dy== pad Rvgcdt (11)
of drag is 3

o1 1 _ and it is independent of form drag as mentioned above.
DY:f [_EpaWdRQtUJUtlQ']_EpadRCdnUn|vn|en'J de
0 3 Example and Conclusions

Prior studies of fly line dynamics have used slightly different
values for drag coefficients for skin friction and form drag,
1-3,5-9. Here, we shall assume valu€;=0.015 andCy,
=1 that are typical of those used in prior studies. We also recog-
nize that these values depend, in general, on fly line sgRey-
nold’s numbey, [2]. Using these drag coefficients and the results
above leads to the following table that compares the lift on the
four loops shown in Fig. 2.

S The results of Table 1 show that the lift generated by a climbing
1 L[ (i +8m2+64)m m(m2—4) loop is approximatelyfour times greaterthan that of a semi-
DY=§pade0 3(n2+d)? Cyit (724 4)?2 Cgn| (8) circular loop with the same characteristic dimensions. The source

m m of this additional lift is the contribution of form drag on the
and the contribution due to form drag on the straight segmelfitelly” of the fly line that has a positive angle of attack. The
(second termis positive due to the positive angle of atta@kg. negative angle of attack for the falling loop shape results in a net
2(a)). negative “lift,” again due to the form drag on the belly. The

Falling Loop For this loop, the straight segmeBIC=(=? Symmetrical loopgcircular and pointetigenerate approximately
+4/47)R and the semi-circle of raditR/2, composed of the arcs the same lift. These results may be readily generalized to other
AB and CD, are subject to drag. The total drag is expressed a#pops shapes.

4 5 ) This note explains a fact observed by fly casting experts,
D :l dRy?2 477(77 +t27°+4) _ m(m°—4) c namely, that a climbing loop is advantageous in distance casting.
Y= 2Pai o 3(m2+4)2 T (7Pt 4)2 A How to generate a climbing loop through control of the casting
(9) stroke is left as dconsiderablgexercise to the reader.

™ 2
= §PadRUoCdt (1)

and this drag contribution depends only on the skin friction.
now employ Eqs(6) and (7) to compute the vertical drag com-
ponent for the four loops of Fig. 2.

Climbing Loop For this loop, the straight segmeBD= (2
+4/47r)R and the semi-circle of radiu’/2, composed of the arcs
BC and DE, are subject to drag. The total drag is expressed a

Climbing loop

Poirted loop Circular loop

Fig. 2 Four qualitatively different loop shapes. (a) and (b) I=AE, (¢) I=AF, and (d)
I=AB
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Table 1 Comparison of the vertical component of drag for the
four loops shown in Fig. 2.

Climbing loop  Falling loop  Pointed loop  Circular loop

16D,

—% 0.924 —0.450 0.276 0.251
padRvg
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Mitigating the Effects of Local makes it a useful parameter in the design of planar monolithic

flexible mechanisms. It enables the designer to use simplified ana-

Flexibility at the Built-In Ends of lytical models during design that do not account for localized

i distortion, while achieving accurate predictions by specifying the
Cantilever Beams appropriate fillet prior to manufacture.

2 FEA Model Setup

Figure 2a) shows the FEA model used to simulate pure bend-
Larry L. Howell ing at _the juncture of the bea_lm and an elastic half-plane. The
e-mail: lhowell@byu.edu deflt_actlon at the reference poifpoint 1) was co_mpared to the
vertical deflection of a moment end-loaded cantilever beam with a
Department of Mechanical Engineering, Brigham Young perfectly rigid suppor{Fig. 2(b)). A two-dimensional eight-node
University, 435 CTB, Provo, UT 84602 structural solid element was used in all the FEA models. To simu-
late a moment applied at point 1, a couple was applied to an
extension of the beam far enough from the point of interest so that
the local distortions at the application of the forces are insignifi-
Local distortion at the built-in ends of cantilever beams can leagant. A similar setup was used for pure bending of a beam at-
to significant errors when models assume the support to be pefched to an elastic quarter-plaft shown.
fectly rigid. This paper presents a novel approach for mitigating To ensure that the loading conditions were appropriate and to
this effect, using appropriately sized fillets to provide the additetermine an appropriate element size, FEA models were tested
tional stiffness needed to make simplified models more accurgiging the same boundary condition as in Figb)2 Using a
and reduce stress concentrations. The optimal nondimensional fitapped mesh with a basic element sizent§ was sufficient to
let radius, called the optimal fillet ratio, is shown to be nearlymake the systematic error insignificant.
constant for a wide range of geometries under predominantly |t js common in compliant mechanisms to have both bending
bending loads, making it a useful parameter in the design of pland shear loading of beams, so models were created to simulate
nar monolithic flexible mechanismgDOI: 10.1115/1.1782913  vertically end-loaded cantilever beams. The quarter-plane model
for this loading condition is shown in Fig. 3.
A good approximation to an infinite plane can be achieved us-
. ing a large finite plane sizey andb (see Fig. 2a) and Fig. 3a)).
1 Introduction Following the procedure used [12], an appropriate value was
Flexible or compliant mechanisms are popular components irfigtermined by increasing the plane size until the sensitivity of the
large variety of precision machinery and instrumefts, While results to the plane size was insignificant. A{12], a value of
the use of compliance in precision machine design it not a néWh=5 was found to be sufficient for the quarter-plane, but the
concept[2], the past decade has seen a rapid expansion of metalue used in this study wagh=15 in order to reduce the sys-
ods for designing and analyzing flexible or compliant mechdematic error to less than 0.1%. A value afh=9 with
nisms,[3-5]. This paper focuses on analysis of monolithic pland?=(a/2)—h was found to be sufficient for the half-plarEig.
compliant mechanisms, which are common components in pred{@)), but a conservative value ai/h=20 was used. In each
sion devices and microelectromechanical systémiEMS), such model, the mesh was refined around the points of high stress in
as folded-beam linear suspension springs and micro force gauggg,er to obtain a more accurate determination of the stress con-
[6-8]. centration factor.

It is still common to assume that flexible members are attached . S .

to perfectly rigid supports. However, the seminal works byg‘ Formulation of Simplified Analytical Model
O’Donnell [9] and Small[10] demonstrate through analysis and Using Castigliano’s displacement theorem for the analysis of an
experiment that the local flexibility at the juncture of a supporénd-loaded rectangular cantilever beam, the vertical defleafjon,
and a cantilever beam or plate can lead to a significantly largétie to an applied moment or shear force are given by the follow-
deflection for a given load. The stress distributions in Fig. 1 showg equations:
the local distortion occurring at the juncture. To account for this )
additional deflection, O'Donnell11] and Matusz et al[12] de- 5= 6L M=CuM )
veloped flexibility coefficients to use in a variety of classical Ewh?® M
equations for the deflections and stresses in beams. 3

( 4L 12(1+v)i

Jonathan W. Wittwer

This paper derives a novel approach to the analysis of planar n
loading of cantilever beams by using appropriately sized fillets to Ewh? 5Ewh

mitigate the effects of local elasticity in the support. It stands R?/hereE is the elastic modulus; is Poisson’s ratiow is the beam

reason that if the local flexibility of the support results in add'\'lvidth, his the beam thickness, arldis the beam length. The

ii:r?;il S)eii?: tijo enai;oiii 2?)?&“8 aiiig asi'hejgri?;?'ngvbtagn ?gsi'gg ,in eneral assumptions are that deflections are small, cross sections
P 9 y P rémain plane, and the material is linearly elastic, isotropic, and

additional stiffness to mitigate the effect. It is common practice ) A .
use fillets to reduce stress concentrations and improve manu;gg_mogenous. For small deflections, the deflection is proportional

- i~ ; . . oo the applied force, with a proportionality consta@t,commonly
turability, so the additional stiffness will be applied by optimizin : s : :
the size of the fillet at the built-in end of the beam. Yermed thecompliancewhich is the inverse of thepring constant

The optimal fillet radius is specified in terms of a nondimen' >P"N9 rate . .

. . . AR L The optimal fillet is determined based upon a comparison of
sional parameter ca_ll_ed treptimal fillet ratio p”, Wh'ch is equal Eq. (1) or (2) with the results obtained from finite element analy-
to the fillet radius divided by the beam width/). This param- 5" ¢ o cantilever attached to an elastic half-space or quarter-

eter is shown to be nearly constant for a wide range of bealfy o a5 shown in Fig. 2 and Fig. 3. The results are given in terms
geometries under predominantly bending loads. This dISCOVE(S an error in the compliances =(C—C,)/C, or spring rate

Comibuted by the Anplied Mechanics Division OfE A © e=(k,—k)/k, where the subscrips, refers to the “actual” value
ontributed by the Applied Mechanics Division ol MERICAN SOCIETY OF B ; p
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- as simulated using the FEA model. The ereowill often be

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Decemr_(:—“portecj as a perce_nt. Thoptimal filletis defined herein as the
ber 4, 2003, final revision, April 23, 2004. Associate Editor: S. Govindjee. fillet that reduces this error to zero.
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Fig. 1 Stress distribution at the juncture of a flexible beam
and (a) an elastic half-plane and (b) an elastic quarter-plane
-20%

4 Discussion of Results -25%
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The results found that the percent error was only significantly
affected by two non-dimensional geometric parameters: the slen:
derness ratiol({/h) and the fillet ratiop=(r/h). ®)

(@)

Percent Error vs. Fillet Ratio for the Quarter-Plane

Figure 4 shows graphs of error versus fillet ratio for the cases 30%
involving pure bending for both the half-plar&ig. 4(a)) and
quarter-plangFig. 4(b)) models. Each line on the graph represents 20% 1
a specific slenderness ratio. A positive percent error means that th !
beam will have a larger deflection than predicted when using Eg. 10% -
(1). The point where a line crosses tlkexis is defined as the )
optimal fillet ratio, p*, for that slenderness ratio. At this point, the %

—6—Lh=5
—8—Lh=10
—A—L/Mh=30

results from the FEA model match the simplified analytical equa-
tion. -10% -

-20% 1

LS LS

-30%

=

/|

r

®)

f P Fig. 4 Plot of the percent error versus the fillet ratio and slen-
£ derness for the (a) half-plane model, and (b) the quarter-plane
L model, under pure bending

Foint.1 P These graphs show that for relatively small fillets, the error due
to local elasticity in the support can be highly significant, espe-
; L cially for non-slender beams. The serendipitous discovery was
7 (@ that each of the lines in the plots intersected xkexis at nearly
ﬁ the same point. Or, in other words? is nearly identical for each
geometry.
47‘)1”:”" When the sufficient conditions are met for the plane sa®
discussed earligr p* has only a slight dependence on the slen-
®) derness as shown in Fig. 4. Because the optimal values are very

Fig. 2 (a) FEA model and (b) simplified model for simulating a
constant-moment end-loaded cantilever beam of length, L, at-

similar and the sensitivity to variation is small, a sufficient ap-
proach is to use the same fillet ratio regardless of the slenderness.

tached to an elastic half-plane Using the graphs in Fig. 4, appropriate approximationg’offor
the half-plane and quarter-plane gig=0.64 andpgo=1.1, as

y summar
The g

\

culating
r h P stress ¢

o po=1.1,

| w

]
4 ® TP

ized in Table 1.
eometric stress concentration factor is usually a concern

M — in design for determining both a static safety factor, and for cal-

an estimate of the fatigue life. Most charts of geometric
oncentrations are only for fillet ratios below 0.3, since

values larger than that result in very small or negligible stress
L I concentrations,[13]. When using the ratiospy=0.64 and

the results obtained from the finite element model for

isiinin pure bending show essentially no stress concentratigr (.0).
This shows that not only does using the optimal fillet ratio miti-

Table 1 Approximations of p* for two juncture types

Fig. 3 (a) FEA model and (b) simplified model for simulating a
vertically end-loaded cantilever beam of length, L, attached to

Juncture Type p=rlh
Half-plane 0.64
Quarter-plane 1.1

an elastic quarter-plane

Journal of Applied Mechanics
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Table 3 Percent difference between analytical and finite ele-
ment results for Example 1. Units for the spring constant are

|
|
K ! J | AN/ pm.
N y 4 | | -
S / —-(—?-————\--—— ! FEA w/out FEA Using
ry 1y : t 4 N Model Fillets p*
N / L Ka r 63.1 72.0
N / \ P Simplified, Eq.(3) 72.1 —12.5% —0.14%
K—\ /—j Beam element 71.6 —-11.9% 0.56%
F

c 1 L3+6(1+U)L Lr+3L2Lr_ 1 3
o wel2n® T T sh T on T o | Tk ©

I
I

: wherew is the out-of-plane thickness of the suspension, and the
I last two terms represent the compliance of the semi-rigid segment
: as shown in Fig. 5. A complete beam-element model including
I
I
I
I

shear effects was used to validate the assumptions made in deriv-
ing Eq.(3).

Two detailed finite element models using eight-node structural
solid elements were made for the linear suspension. The first was
Fig.5 Schematic for a folded-beam linear suspension and the modeled without fillets, and the second was modeled using fillets
simplified model for applying Castigliano’s method to obtain based upon the valugg =0.64 andpo=1.1. These FEA models,
the spring constant which can account for local elasticity, serve as benchmarks for

comparison to Eq(3) and the beam-element model. Table 2 lists
the values of the variables used in this example.
gate the effects of the flexibility of the juncture, but it also prac- 1 N€ results for this example are summarized in Table 3. The
tically eliminates the geometric stress concentration. results indicate that when deS|gn_|n_g the mechanl_sm using models
For the cases involving nonuniform bendiffgig. 3), the results that cannotaccount for local elasticity, manufacturing the mecha-

showed the same trends as those for pure bending in that fH&M USing tTe estimated lop;im_al _ffi_llet ratigs, = 0.64 anfd h
intersections of the lines and theaxis were nearly identical. The Po=1-1 may lead to a nearly insignificant percent error. If the

important result was that the optimal fillet ratios were all fairlyf"echanism were to be made without fillets, the FEA simulation
close to the same values as those for pure bending, nam icates that the percent error would be as much as two orders of

pu=0.64 andpo=1.1. Combined loading involving bending andmagnitude higher. However, one should also consider that manu-

shear makes up a large portion of problems in compliant mecHgcturing limitations usually result in a minimum fillet radius,
nisms analysis, so the fact that the same fillet ratio works to mitfich forkfsurfartl:e mllcromach/lgid ME'\]{'S |sh_usually abouth_l mi-
gate the effect of local elasticity fdvoth loading conditions is cronléma_”mg t Ie Tillet rgtlo_;_ =0.33 for this ex%mpl)e T ISd ‘
advantageous. In addition, the geometric stress concentration still result in a significant percent error, but instead o

vertical end-loading was less than 1.06 when the optimum fill@Hilding a more complicated model to predict the behavior of the
ratio was used. real device, the appropriate fillet can be designed into the actual

mechanism to make it behave more like the simplified or beam-

5 E | element model. In the process, the geometric stress concentrations
xampie at these junctures are eliminated through the use of relatively large

A device used in both precision instrumentation and in micrdilets.

electromechanical systent®IEMS) is a folded-beam linear sus-

pension[3,7,8]. A schematic for the suspension is shown in Fig. 5

along with the corresponding simplified model that can be used Agzknowledgments

obtain the spring constant. This suspension uses a combination o,

half-plane and quarter-plane junctures. These junctures do not rﬁghe authors gratefully acknowledge the support of the National

——

resent beams attached to infinite half-planes or quarter-planes, Bgience Foundation through NSF grant CMS-9978737, and an

the method of using optimal fillets is fairly robust to these boun graduate research fellowship.
ary conditions when the rigid members are over five times the
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